Spelling suggestions: "subject:"conergy harvesting"" "subject:"coenergy harvesting""
201 |
A methodology for designing 2.45 GHz wireless rectenna system utilizing Dickson Charge Pump with Optimized Power EfficiencyMasud, Prince Mahdi 22 August 2013 (has links)
In the present thesis, I have proposed methodology of two stages Dickson charge pump, which is capable of harvesting energy at 2.45 GHz RF signal to power any low powered device. Presented design uses a simple and inexpensive circuit consisting of four microstrip patch antennas, some zero-bias Schottky diodes, Wilkinson power divider and a few passive components. Circuit was fabricated on a 60 mils RO4350B substrate (=3.66), with 1.4 mils copper conductor. Demonstration showed the charge pump provides a good performance, as it drives the low powered devices with as low as 10dBm input power at 1m away from the energy source. Thesis paper will present design techniques illustrated with data obtained on prototype circuits.
The objective is to wirelessly gather energy from one RF source and convert it into usable DC power that is further applied to a set of low power electronic devices. Radio Frequency Identification (RFID) tag system could also be improved using this method. RF-to-DC conversion is accomplished by designing and characterizing an element commonly known as a Rectenna, which consists of an antenna and an associated rectification circuitry. The rectenna is fully characterized in this dissertation and is used for charging low powered devices.
|
202 |
Energy harvesting from human passive powerMateu Sáez, Maria Loreto 05 June 2009 (has links)
Las tendencias en la tecnología actual permiten la reducción tanto en tamaño como en potencia
consumida de los sistemas digitales complejos. Esta disminución en el tamaño y el consumo da
lugar al concepto de dispositivos portátiles que se integren en la vida pertenencias personales y
cotidianas como ropa, relojes, gafas, etc. La fuente de alimentación es un factor limitante en la
movilidad de los dispositivos portátiles que se ve reducida por la duración de la batería.
Además, debido a los costos y difícil accesibilidad, la sustitución o recarga de las baterías a
menudo no es viable para los dispositivos portátiles integrados en ropa inteligente. Los
dispositivos vestibles están distribuidos en las pertenencias personales y, por tanto, la
recolección de energía del usuario es una alternativa para su alimentación. Dispositivos
vestibles pueden crear, al igual que los sensores de una red de sensores inalámbricos (WSN),
una red de área corporal. El principal objetivo de esta tesis es el estudio de generadores
piezoeléctricos, inductivos y termoeléctricos que recolectan energía del cuerpo humano de
forma pasiva.
El principio físico de un transductor es el mismo independientemente de si la fuente proviene
del entorno o del cuerpo humano. Sin embargo, las limitaciones relacionadas con la baja
tensión, corriente y niveles de frecuencia conllevan nuevos requerimientos que no están
presentes en el caso de la utilización de las fuentes que ofrece el entorno y que suponen el
principal desafío de esta tesis.
El tipo de energía entrada y transductor a utilizar forman un tándem donde la elección de uno
impone el otro. Es importante que las mediciones se realicen diferentes partes del cuerpo
humano, mientras se realizan diferentes actividades físicas para localizar las posiciones y las
actividades que producen más energía. El acoplamiento mecánico entre transductor y cuerpo
humano depende de la ubicación del transductor y la actividad que se realiza. Un diseño
específico, teniendo esto en cuenta puede aumentar más de un 200% la eficiencia del
transductor como se ha demostrado con láminas piezoeléctricas situadas en plantillas de
zapatos.
Se han realizado mediciones de aceleraciones en diferentes partes del cuerpo y diferentes
actividades para cuantificar la cantidad de energía disponible en actividades cotidianas.
Se ha realizado una simulación a nivel de sistema, modelando los elementos de un sistema de
energía autoalimentado. El transductor se ha modelado usando las ecuaciones físicas que lo
describen con el objetivo de incluir la parte mecánica del sistema. Se han utilizado modelos
eléctricos y de comportamiento para el resto de los componentes. De esta manera, el proceso
de diseño de la aplicación en su conjunto (incluyendo la carga y un elemento de
almacenamiento de energía cuando es necesario) se simplifica a la hora de lograr los requisitos
planteados. Obviamente, la carga debe ser un dispositivo de bajo consumo como por ejemplo
un transmisor RF. En este caso, es preferible alimentar la carga de forma discontinua, sin una
batería, como se deduce de los resultados obtenidos mediante simulación. Sin embargo, la
evolución de los transmisores RF de baja potencia puede cambiar esta conclusión en función
sobre todo de la evolución del consumo de energía en stand-by y el tiempo de configuración
para la operación de transmisión.
Se ha deducido a partir del análisis de los generadores inductivos que el análisis en el dominio
temporal permite calcular algunas magnitudes que no están disponibles en el dominio
frecuencial. Por ejemplo, la potencia máxima se puede calcular en el dominio frecuencial, pero
para aplicaciones de recolección de energía es más interesante saber el valor de la energía
recuperada durante un cierto tiempo o la potencia media ya que la potencia generada por las
actividades humanas pueden ser muy discontinua.
Se ha demostrado que los transductores recolectores de energía son capaces de suministrar
alimentación a dispositivos electrónicos de baja potencia, como quedó demostrado con un
transmisor RF alimentado por una termogenerador que emplea el gradiente de temperatura
existente entre el cuerpo humano y el entorno (3-5 K) y que es capaz de realizar medidas y
transmitirlas una vez cada segundo / The trends in technology allow the decrease in both size and power consumption of complex digital
systems. This decrease in size and power gives rise to the concept of wearable devices which are
integrated in everyday personal belongings like clothes, watch, glasses, et cetera. Power supply is a
limiting factor in the mobility of the wearable device which gets restricted to the lifetime of the battery.
Furthermore, due to the costs and inaccessible locations, the replacement or recharging of batteries is
often not feasible for wearable devices integrated in smart clothes. Wearable devices are devices
distributed in personal belongings and thus, an alternative for powering them is to harvest energy from the
user. Therefore, the energy can be harvested, distributed and supplied over the human body. Wearable
devices can create, like the sensors of a Wireless Sensor Network (WSN), a Body Area Network. A study
of piezoelectric, inductive and thermoelectric generators that harvest passive human power is the main
objective of this thesis.
The physical principle of an energy harvesting generator is obviously the same no matter whether it is
employed with an environmental or human body source. Nevertheless, the limitations related to low
voltage, current and frequency levels obtained from human body sources bring new requirements to the
energy harvesting topic that were not present in the case of the environment sources. This analysis is the
motivation for this thesis.
The type of input energy and transducer form a tandem since the election of one imposes the other. It is
important that measurements are done in different parts of the human body while doing different physical
activities to locate which positions and activities produce more energy. The mechanical coupling between
the transducer and the human body depends on the location of the transducer and the activity that is
done. A specific design taking this into account can increase more than a 200% the efficiency of the
transducer as has been demonstrated with piezoelectric films located in the insoles of shoes.
Acceleration measurements have been performed in different body locations and different physical
activities, in order to quantify the amount of available energy associated with usual human movements.
A system-level simulation has been implemented modeling the elements of an energy self-powered
system. Physical equations have been used for the transducer in order to include the mechanical part of
the system and electrical and behavioral models for the rest of the components. In this way, the process
of the design of the complete application (including the load and an energy storage element when it is
necessary) is simplified to achieve the expected requirements. Obviously, the load must be a low power
consumption device as for example a RF transmitter. In this case, it is preferable to operate it in a
discontinuous way without a battery as it is deduced from simulation results obtained. However, the
evolution in low power transmission modules can change this conclusion depending mostly on the
evolution of the power consumption in stand-by mode and the configuration time in transmission
operation.
It has been deduced from the analysis of inductive generators that time-domain analysis allows to
calculate some magnitudes that are not available in frequency domain. For example, the maximum power
can be calculated in frequency domain, but for energy harvesting applications it is more interesting to
know the value of the recovered energy during a certain time, or the average power since the power
generated by human activities can be highly discontinuous.
It has been demonstrated that energy harvesting transducers are able to supply power to present-day low
power electronic devices as was demonstrated with a RF transmitter powered by a thermogenerator that
employs the temperature gradient between human body and the environment (3-5 K) and that it is able to
sense and transmit data once every second.
|
203 |
Nonlinear Electroelastic Dynamical Systems for Inertial Power GenerationStanton, Samuel January 2011 (has links)
<p>Within the past decade, advances in small-scale electronics have reduced power consumption requirements such that mechanisms for harnessing ambient kinetic energy for self-sustenance are a viable technology. Such devices, known as energy harvesters, may enable self-sustaining wireless sensor networks for applications ranging from Tsunami warning detection to environmental monitoring to cost-effective structural health diagnostics in bridges and buildings. In particular, flexible electroelastic materials such as lead-zirconate-titanate (PZT) are sought after in designing such devices due to their superior efficiency in transforming mechanical energy into the electrical domain in comparison to induction methods. To date, however, material and dynamic nonlinearities within the most popular type of energy harvester, an electroelastically laminated cantilever beam, has received minimal attention in the literature despite being readily observed in laboratory experiments. </p><p>In the first part of this dissertation, an experimentally validated first-principles based modeling framework for quantitatively characterizing the intrinsic nonlinearities and moderately large amplitude response of a cantilevered electroelastic generator is developed. Nonlinear parameter identification is facilitated by an analytic solution for the generator's dynamic response alongside experimental data. The model is shown to accurately describe amplitude dependent frequency responses in both the mechanical and electrical domains and implications concerning the conventional approach to resonant generator design are discussed. Higher order elasticity and nonlinear damping are found to be critical for correctly modeling the harvester response while inclusion of a proof mass is shown to invigorate nonlinearities a much lower driving amplitudes in comparison to electroelastic harvesters without a tuning mass.</p><p>The second part of the dissertation concerns dynamical systems design to purposefully engage nonlinear phenomena in the mechanical domain. In particular, two devices, one exploiting hysteretic nonlinearities and the second featuring homoclinic bifurcation are investigated. Both devices exploit nonlinear magnet interactions with piezoelectric cantilever beams and a first principles modeling approach is applied throughout. The first device is designed such that both softening and hardening nonlinear resonance curves produces a broader response in comparison to the linear equivalent oscillator. The second device makes use of a supercritical pitchfork bifurcation wrought by nonlinear magnetic repelling forces to achieve a bistable electroelastic dynamical system. This system is also analytically modeled, numerically simulated, and experimentally realized to demonstrate enhanced capabilities and new challenges. In addition, a bifurcation parameter within the design is examined as a either a fixed or adaptable tuning mechanism for enhanced sensitivity to ambient excitation. Analytical methodologies to include the method of Harmonic Balance and Melnikov Theory are shown to provide superior insight into the complex dynamics of the bistable system in response to deterministic and stochastic excitation.</p> / Dissertation
|
204 |
New cylindrical near-field electrospun PVDF fibersOu, Zong-Yu 13 August 2012 (has links)
In this study, a cylindrical near-field electrospining (CNFES) process will be used to fabricate permanent piezoelectricity of polyvinylidene fluoride (PVDF) piezoelectric fibers, and a piezoelectric fiber harvesting device with parallel electrode was fabricated to capture ambient energy. First, the PVDF powder was mixed in acetone solution uniformly and the dimethyl sulfoxide (DMSO) was mixed with fluorosurfactant to prepare PVDF macromolecular solution. The PVDF macromolecular solution was filled in a metals needle injector and contacted a high power supply, after the PVDF drops in the needle was subjected to high electric field, the drops became a Taylor cone and overcame surface tension of the solution itself, extremely fine PVDF fiber was formed and jetted out. The fibers were collected numerous and quickly by homemade cylindrical collector and the diameter of fiber could be controlled easily by adjusting the rotating speed of the cylinder and the electric field. From the observation of XRD (X-ray diffraction), it reveals a high diffraction peak at 2£c=20.7¢X of piezoelectric crystal £]-phase structure by adjusting PVDF concentrations and DC voltage. By providing 7Hz shake and 0.23% strain, the piezoelectric fiber harvesting device with parallel electrode could generate 76mV; by providing 7Hz shake and 0.14% strain, the device could generate 1.1nA.
|
205 |
Oxide nanowire arrays for energy sciencesXu, Sheng 11 November 2010 (has links)
Oxide nanowire arrays are playing an important role in energy sciences nowadays, including energy harvesting, energy storage, and power management. By utilizing a wet chemical growth method, we demonstrated the capabilities of synthesizing density controlled vertical ZnO nanowire arrays on a general substrate, optimizing the aspect ratio of the vertical ZnO nanowire arrays guided by a statistical method, epitaxially growing patterned vertical ZnO nanowire arrays on inorganic substrates, epitaxially growing patterned horizontal ZnO nanowire arrays on non-polar ZnO substrates, and the lift-off of the horizontal ZnO nanowire arrays onto general flexible substrates. In addition, single crystalline PbZrxTi1-xO3 (PZT) nanowire arrays were epitaxially grown on conductive and nonconductive substrates by hydrothermal decomposition. Beyond that, based on the as-synthesized ZnO nanowire arrays, we demonstrated multilayered three dimensionally integrated direct current and alternating current nanogenerators. By integrating a ZnO nanowire based nanogenerator with a ZnO nanowire based nanosensor, we demonstrated solely ZnO nanowire based self-powered nanosystems. Also, utilizing a commercial full-wave bridge rectifier, we rectified the alternating output charges of the nanogenerator based on PZT nanowire arrays, and the rectified charges were stored into capacitors, which were later discharged to light up a laser diode (LD). In addition, blue/near-ultraviolet (UV) light emitting diodes (LED) composed of ordered ZnO nanowire arrays on p-GaN wafers were presented.
|
206 |
Low voltage autonomous buck-boost regulator for wide input energy harvestingAhmed, Khondker Zakir 08 June 2015 (has links)
While high power buck-boost regulators have been extensively researched and
developed in the academia and industry, low power counterparts have only recently gained
momentum due to the advent of different battery powered and remote electronics. The
application life-time of such applications, e.g., remote surveillance electronics can be
extended tremendously by enabling energy autonomy. While battery powered electronics
last long but they must be replenished once the battery is depleted either by replacing the
battery or by retrieving the electronics and then recharging. Instead, energy harvesting from
available ambient sources on the spot will enable these electronics continuous operation
unboundedly, probably even beyond the lifetime of the electronics. Interestingly enough,
recent advancements in micro-scale energy transducers compliment these demand [1-13].
Micro-transducers producing energy from different ambient sources have been reported.
These transducers produce enough energy to support a wide range of operations of the
remote electronics concurrently. These transducers along with an additional storage
elements greatly increase the energy autonomy as well as guaranteed operation since
harvested energy can then be stored for future use when harvestable energy is temporarily
unavailable.
Recently several buck-boost regulators with low power and low input operating
voltage have been reported both from academia and industry [14-24]. Some of this work
focuses on increasing efficiency in the mid-load range (10mA-100mA), while some other
focuses on lowering input range. However, so far no one has reported a buck-boost
regulator operating with sub-200nW bias power while harvesting energy from sub-500mV input range. This work focuses on the development of a low voltage low bias current buckboost regulator to attain these goals.
In this work, complete design of a PFM mode buck-boost regulator has been
discussed in details. Basic topology of the regulator and working principle of the
implemented architecture along with the advantages of the specific topology over that of
the others have been discussed in short to provide an uninterrupted flow of idea. Later,
Transistor level design of the basic building blocks of the buck-boost regulator is discussed
in details with different design features and how those are attained through transistor level
implementation are discussed. Subsequently, the physical layout design technique and
considerations are discussed to inform the reader about the importance of the layout process
and to avoid pitfalls of design failure due to layout quality issues.
Measurement results are presented with the fabricated IC. Different
characterization profile of the IC have been discussed with measured data and capture
oscilloscope waveforms. Load regulation, line regulation, efficiency, start-up from low
voltage, regulation with line and load transient events are measured, presented and
discussed. Different characteristics of the prototype are compared with prior arts and are
presented in a comparison table. Die micrograph is also presented along with the different
issue of the IC testing
|
207 |
Application and Characterization of Self-Assembled Monolayers In Hybrid Electronic SystemsCelesin, Michael Enoch 01 January 2013 (has links)
In this study, we explore ultra-thin insulators of organic and inorganic composition and their potential role as high-speed rectifiers. Typical applications for these structures include IR sensing, chemical detection, high speed logic circuits, and MEMS enhancements. While there are many elements in the functional group required to create a rectifying antenna (rectenna), the primary thrust of this work is on the rectifier element itself.
To achieve these research goals, a very good understanding of quantum tunneling was required to model the underlying phenomenon of charge conduction. The development of a multi-variable optimization routine for tunneling prediction was required. MATLAB was selected as the programming language for this application because of its flexibility and relative ease of use for simulation purposes. Modeling of physical processes, control of electromechanical systems, and simulation of ion implantation were also to be undertaken.
To advance the process science, a lithographic mask set was made which utilized the information gleaned from the theoretical simulations and initial basic experiments to create a number of diode test structures. This came to include the creation of generations of mask sets--each optimizing various parameters including testability, alignment, contact area, device density, and process ease. Following this work, a complete toolset for the creation of "soft" contact top metals was required and needed to be developed. Ultra-flat substrates were needed to improve device reliability and measurement consistency.
The final phase of research included measurement and characterization of the resultant structures. Basic DC electrical characterization of the organic monolayers would be accomplished using metal probes. Statistical studies of reliability and process yield could then easily be carried out. The rectification ratio (ratio of forward over reverse current at a given voltage magnitude) was found to be a reliable indicator of diode performance in the low frequency ranges. This would mean writing additional code in MATLAB to assist in the automatic analysis for the acquired IV curves. Progression to AC / RF measurements of tunneling performance was to be accomplished using relatively low frequencies (below 100 MHz). Finally, the organic films themselves would be studied for consistency, impedance characteristics, incidence of defects, and thickness by a variety of metrology techniques.
This project resulted in a number of advances to the state-of-the-art in nanofabrication using organic monolayers. A very detailed review of the state of alkanethiol research was presented and submitted for publication. A single pot technique was developed to softly deposit metal nanoparticles onto a charged surface with a high degree of control. A temporary contact method using pure, sub-cooled gallium liquid metal was used to probe organic monolayers and plot IV curves with better understanding of surface states than before. An inkjet printer solution was devised for top contact printing which involved the development and production of a work-up free insulator ink which is water soluble and printable to resolutions of about 25 um. Localized selective chemical crosslinking was found to reduce printed ink solubility following deposition. Future work will likely include additional exploration of crosslinkable Langmuir-Blodgett films as MIM insulators. Stability and testing will hinge on the fabrication of enclosures or packages for environmental isolation.
|
208 |
Aero-elastic Energy Harvesting Device: Design and AnalysisPirquet, Oliver Johann 02 October 2015 (has links)
An energy harvesting device driven by aeroelastic vibration with self-sustained pitching and heaving using an induction based power take off mechanism has been designed and tested for performance under various operating conditions. From the data collected the results show that the device achieved a maximum power output of 48.3 mW and a maximum efficiency of 2.26% at a dimensionless frequency of 0.143. For all airfoils tested the device was shown to be self-starting above 3 m/s. A qualitative description relating to the performance of the device considering dynamic stall and the flow conditions at optimal dimensionless frequency has been proposed and related to previous work. Performance for angles off the wind up to 22 degrees and was observed to have no reduction in power output due to the change in angle to the wind. The device has shown evidence of having a self-governing capability, tending to decrease its power output for heavy windpspeeds, a thorough examination of this capability is recommended for future work. / Graduate / 0548 / 0544 / opirquet@uvic.ca
|
209 |
Next generation wind energy harvesting to power bridge health monitoring systemsZimowski, Krystian Amadeusz 30 July 2012 (has links)
The research reported in this thesis is part of a project to develop a remote wireless sensing network for monitoring the health of highway bridges. Remote health monitoring that does not require direct human observation has many advantages in terms of cost and increased productivity. However, bridges that cannot be easily connected to the power grid require alternative means of acquiring power. This thesis describes the design of a wind energy harvester to power a particular component in the sensor network, the wireless router. The work discussed in this thesis provides a review of relevant literature and development of a detailed analytical modeling of wind turbine behavior. The analytical model provides key information on sizing generators and choosing appropriate wind turbine dimensions to provide the required amount of power. The analytical model also distinguishes the performance of vertical and horizontal axis wind turbines. The model is verified through design and testing of a first generation prototype and benchmarking of a commercially available turbine. Based on these results, the design of the next generation wind harvesting system is described. A new methodology to design non-destructive attachment systems is also discussed. / text
|
210 |
Design of a solar energy harvesting system for structural health monitoring systemsInamdar, Sumedh Anand 06 November 2012 (has links)
The work described in this thesis discusses the design of a solar energy harvesting system to support a structural health monitoring system. The objective was to design a photovoltaic system capable of powering a wireless gateway and cellular modem, a static DC 14W load, while meeting certain functional and energy requirements for deployment on a bridge. A literature review of the application, technologies, components, and latest innovations in solar energy technology was completed. A methodology for designing a system for attaching energy harvesting systems onto bridges while meeting design requirements is presented as a tool for engineers and students. The use of the tool was demonstrated through a study which revealed that the methodology aided in producing concepts that were higher in quality, quantity, and better met design requirements. A PV array performance model was used to determine the proper PV module size, battery bank size, panel orientation, the usefulness of a solar tracker and MPPT charge controller, and whether the use of two separate PV modules with independent geometric orientations provide better performance as compared to a single larger panel. It was found from the study that the optimal PV system design specifications were a 120W Polycrystalline PV panel, a 120 A-hr LiFePO4 battery bank, a 45 degree tilt and 0 degrees solar azimuth angle (south), and an MPPT controller. The results from the analytical model also showed that the maximum energy produced with two independent panels would be at a solar azimuth angle of 0 degrees (south) and tilt angles of 45 and 50 degrees respectively. However, these energy gains were insignificant compared to simply increasing the size of the PV module. This result was verified by physical experiments. The physical embodiment of the solar energy harvester with these characteristics, including the mount to the bridge and the panel, was conceptualized, refined, analyzed for structural integrity, and prototyped. / text
|
Page generated in 0.06 seconds