• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 253
  • 48
  • 46
  • 39
  • 26
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 574
  • 574
  • 130
  • 123
  • 99
  • 98
  • 78
  • 71
  • 70
  • 57
  • 56
  • 55
  • 55
  • 50
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
371

A Study On Certain Theoretical And Practical Problems In Wireless Networks

Antepli, Mehmet Akif 01 October 2010 (has links) (PDF)
The aim of the thesis is to investigate the design of efficient wireless networks through practical as well as theoretical considerations. We constructed a wireless sensor network (WSN) testbed with battery operated nodes capable of RF communication. The system is a centralized tree-based WSN to study challenges of target modeling, detection, and localization. The testbed employed magnetic sensors, on which relatively few results have been reported in the literature. A ferrous test target is modeled as magnetic dipole by validating experimentally. The problem of sensor sensitivity variation is addressed by including sensitivity estimates in model validation. After reliably detecting the target, maximum-likelihood and least-squares techniques are applied for localization. Practical considerations of constructing a WSN utilizing magnetic sensors addressed. Maximum-lifetime operation of these networks requires joint consideration of sensing and communication. Energy harvesting is promising to overcome this major challenge for energy-constrained systems. In the second part of the thesis, we considered the minimization of transmission completion time for a given number of bits per user in an energy harvesting multiuser communication system, where the energy harvesting instants are known beforehand. The two-user case with achievable rate region having structural properties satisfied by the AWGN Broadcast Channel is studied. It is shown that the optimal scheduler ends transmission to both users at the same time while deferring a nonnegative amount of energy from each energy harvest for later use. The problem is formulated as an optimization problem and solved by exploiting its special structure.
372

Piezoelectric Energy Harvesting For Munitions Applications

Ersoy, Kurtulus 01 September 2011 (has links) (PDF)
In recent years, vibration-based energy harvesting technologies have gained great importance because of reduced power requirement of small electronic components. External power source and maintenance requirement can be minimized by employment of mechanical vibration energy harvesters. Power sources that harvest energy from the environment have the main advantages of high safety, long shell life and low cost compared to chemical batteries. Electromagnetic, electrostatic and piezoelectric transduction mechanisms are the three main energy harvesting methods. In this thesis, it is aimed to apply the piezoelectric elements technology to develop means for energy storage in munitions launch. The practical problems encountered in the design of piezoelectric energy harvesters are investigated. The applicability of energy harvesting to high power needs are studied. The experience compiled in the study is to be exploited in designing piezoelectric energy harvesters for munitions applications. Piezoelectric energy harvesters for harmonic and mechanical shock loading conditions with different types of piezoelectric materials are designed and tested. The test results are compared with both responses from analytical models generated in MATLAB&reg / and ORCAD PSPICE&reg / , and finite element method models generated in ATILA&reg / . Optimum energy storage methods are considered.
373

Design And Prototyping Of An Electromagnetic Mems Energy Harvester For Low Frequency Vibrations

Turkyilmaz, Serol 01 September 2011 (has links) (PDF)
This thesis study presents the design, simulation, and fabrication of a low frequency electromagnetic micro power generator. This power generator can effectively harvest energy from low frequency external vibrations (1-100 Hz). The main objective of the study is to increase the efficiency of the previously proposed structure in METU-MEMS Center, which uses the frequency up-conversion technique to harvest energy from low frequency vibration. The proposed structure has been demonstrated by constructing several macro scale prototypes. In one of the constucted prototypes, the diaphragms are connected to a fixed frame via metal springs. The upper diaphragm having lower resonance frequency carries a magnet, and the lower diaphragm carries a hand wound coil and a magnetic piece for converting 6 Hz external vibrations up to 85 Hz, resulting a maximum voltage and power levels of 11.1 mV and 5.1 &micro / W, respectively. In an improved prototype, the metal springs are replaced with rubber ones, providing higher energy conversion efficiency and flexibility to tune the resonance frequency of both diaphragms to desired values. This prototype provides 104 &micro / W maximum power and 37.7 mV maximum voltage in response to vibration levels of 30 Hz. The proposed structure is also suitable to be realized by using microfabrication techniques. Hence, the structure to be microfabricated is studied and optimized for this purpose. When scaled to microelectromechanical dimensions, the expected maximum power and voltage from the 10 x 8.5 x 2.5 mm3 generator is 119 nW and 15.2 mV, respectively. A microfabrication process has also been designed for the proposed generator structure. According to this process, the structure consists of a stack of two pieces, each carrying different diaphragms. The diaphragms are made of parylene, and the coil and the magnetic piece are electroplated copper and nickel, respectively. As a result of this study, a new topology is proposed for harvesting energy at low frequency vibrations by the frequency up-conversion technique, and an efficiency improvement is expected with more than three orders of magnitude (119 nanoWatts output for the same size) compared to the study realized in our laboratory in converting low frequency (70-150 Hz) environmental vibrations to electrical energy.
374

Optimization Of Energy Harvesting Wireless Communication Systems

Erkal, Hakan 01 December 2011 (has links) (PDF)
In an energy harvesting communication system, energy is derived from outside sources and becomes partially available at different points in time. The constraints induced by this property on energy consumption plays an active role in the design of efficient communication systems. This thesis focuses on the optimal design of transmission and networking schemes for energy harvesting wireless communication systems. In particular, an energy harvesting transmitter broadcasting data to two receivers in an AWGN broadcast channel assuming that energy harvests and data arrivals occur at known instants is considered. In this system, optimal packet scheduling that achieves minimum delay is analyzed. An iterative algorithm, DuOpt, that achieves the same structural properties as the optimal schedule is proposed. DuOpt is proved to obtain the optimal solution when weaker user data is ready at the beginning. A dual problem is defined and shown to be strictly convex. Taking advantage of the dual problem, uniqueness of the solution of the main problem is proved. Finally, it is observed that DuOpt is almost two orders of magnitude faster than the SUMT (sequential unconstrained minimization technique) algorithm that solves the same problem.
375

Design and fabrication of flexible piezo-microgenerator with broadband width

Liu, Tong-Xin 15 July 2009 (has links)
In this study the relationship between the dynamic response of the flexible substrate and the power generation for energy harvesting system is proposed. High electro-mechanical transformation of piezoelectric materials, high efficient energy transfer of mechanical structure and controlled circuit make the piezoelectric generator a high performance. The devices of cantilevers with lump structures on the flexible substrate and piezoelectric film (ZnO) are designed. Then some individual layers of power generator are stocked in parallel to form a multi-layer system with a broad resonant band width. When the generator is operated in a wide frequency range vibration environment, the multi-layer piezoelectric films in the form of cantilever structures can induce current. First the finite element method for the piezoelectric cantilever beam is constructed by using ANSYS software. Both modal analysis and harmonic response analysis are performed to obtain the structural modal parameters and frequency response functions, respectively. Besides, the beam structure is modeled by 3D coupled field piezoelectric element. This research will apply Taguchi¡¦s method to design including variations of dimensions and material properties for energy harvesting system. The flexible substrate is polymeric film (PET). Imprinting process is applied to transfer the simulated geometric configuration onto a flexible substrate to obtain a maximum power output. The results show the single devices can improve efficiently by using lump structures on the flexible substrate, the generator could achieve maximum OCV of 2.25V which is 0.276£gW every centimeter squared when attached to a stable source of vibration. The multi-layer system can be used in 50~500Hz of low frequency environment. Furthermore, the output voltage (OCV) is upward when the flexible substrate with low Young¡¦s modulus.
376

Nanogenerator for mechanical energy harvesting and its hybridization with li-ion battery

Wang, Sihong 08 June 2015 (has links)
Energy harvesting and energy storage are two most important technologies in today's green and renewable energy science. As for energy harvesting, the fundamental science and practically applicable technologies are not only essential in realizing the self-powered electronic devices and systems, but also tremendously helpful in meeting the rapid-growing world-wide energy consumptions. Mechanical energy is one of the most universally-existing, diversely-presenting, but usually-wasted energies in the natural environment. Owing to the limitations of the traditional technologies for mechanical energy harvesting, it is highly desirable to develop new technology that can efficiently convert different types of mechanical energy into electricity. On the other hand, the electricity generated from environmental energy often needs to be stored before used to drive electronic devices. For the energy storage units such as Li-ion batteries as the power sources, the limited lifetime is the prominent problem. Hybridizing energy harvesting devices with energy storage units could not only provide new solution for this, but also lead to the realization of sustainable power sources. In this dissertation, the research efforts have led to several critical advances in a new technology for mechanical energy harvesting—triboelectric nanogenerators (TENGs). Previous to the research of this dissertation, the TENG only has one basic mode—the contact mode. Through rational structural design, we largely improved the output performance of the contact-mode TENG and systematically studied their characteristics as a power source. Beyond this, we have also established the second basic mode for TENG—the lateral sliding mode, and demonstrated sliding-based disk TENGs for harvesting rotational energy and wind-cup-based TENGs for harvesting wind energy. In order to expand the application and versatility of TENG by avoid the connection of the electrode on the moving part, we further developed another basic mode—freestanding-layer mode, which is capable of working with supreme stability in non-contact mode and harvesting energy from any free-moving object. Both the grating structured and disk-structured TENGs based on this mode also display much improved long-term stability and very high energy conversion efficiency. For the further improvement of the TENG’s output performance from the material aspect, we introduced the ion-injection method to study the maximum surface charge density of the TENG, and for the first time unraveled its dependence on the structural parameter—the thickness of the dielectric film. The above researches have largely propelled the development of TENGs for mechanical energy harvesting and brought a big potential of impacting people’s everyday life. Targeted at developing sustainable and independent power sources for electronic devices, efforts have been made in this dissertation to develop new fundamental science and new devices that hybridize the nanogenerator-based mechanical energy harvesting and the Li-ion-battery-based energy storage process into a single-step process or in a single device. Through hybridizing a piezoelectric nanogenerator with a Li-ion battery, a self-charging power cell has been demonstrated based on a fundamentally-new mechanical-to-electrochemcial process. The triboelectric nanogenerator as a powerful technology for mechanical energy harvesting has also been hybridized with a Li-ion battery into a self-charging power unit. This new concept of device can sustainably provide a constant voltage for the non-stop operation of electronic devices.
377

Design of an electromagnetic vibration energy harvester for structural health monitoring of bridges employing wireless sensor networks

Dierks, Eric Carl 05 October 2011 (has links)
Energy harvesting is playing an increasingly important role in supplying power to monitoring and automation systems such as structural health monitoring using wireless sensor networks. This importance is most notable when the structures to be monitored are in rural, hazardous, or limited access environments such as busy highway bridges where traffic would be greatly disrupted during maintenance, inspection, or battery replacement. This thesis provides an overview of energy harvesting technologies and details the design, prototyping, testing, and simulation of an energy harvester which converts the vibrations of steel highway bridges into stored electrical energy through the use of a translational electromagnetic generator, to power a wireless sensor network for bridge structural health monitoring. An analysis of bridge vibrations, the use of nonlinear and linear harvester compliance, resonant frequency tuning, and bandwidth widening to maximize the energy harvested is presented. The design approach follows broad and focused background research, functional analysis, broad and focused concept generation and selection, early prototyping, parametric modeling and simulation, rapid prototyping with selective laser sintering, and laboratory testing with replicated bridge vibration. The key outcomes of the work are: a breadth of conceptual designs, extensive literature review, a prototype which harvests an average of 80µW under bridge vibration, a prototype which provides quick assembly, mounting and tuning, and the conclusion that a linear harvester out performs a nonlinear harvester with stiffening magnetic compliance for aperiodic vibrations such as those from highway bridges. / text
378

Innovative energy harvesting technology for wireless bridge monitoring systems

Weaver, Jason Michael 26 October 2011 (has links)
Energy harvesting is a promising and evolving field of research capable of supplying power to systems in a broad range of applications. In particular, the ability to gather energy directly from the environment without human intervention makes energy harvesting an excellent option for powering autonomous sensors in remote or hazardous locations. This dissertation examines the possibility of using energy harvesting in new and innovative ways to power wireless sensor nodes placed in the substructures of highway bridges for structural health monitoring. Estimates for power requirements are established, using a wireless sensor node from National Instruments as an example system. Available power in a bridge environment is calculated for different energy sources, including solar radiation, wind, and vibration from traffic. Feasibility of using energy harvesting in such an application is addressed for both power availability and cost as compared with grid power or primary batteries. An in-depth functional analysis of existing energy-harvesting systems is also presented, with insights into where innovation would be most beneficial in future systems. Finally, the development of a suite of complementary energy-harvesting devices is described. Because conditions on bridges may vary, multiple solutions involving different energy domains are desired, with the end user able to select the harvester most appropriate for the specific installation. Concept generation techniques such as mind-mapping and 6-3-5 (C-Sketch) are used to produce a wide variety of concepts, from which several promising concept variants are selected. The continued development for one concept, which harvests vibration using piezoelectric materials, is described. Analytical modeling is presented for static and dynamic loading, as well as predicted power generation. Two proof-of-concept prototypes are built and tested in laboratory conditions. Through the development of this prototype, it is shown that the example wireless sensor node can successfully be powered through energy harvesting, and insights are shared concerning the situations where this and other energy harvesters would be most appropriate. / text
379

Microwave-energy harvesting at 5.8 GHz for passive devices

Valenta, Christopher Ryan 27 August 2014 (has links)
The wireless transfer of power is the enabling technology for realizing a true internet-of-things. Broad sensor networks capable of monitoring environmental pollutants, health-related biological data, and building utility usage are just a small fraction of the myriad of applications which are part of an ever evolving ubiquitous lifestyle. Realizing these systems requires a means of powering their electronics sans batteries. Removing the batteries from the billions or trillions of these envisioned devices not only reduces their size and lowers their cost, but also avoids an ecological catastrophe. Increasing the efficiency of microwave-to-DC power conversion in energy-harvesting circuits extends the range and reliability of passive sensor networks. Multi-frequency waveforms are one technique that assists in overcoming the energy-harvesting circuit diode voltage threshold which limit the energy-conversion efficiency at low RF input powers typically encountered by sensors at the fringe of their coverage area. This thesis discusses a systematic optimization approach to the design of energy-conversion circuits along with multi-frequency waveform excitation. Using this methodology, a low-power 5.8 GHz rectenna showed an output power improvement of over 20 dB at -20 dBm input power using a 3-POW (power-optimized waveform) compared to continuous waveforms (CW). The resultant efficiency is the highest reported efficiency for low-power 5.8 GHz energy harvesters. Additionally, new theoretical models help to predict the maximum possible range of the next generation of passive electronics based upon trends in the semiconductor industry. These models predict improvements in diode turn-on power of over 20 dB using modern Schottky diodes. This improvement in turn-on power includes an improvement in output power of hundreds of dB when compared to CW.
380

Modélisation et fabrication de systèmes de conversion thermo-mécanique pour la récupération d'énergie thermique / Modeling and design of thermomechanical conversion systems for thermal energy harvesting applications

Arnaud, Arthur 24 March 2016 (has links)
Le développement de systèmes de récupération d’énergie (ou energy harvesting systems en anglais) va de pair avec l’émergence de l’Internet des Objets et notamment la prolifération de réseaux de capteurs devant répondre aux besoins croissants en informations, que ce soit dans le domaine de l’industrie, de la sante, de la domotique ou de l’environnement qu’il soit urbain ou naturel. Les progrès réalisés ces dernières années dans le domaine des Technologies de l’Information et de la Communication ont permis de lever certains verrous technologiques au déploiement de ces réseaux de capteurs intelligents et autonomes, notamment grâce a l’amélioration des performances intrinsèques des composants microélectroniques (vitesse, consommation), la conception de circuits plus économes en énergie, ou bien la mise en place de standards de communications radio adaptes a ces contraintes énergies. Etant donné l’ubiquité des sources d’énergie, la fabrication de générateurs permettant d’alimenter directement ces capteurs à partir de ces sources représente une alternative viable à l’utilisation de batteries pour prolonger la durée de vie de ces capteurs communicants. Diverses technologies de générateurs ont ainsi été proposes pour s’adapter aux différentes formes que peut prendre l’énergie, qu’elle soit d’origine thermique, mécanique, solaire ou électromagnétique.Le présent travail est une contribution au développement de certains dispositifs de récupération thermiques basés sur l’exploitation des propriétés thermiques et mécaniques de bilames thermostatique. Ce type de générateurs, propose et développe au sein de STMicroelectronics à Crolles, se veut être une alternative fiable et bas cout a l’utilisation de matériaux thermoélectriques exploitant l’effet Seebeck pour générer de l’énergie électrique. Divers dispositifs ont déjà été fabriqués, démontrant la capacité des moteurs thermiques à base de bilames thermostatiques à alimenter des capteurs autonomes en fonctionnement synchrone et asynchrone. L’objectif de cette thèse est alors de démontrer la possibilité de miniaturiser de tels moteurs thermiques grâce aux techniques de fabrications utilisées en microélectronique. Afin de garantir le fonctionnement de ces systèmes a micro-échelle, un important travail de fond a d’abord été effectue sur la compréhension et la modélisation des phénomènes de couplages thermomécaniques a l’origine du comportement bistable des membranes bimétalliques. Ce travail a débouché sur la démonstration théorique du fonctionnement des moteurs thermiques a base de bilames et sur l’évaluation de leur performances énergétiques (énergie disponible, efficacité thermique, efficacité de Carnot relative). Dans la continuité de ce premier modèle, d’autres travaux ont été menés pour évaluer les performances de moteurs thermiques exploitant différents phénomènes de couplage électromécanique en vue de convertir l’énergie mécanique générée par les bilames thermostatiques en énergie électrique exploitable par les capteurs autonomes. La simulation du comportement des micro-générateurs à l’aide de ces divers modèles a debouché sur des lois d’échelles sur les performances des moteurs thermiques. Finalement, divers procédés de fabrications ont ete développé pour permettre la fabrication de microstructures thermiquement bistables. / The development of energy harvesting systems is linked to the emergence of the Internet of Things (IoT) and especially the proliferation of Wireless Sensors Networks that should respond to the growing needs for monitoring data in domains as diverse as the industry, the urban or natural environments, the home, or the human body etc. Recent progress in the field of information technologies have enabled to remove some of the technical obstables to the deployment of these smart and autonom devices, in particular thanks to the improvement of the performances of microelectronic components, the design of ultra-low-power circuits, or the creation of wireless communications standards adapted to the energy needs of wireless sensors. Given the great availability of energy sources, energy harvesters are reliable alternatives to batteries in order to extend the autonomy of these sensors. Various technologies of generators have been developped to adapt to the type of local energy sources (heat, vibration, light, radio-frequencies).The present work is a contribution to the development of thermal energy harvesters exploting the thermal and mechanical properties of bimetal thermostats. This type of technology developped at STMicroelectronics are intended to be a reliable and low-cost alternative to the use of thermoelectric materials exploing Seebeck effect to generate electricity from heat. Various devices were already fabricated at the macro-scale, demonstrating their ability to power wireless sensor nodes. In the continuity of these works, this PhD thesis aims to demonstrate the operation of these generators at the sub-millimetric scale. As a consequence, an important work on the modeling of the thermo-mechanical instability of bimetallic strips was made to understand the operation of bimetallic strip heat engines. This work enabled to theoretically demonstrate the capability of bimetallic to transform heat into mechanical energy and to evaluate the performances of such heat engines. Coupling between bimetallic strip heat engines and electro-mechanical transducers was also modeled to compare the performances of the current prototypes of generators. We then modeled the thermo-mechanical behavior of composite beams at the microscale and established scaling rules of the performances of the bimetallic strip heat engines, We finally developped microlectronic fabrication process to manufacture thermo-mechanically bistable beams at the microscale.

Page generated in 0.0891 seconds