• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 211
  • 154
  • 26
  • 18
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 583
  • 583
  • 150
  • 148
  • 139
  • 95
  • 86
  • 78
  • 55
  • 52
  • 40
  • 39
  • 36
  • 36
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
571

Catalytic Consequences of Active Site Speciation, Density, Mobility and Stability on Selective Catalytic Reduction of NO<sub>x</sub> with Ammonia over Cu-Exchanged Zeolites

Ishant Khurana (7307489) 16 October 2019 (has links)
<p>Selective catalytic reduction (SCR) of NO<sub>x </sub>using NH<sub>3 </sub>as a reductant (4NH<sub>3</sub>+ 4NO + O<sub>2</sub> 6H<sub>2</sub>O + 4N<sub>2</sub>) over Cu-SSZ-13 zeolites is a commercial technology used to meet emissions targets in lean-burn and diesel engine exhaust. Optimization of catalyst design parameters to improve catalyst reactivity and stability against deactivation (hydrothermal and sulfur poisoning) necessitates detailed molecular level understanding of structurally different active Cu sites and the reaction mechanism. With the help of synthetic, titrimetric, spectroscopic, kinetic and computational techniques, we established new molecular level details regarding 1) active Cu site speciation in monomeric and dimeric complexes in Cu-SSZ-13, 2) elementary steps in the catalytic reaction mechanism, 3) and deactivation mechanisms upon hydrothermal treatment and sulfur poisoning.</p><p>We have demonstrated that Cu in Cu-SSZ-13 speciates as two distinct isolated sites, nominally divalent Cu<sup>II </sup>and monovalent [Cu<sup>II</sup>(OH)]<sup>+ </sup>complexes exchanged at paired Al and isolated Al sites, respectively. This Cu site model accurately described a wide range of zeolite chemical composition, as evidenced by spectroscopic (Infrared and X-ray absorption) and titrimetric characterization of Cu sites under <i>ex situ </i>conditions and <i>in situ </i>and <i>operando </i>SCR reaction conditions. Monovalent [Cu<sup>II</sup>(OH)]<sup>+ </sup>complexes have been further found to condense to form multinuclear Cu-oxo complexes upon high temperature oxidative treatment, which have been characterized using UV-visible spectroscopy, CO-temperature programmed reduction and dry NO oxidation as a probe reaction. Structurally different isolated Cu sites have different susceptibilities to H<sub>2 </sub>and He reductions, but are similarly susceptible to NO+NH<sub>3 </sub>reduction and have been found to catalyze NO<sub>x </sub>SCR reaction at similar turnover rates (per Cu<sup>II</sup>; 473 K) via a Cu<sup>II</sup>/Cu<sup>I </sup>redox cycle, as their structurally different identities are masked by NH<sub>3 </sub>solvation during reaction. </p><p><br></p><p>Molecular level insights on the low temperature Cu<sup>II</sup>/Cu<sup>I </sup>redox mechanism have been obtained using experiments performed <i>in situ</i>and <i>in operando </i>coupled with<i></i>theory. Evidence has been provided to show that the Cu<sup>II</sup> to Cu<sup>I </sup>reduction half-cycle involves single-site Cu reduction of isolated Cu<sup>II </sup>sites with NO+NH<sub>3</sub>, which is independent of Cu spatial density. In contrast, the Cu<sup>I</sup> to Cu<sup>II </sup>oxidation half-cycle involves dual-site Cu oxidation with O<sub>2 </sub>to form dimeric Cu-oxo complexes, which is dependent on Cu spatial density. Such dual-site oxidation during the SCR Cu<sup>II</sup>/Cu<sup>I </sup>redox cycle requires two Cu<sup>I</sup>(NH<sub>3</sub>)<sub>2</sub>sites, which is enabled by NH<sub>3</sub>solvation that confers mobility to isolated Cu<sup>I </sup>sites and allows reactions between two Cu<sup>I</sup>(NH<sub>3</sub>)<sub>2 </sub>species and O<sub>2</sub>. As a result, standard SCR rates depend on Cu proximity in Cu-SSZ-13 zeolites when Cu<sup>I </sup>oxidation steps are kinetically relevant. Additional unresolved pieces of mechanism have been investigated, such as the reactivity of Cu dimers, the types of reaction intermediates involved, and the debated role of Brønsted acid sites in the SCR cycle, to postulate a detailed reaction mechanism. A strategy has been discussed to operate either in oxidation or reduction-limited kinetic regimes, to extract oxidation and reduction rate constants, and better interpret the kinetic differences among Cu-SSZ-13 catalysts.</p><p><br></p><p>The stability of active Cu sites upon sulfur oxide poisoning has been assessed by exposing model Cu-zeolite samples to dry SO<sub>2 </sub>and O<sub>2 </sub>streams at 473 and 673 K, and then analyzing the surface intermediates formed via spectroscopic and kinetic assessments. Model Cu-SSZ-13 zeolites were synthesized to contain distinct Cu active site types, predominantly either divalent Cu<sup>II </sup>ions exchanged at proximal framework Al (Z<sub>2</sub>Cu), or monovalent [Cu<sup>II</sup>OH]<sup>+ </sup>complexes exchanged at isolated framework Al (ZCuOH). SCR turnover rates (473 K, per Cu) decreased linearly with increasing S content to undetectable values at equimolar S:Cu ratios, consistent with poisoning of each Cu site with one SO<sub>2</sub>-derived intermediate. Cu and S K-edge X-ray absorption spectroscopy and density functional theory calculations were used to identify the structures and binding energies of different SO<sub>2</sub>-derived intermediates at Z<sub>2</sub>Cu and ZCuOH sites, revealing that bisulfates are particularly low in energy, and residual Brønsted protons are liberated at Z<sub>2</sub>Cu sites as bisulfates are formed. Molecular dynamics simulations also show that Cu sites bound to one HSO<sub>4</sub><sup>- </sup>are immobile, but become liberated from the framework and more mobile when bound to two HSO<sub>4</sub><sup>-</sup>. These findings indicate that Z<sub>2</sub>Cu sites are more resistant to SO<sub>2</sub>poisoning than ZCuOH sites, and are easier to regenerate once poisoned.</p><p><br></p><p>The stability of active Cu sites on various small-pore Cu-zeolites during hydrothermal deactivation (high temperature steaming conditions) has also been assessed by probing the structural and kinetic changes to active Cu sites. Three small-pore, eight-membered ring (8-MR) zeolites of different cage-based topology (CHA, AEI, RTH) have been investigated. With the help of UV-visible spectroscopy to probe the Cu structure, in conjunction with measuring differential reaction kinetics before and after subsequent treatments, it has been suggested that the RTH framework imposes internal transport restrictions, effectively functioning as a 1-D framework during SCR catalysis. Hydrothermal aging of Cu-RTH results in complete deactivation and undetectable SCR rates, despite no changes in long-range structure or micropore volume after hydrothermal aging treatments and subsequent SCR exposure, highlighting beneficial properties conferred by double six-membered ring (D6R) composite building units. Exposure aging conditions and SCR reactants resulted in deleterious structural changes to Cu sites, likely reflecting the formation of inactive copper-aluminate domains. Therefore, the viability of Cu-zeolites for practical low temperature NO<sub>x </sub>SCR catalysis cannot be inferred solely from assessments of framework structural integrity after aging treatments, but also require Cu active site and kinetic characterization after aged zeolites are exposed to low temperature SCR conditions.</p>
572

Sorption, degradation and transport of estrogens and estrogen sulphates in agricultural soils

Scherr, Frank January 2009 (has links)
The fate and behaviour of estrogens in the environment are of concern due to the compounds’ endocrine disruption potential. Estrogens, namely 17β-estradiol (E2), estrone (E1), and estrogen sulphates, i.e. 17β-estradiol-3-sulphate (E2-3S) and estrone-3-sulphate (E1-3S) excreted by livestock constitute a potential source for estrogen contamination in the environment. A method was developed to separate and quantify the hormones by high-performance-liquid-chromatography (HPLC) and ultraviolet detection (UV). A combination of dichloromethane (DCM) and dicyclohexylamine hydrochloride (DCH·HCl) gave recoveries from 97.3 to 107% for E1-3S extraction from aqueous solutions. The recoveries from soil samples ranged from 80.9 to 95.2% (E2-3S), and from 86.3 to 91.7% (E1-3S), respectively. Results of batch sorption studies showed that Freundlich isotherms were nonlinear (N ≠ 1) with Kf values ranging from 34.2 to 57.2, and from 3.42 to 4.18 mg¹-N LN kg⁻¹ for E1, and E1-3S, respectively, indicating the sorption affinity of E1-3S was about an order of magnitude lower than that of E1. The hydrophilic sulphate group of E1-3S possibly shielded the compound from hydrophobic interactions with the soil organic matter and allophanic clay minerals that were proposed as sorbents for E1. Contraction of clay minerals, “salting out” and competitive sorption of artificial urine constituents were likely to have been responsible for observed changes in Freundlich parameters when artificial urine was used as mediator matrix. Plotting the effective distribution coefficient as a function of hypothetical exposure concentrations facilitated the comparison of the sorption behaviour of both compounds as influenced by the mediator solution. The results emphasized that using the CaCl₂ matrix might result in false inferences for the sorption behaviour of these compounds in a dairying environment. The four hormones rapidly degraded in the agricultural soils under aerobic conditions, and the majority of the compounds degraded > 50% within the first 24 hrs. Soil arylsulphatase activities were directly correlated with degradation rate constants of the estrogen sulphates. Estrone was identified as a metabolite of E2 and E1-3S, and these three compounds were observed as metabolites of E2-3S. Single-first order (SFO) and double first-order in parallel (DFOP) kinetics were used to model the degradation and metabolite formation data. The results showed that the DFOP model was in most cases better able to predict the parent compound degradation than the SFO model, and also enabled to estimate accurate degradation endpoints. ER-CALUX® analysis revealed the formation of estrogenicity during E2-3S degradation, which could partly be explained by the formation of the metabolites E2 and E1. Transport studies with E1-3S and E1 showed that the transport and retention of both compounds were significantly influenced by the mediator matrix. While no breakthrough curves (BTCs) were recorded during hormone application in CaCl₂ (10 mM) both hormones were detected in the leachate when applied in artificial urine. Rate-limited sorption processes were proposed for the delayed arrival of the hormone BTCs compared with a conservative bromide tracer. Intense colouration of the leachate during the artificial urine experiments suggested the hormones were likely to be moved by colloid-facilitated transport. Furthermore, the detection of residue hormone and metabolite concentrations implied that degradation of E1-3S and E1 was hampered by urine constituents such as glycine and urea.
573

Dioxin emissions from small-scale combustion of bio-fuel and household waste

Hedman, Björn January 2005 (has links)
<p>Denna avhandling behandlar rökgasutsläpp av persistenta organiska föroreningar, framförallt dioxiner, vid förbränning av fasta biobränslen och torrt hushållsavfall i relativt små anläggningar (5-600 kW) utan avancerad rökgasreningsteknik.</p><p>Samförbränning av avfall och biobränsle i effektiva mindre biobränslepannor testades som en alternativ strategi till den vanligen förekommande storskaliga hanteringen och förbränningen fast hushållsavfall. Medan storskalig förbränning av avfall ger investeringsmässiga fördelar med rökgasreningsteknik etc. kan små lokala anläggningar ha transportmässiga fördelar och möjligheter till utnyttjande av lokala biobränsletillgångar. Källsorterat, torrt, brännbart hushållsavfall insamlades från hushåll i glesbygd och samförbrändes i brikettform med energigräset rörflen i 150-600 kW biobränslepannor. Endast undantagsvis understeg dioxinemissionerna gällande gränsvärden för avfallsförbränning och nivåerna av väteklorid i rökgas översteg gränsvärdena flerfaldigt. Det bedömdes att någon form av extra rökgasrening är nödvändig för att säkerställa nivågränserna. Dioxiner hittades också i det eldade avfallet, framförallt i textilfraktionen. Dioxinmängderna i rökgaserna var oftast lägre än i det ingående bränslet.</p><p>Intermittent pelletseldning gav oväntat höga utsläpp av dioxiner med en emissionsfaktor på 28 ng(WHO-TEQ)/kg. Vedeldning i en modern miljömärkt villapanna gav betydligt lägre utsläpp av dioxiner än eldning i en gammal kombipanna och eldning med full lufttillförsel, som kan jämföras med användning av ackumulatortank, resulterade i upp till 90% minskning av utsläpp av dioxiner jämfört med eldning med reducerat lufttillskott (’pyreldning’). Eldning av plastavfall i en vedpanna gav höga utsläpp av dioxiner.</p><p>Okontrollerad förbränning av trädgårdsavfall och hushålls avfall i tunna eller som öppen eld ’bakgårdsbränning’, gav stora variationer i utsläppsnivåer som bara delvis kunde kopplas till avfallsinnehåll. Resultaten visar att denna typ av förbränning kan vara en betydande källa till dioxiner i miljön, och ett emissionsfaktorintervall på 4-72 ng (WHO-TEQ)/kg föreslås för bedömningar av utsläpp från backgårdsbränning av avfall med låga eller måttliga klorhalter.</p><p>En sammanfattande slutsats av alla försök är att dioxin utsläpp beror på komplicerade samband mellan bränsleinnehåll och förbränningsbetingelser. Bränslen med mycket höga klorhalter av ger oftast högre utsläpp av dioxiner än bränslen med låga klorhalter medan små skillnader döljs av variationer i förbränningsbetingelser.</p> / <p>This thesis deals with emissions of persistent organic pollutants, primarily dioxins, from the combustion of solid biofuels and dry combustible household waste in relatively small facilities, 5-600 kW, without advanced air pollution controls.</p><p>Co-combustion of waste and biofuel in effective small boilers was tested as an alternative to prevailing large-scale management and combustion strategies for handling municipal solid waste. This approach includes no advanced air pollution control systems, but offers two advantages: limiting transport and providing scope to use local biofuel resources. Source-sorted, dry, combustible household waste was collected from households in a sparsely populated area and co-combusted as briquettes together with reed canary-grass in 150-600 kW biofuel boilers. Most trials showed difficulties to meet regulative limits for the emissions of dioxins valid for incineration of MSW and the regulated limits for emissions of hydrochloric acid were exceeded manifold. It was concluded that additional flue-gas cleaning will be needed to ensure that emissions are sufficiently low. Dioxins were also found in the waste, especially in the textile fraction. The mass of dioxins in the flue-gas emissions was generally lower than the mass in the fuel input.</p><p>Intermittent combustion of wood pellets in a residential boiler resulted in an unexpectedly high dioxin emissions factor of 28 ng (WHO-TEQ)/kg fuel. Combustion of wood in a modern environmentally certified boiler yielded considerably lower dioxin emissions than combustion in an old boiler, and combustion with a full air supply, i.e. with use of heat storage tank, resulted in up to 90% reductions in dioxin emission factors compared to combustion with reduced air supply. Combustion of plastic waste in a residential wood boiler resulted in high emissions of dioxins.</p><p>Tests of uncontrolled combustion of garden and household waste in barrels or open fires, ‘backyard burnings’, resulted in emissions with large variations that could only be partly correlated to the waste constituents. The results imply that this may be an important source of dioxins in the environment and an emission factor range of 4-72 ng (WHO-TEQ)/kg is suggested for estimating emissions from backyard burnings of lightly and moderately chlorine-contaminated waste.</p><p>A summarized conclusion from all of the experiments is that predicting emission levels from waste contents is not straightforward (except that fuels with very high chlorine levels will usually result in high levels of dioxins in flue-gas emissions). Moderate differences in chlorine levels will usually be masked by the effect of variations in combustion conditions.</p>
574

Sources of dioxins and other POPs to the marine environment : Identification and apportionment using pattern analysis and receptor modeling

Sundqvist, Kristina January 2009 (has links)
In the studies underlying this thesis, various source tracing techniques were applied to environmental samples from the Baltic region. Comprehensive sampling and analysis of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in surface sediments in Swedish coastal and offshore areas resulted in a unique data set for this region. Nearly 150 samples of surface sediments were analyzed for all tetra- to octa-chlorinated PCDD/Fs. The levels showed large spatial variability with hotspots in several coastal regions. Neither Sweden nor the EU has introduced guideline values for PCDD/Fs in sediment, but comparisons to available guidelines and quality standards from other countries indicate that large areas of primarily coastal sediments may constitute a risk to marine organisms. Multivariate pattern analysis techniques and receptor models, such as Principal Component Analysis (PCA) and Positive Matrix Factorization (PMF), were used to trace sources. These analyses suggested that three to six source types can explain most of the observed pattern variations found in the sediment samples. Atmospheric deposition was suggested as the most important source to offshore areas, thus confirming earlier estimates. However, spatial differences indicated a larger fraction of local/regional atmospheric sources, characterized by PCDFs, in the south. This was indicated by the identification of several patterns of atmospheric origin. In coastal areas, the influence of direct emission sources was larger, and among these, chlorophenol used for wood preservation and emissions from pulp/paper production and other wood related industry appeared to be most important. The historic emissions connected to processes involving chemical reactions with chlorine (e.g. pulp bleaching) were found to be of less importance except at some coastal sites. The analysis of PCDD/Fs in Baltic herring also revealed spatial variations in the levels and pollution patterns along the coast. The geographical match against areas with elevated sediment levels indicated that transfer from sediments via water to organisms was one possible explanation. Fugacity, a concept used to predict the net transport direction between environmental matrices, was used to explore the gas exchange of hexachlorocyclohexanes (HCHs) and polychlorinated biphenyls (PCBs) between air and water. These estimates suggested that, in the Kattegat Sea, the gaseous exchange of HCHs primarily resulted in net deposition while PCBs were net volatilized under certain environmental conditions. The study also indicated that, while the air concentrations of both PCBs and γ-HCH are mostly dependent upon the origin of the air mass, the fluctuations in α-HCH were primarily influenced by seasonal changes.
575

Measurements of Water-soluble Composition of Fine Atmospheric Particulate Matter (PM2.5) and Associated Precursor Gases via Ambient Ion Monitor-ion Chromatography (AIM-IC)

Markovic, Milos 30 August 2012 (has links)
Atmospheric fine particulate matter (PM2.5), which is mostly formed in the atmosphere from precursor gases, contributes to numerous environmental and health concerns. Quantifying the ambient concentrations of PM2.5 and precursor gases can be challenging. Hence, many scientific questions about the formation, chemical composition, and gas/particle partitioning of PM2.5 remain unanswered. Ambient Ion Monitor - Ion Chromatography (AIM-IC) was characterized and utilized to measure the water-soluble composition of PM2.5 (dominated by pNH4+, pSO42-, and pNO3-) and associated precursor gases (dominated by NH3(g), SO2(g), and HNO3(g)) during two field campaigns. The AIM-IC detection limits for hourly sampling were determined to be 3 - 45 ng m-3. The response time for “sticky” gases was significantly improved with a nylon denuder membrane. A novel inlet configuration for the AIM-IC, which minimizes sampling inlet losses and carryover in sample analyses, was implemented. Measurements from the BAQS-Met 2007 campaign were utilized to assess the accuracy of the AURAMS model and investigate gas/particle partitioning in SW Ontario. Due to high sulphate levels, NH3(g) was the limiting chemical factor in the formation and gas/particle partitioning of PM2.5. The errors in the predictions of relative humidity and free ammonia were responsible for the poor agreement iii between modelled and measured pNO3- values. The AIM-IC measurements from the CalNex 2010 study were compared to the CMAQ model and utilized to investigate the gas/particle partitioning in Bakersfield, CA. Very high NH3(g) concentrations were observed, and the formation and partitioning of PM2.5 was limited by HNO3(g) and H2SO4. Evidence of rapid removal of HNO3(g) by interactions with super-micron dust particles, and possibly with the alkaline surface was found. CMAQ exhibited significant biases in the predicted concentrations of pSO42-, NH3(g) and HNO3(g).
576

Measurements of Water-soluble Composition of Fine Atmospheric Particulate Matter (PM2.5) and Associated Precursor Gases via Ambient Ion Monitor-ion Chromatography (AIM-IC)

Markovic, Milos 30 August 2012 (has links)
Atmospheric fine particulate matter (PM2.5), which is mostly formed in the atmosphere from precursor gases, contributes to numerous environmental and health concerns. Quantifying the ambient concentrations of PM2.5 and precursor gases can be challenging. Hence, many scientific questions about the formation, chemical composition, and gas/particle partitioning of PM2.5 remain unanswered. Ambient Ion Monitor - Ion Chromatography (AIM-IC) was characterized and utilized to measure the water-soluble composition of PM2.5 (dominated by pNH4+, pSO42-, and pNO3-) and associated precursor gases (dominated by NH3(g), SO2(g), and HNO3(g)) during two field campaigns. The AIM-IC detection limits for hourly sampling were determined to be 3 - 45 ng m-3. The response time for “sticky” gases was significantly improved with a nylon denuder membrane. A novel inlet configuration for the AIM-IC, which minimizes sampling inlet losses and carryover in sample analyses, was implemented. Measurements from the BAQS-Met 2007 campaign were utilized to assess the accuracy of the AURAMS model and investigate gas/particle partitioning in SW Ontario. Due to high sulphate levels, NH3(g) was the limiting chemical factor in the formation and gas/particle partitioning of PM2.5. The errors in the predictions of relative humidity and free ammonia were responsible for the poor agreement iii between modelled and measured pNO3- values. The AIM-IC measurements from the CalNex 2010 study were compared to the CMAQ model and utilized to investigate the gas/particle partitioning in Bakersfield, CA. Very high NH3(g) concentrations were observed, and the formation and partitioning of PM2.5 was limited by HNO3(g) and H2SO4. Evidence of rapid removal of HNO3(g) by interactions with super-micron dust particles, and possibly with the alkaline surface was found. CMAQ exhibited significant biases in the predicted concentrations of pSO42-, NH3(g) and HNO3(g).
577

Arsenic Contamination in Groundwater in Vietnam: An Overview and Analysis of the Historical, Cultural, Economic, and Political Parameters in the Success of Various Mitigation Options

Ly, Thuy M 01 May 2012 (has links)
Although arsenic is naturally present in the environment, 99% of human exposure to arsenic is through ingestion. Throughout history, arsenic is known as “the king of poisons”; it is mutagenic, carcinogenic, and teratogenic. Even in smaller concentrations, it accumulates in the body and takes decades before any physical symptoms of arsenic poisoning shows. According to the World Health Organization (WHO), the safe concentration of arsenic in drinking water is 10 µg/L. However, this limit is often times ignored until it is decades too late and people begin showing symptoms of having been poisoned. This is the current situation for Vietnam, whose legal arsenic concentration limit is 50 µg/L, five times higher than the WHO guidelines. Groundwater in Vietnam was already naturally high in arsenic due to arsenic-rich soils releasing arsenic into groundwater. Then, in the past half century, with the use of arsenic-laden herbicides dispersed during the Vietnam War and subsequent industrial developments, the levels of bio-available arsenicals has dangerously spiked. With the proliferation of government-subsidized shallow tube-wells in the past two decades, shallow groundwater has become the primary source for drinking and irrigation water in Vietnam. This is a frightening trend, because this groundwater has arsenic concentrations up to 3050 µg/L, primarily in the +3 and +5 oxidation states, the most readily available oxidation states for bioaccumulation. This thesis argues that measures must be taken immediately to remedy the high concentration of arsenic in groundwater, which in Vietnam is the primary and, in some cases, the sole source of water for domestic consumption and agricultural production. Although there are numerous technologies available for treating arsenic in groundwater, not all of them are suited for Vietnam. By analyzing the historical, cultural, economic, and political parameters of Vietnam, several optimal treatments of groundwater for drinking water emerged as most recommended, a classification that is based on their local suitability, social acceptability, financial feasibility, and governmental support. Further research on irrigation water treatment is proposed due to the need for sustainable crop production, the safe ingestion of rice and vegetables, and the continued growth of Vietnam’s economy, which is heavily dependent on agriculture.
578

Emprego de análise por injeção seqüencial (SIA) com detecção eletroquímica na determinação de metais pesados extraíveis de sedimentos / The use of sequential injection analysis with electrochemical detection for determination of heavy metals extractable from sediments

Clóvis Lúcio da Silva 26 March 1999 (has links)
Estudou-se a especiação dos metais pesados (Cu, Cd, Cr, Zn, Pb e Ni) em sedimentos do rio Tietê, coletados nos reservatórios de Rasgão, Tecelagem e Barra Bonita. Para isto, adotou-se o protocolo de extração seqüencial proposta por Community Bureau of Reference (BCR), que consiste em três etapas de tratamento, as soluções extratores utilizados foram: etapa 1, solução de ácido acético 0,11 mol/L; Etapa 2, solução de cloridrato de hidroxilamina 0,1 mol/L pH 2 (ajustado com HNO3); Etapa 3, ataque com peróxido de hidrogênio em meio ácido e posterior extração dos metais com solução de acetato de amônio pH 2 (ajustado com HNO3). Nas mesmas amostras efetuou-se uma extração com ácido clorídrico 0,1 mol/L, no sentido de avaliar a concentração de metais potencialmente biodisponíveis. Realizou-se ainda a determinação do teor total de metais. Tanto a extração seqüencial como a extração parcial em ácido diluído foram conduzidas em ambientes anaeróbico (mantendo o EH da amostra) e aeróbicos (após secagem em estufa - simulando material dragado e depositado às margens do rio). As concentrações dos metais presentes nos extratos foram determinadas através das técnicas de absorção atômica, espectrometria de emissão atômica, voltametria de redissolução anódica com eletrodo de gota pendente e a técnica proposta por este trabalho, voltametria de redissolução anódica com eletrodo de filme de mercúrio acoplada ao sistema de injeção seqüencial. A técnica de voltametria de redissolução anódica acoplada ao sistema de injeção sequencial apresentou vantagens em relação a voltametria de redissolução com eletrodo de gota pendente, apresentando maior reprodutibilidade e sensibilidade, redução do tempo de análise e consumo de reagentes, e completa automação dos parâmetros instrumentais, como: vazão, número de reagentes, volumes e seqüência dos reagentes aspirados. / Speciation of heavy metals (Cu, Pb, Cd, Zn, Ni and Cr) in sediments of the Tietê river (SP), collected at Rasgão, Tecelagem e Barra Bonita reservoirs, was studied by the sequential extraction protocol proposed by the Community Bureau of Reference (BCR). This protocol is composed of three steps, that use the following reagent extractors. Step1: 0,11 mol/L acetic acid. Step 2: Hydroxylamine hydrochloride, acidified to pH 2 with nitric acid. Step 3: Oxidation with acidified 30 % (v/v) hydrogen peroxide followed by extraction with 1mol/L ammonium acetate acidified to pH 2 with nitric acid. Samples were also extracted with 0.10 mol/l hydrochloric acid in order to evaluate the bioavailable metal concentrations. The total concentration of metals was also determined. The sequential extraction and the extraction with hydrochloric acid were performed in anoxic (keeping the negative Eh of samples, as in the time of sampling) and oxidant conditions (after drying samples at 60&#186;C in the atmosphere, simulating dredged material). Metal determination was performed by Flame Atomic Absorption Spectrometry (FAAS), Induced Coupled Plasma-Atomic Emission Spectrometry (ICP-EAS), Anodic Stripping Voltammetry with the Mercury Hanging Drop Electrode (ASV-HMDE), and the technique proposed in this work: ASV automated by Sequential Injection (ASV-SI) using the Thin Film Mercury Electrode (TFME). The proposed technique presented improved reproducibility and shorter time of analysis in comparison to conventional ASV-HMDE. In addition, the ASV-SI permits easy and fast change of operational parameters such as flow rate and sample volume, that have direct influence on the deposition time.
579

Potencialidade da injeção seqüencial no monitoramento em tempo real de indicadores de qualidade de águas naturais e residuais / Potentiality of sequential injection in real-time monitoring of indicators of quality of natural water and waste

Cristiane Xavier Galhardo 04 May 2001 (has links)
O presente trabalho apresenta o desenvolvimento de metodologias baseadas no sistema de Análise por Injeção Seqüencial (SIA) para a determinação de fosfato e silicato, nitrito e nitrato, assim como a especiação de Fe(II) e Fe(III) em amostras de interesse ambiental, com ênfase para sistemas aquáticos. Para todas as determinações utilizou-se a espectrofotometria de absorção molecular na região do visível como técnica de detecção. A determinação de fosfato e silicato foi baseada na reação de ambos os ânions com molibdato de amônio em meio ácido e posterior redução do Mo(VI) à Mo(V) com ácido ascórbico. O procedimento SIA foi desenvolvido para contornar a interferência mútua das duas espécies explorando o efeito de complexação do molibdato pelo ácido oxálico. A determinação de nitrito foi baseada na reação de diazotação com sulfanilamida e diclorato de N-1 naftil etilenodiamina (NED), enquanto a determinação de Fe(II) baseou-se na sua complexação com 1,10 fenantrolina. A determinação de nitrato e Fe(III) foi efetuada pelas mesmas reações após a redução a nitrito e Fe(II) em colunas de cádmio e zinco amalgamado, respectivamente. A estabilidade das curvas analíticas foi avaliada em diferentes dias de trabalho, obtendo-se variações não superiores a 5% durante um período de 4 dias. O sistema de injeção seqüencial foi explorado também no sentido de regenerar as colunas redutoras no intervalo de tempo entre duas amostras. A estabilidade das curvas analíticas, a viabilidade de regeneração das colunas redutoras e a possibilidade de realizar a amostragem através de filtração tangencial, permitindo a realização de análises com características de tempo real, sugerem que o sistema de injeção seqüencial tem grande potencial para ser implementado em estações automáticas de monitoramento da fração solúvel de indicadores de poluição em águas naturais e residuais. / The present work presents the development of analytical methodologies based on Sequential Injection Analysis (SIA) for determination of phosphate and silicate, nitrite and nitrate, as well as speciation Fe(II)/Fe(III) in environmental samples with emphasis for aquatic environments. All determinations were performed using molecular absorption spectrophotometry at the visible range of the spectrum as the detection technique. The determination of phosphate and silicate was based on the reaction of both anions with ammonium molybdate in acidic medium, followed by reduction of Mo(VI) to Mo(V) with ascorbic acid. The SIA procedure was developed to avoid the mutual interference of both species exploiting the complexation of the molybdate by oxalic acid. The determination of nitrite was based on the diazotation reaction with sulfanilamide and N-l naphtyl ethylenediamine dihydrochlorine (NED), while the determination of Fe(II) were based on the complexation with 1,10 phenantroline. The determination of nitrate and Fe(III) were based on the same reactions, performed after their reduction to nitrite and Fe(II) in reducing columns containing cooperized cadmium and amalgamated zinc, respectively. The stability of the analytical curves was evaluated in different working days, in which no variations greater than 5% were observed during a period of 4 consecutive days. The sequential injection analysis was exploited to regenerate the reducing columns in the time interval between two sample. The stability of the analytical curves, the easy and automatic regeneration of the reducing columns, as well as the possibility to perform sampling through tangential filtration, which permits the analysis to be performed in real time, are characteristics that show the potential application of the sequential injection systems in automatic stations for monitoring the soluble fraction of pollution indicators in natural waste waters.
580

Investigation Of Temperature, Solution Strength, And Applied Stress Effects On Cation Exchange Processes In Different Geosynthetic Clay Liner Products

Fuller, Kendra 01 September 2024 (has links) (PDF)
An extensive laboratory test program was conducted to analyze and compare the cation exchange processes in three different varieties of sodium bentonite (Na-B) geosynthetic clay liners (GCLs) over increased conditioning durations up to 32 days and investigate the effects of temperature, solution strength, and applied stress. The goal of this test program was to establish whether the variables of temperature, solution strength, and applied stress improved or degraded the engineering properties of GCLs in laboratory testing and municipal solid waste (MSW) landfill applications. The GCLs were conditioned in liquids of increasing ionic strength, using deionized water and 2, 50, and 200 mM CaCl2 solutions to represent control, pore water, mild MSW leachate, and harsh MSW leachate. Conditioning periods were 1 to 32 days. Tests were conducted at 5°C, 20°C, 40°C, and 60°C and at 0 kPa, 30 kPa, and 500 kPa to represent stresses experienced by the cover and bottom liner. These variables were selected to represent geoenvironmental conditions observed in MSW landfill systems. Cation exchange processes in the bentonite component of the GCL were quantified by measuring the bound cation (BC) concentrations and cation exchange capacities (CEC) of the specimens and by conducting index testing to determine the dimensional measurements, final moisture content, and swell index of the conditioned bentonite. The temperature, electrical conductivity, total dissolved solids, sodium and calcium concentrations of the conditioning fluids were measured periodically for all specimens and the sodium concentration was measured for all specimens tested at applied stress. Temperature, solution strength, and applied vertical stress all affected the cation exchange processes in the bentonite component of GCLs. Increasing temperature, increased solution strength and decreased applied vertical stress were observed to increase cation exchange processes. The results of this study can be applied to quality assurance evaluations of in-service GCLs. In addition, the observation of the study indicates that GCLs used in cover liner systems for MSW landfills may be susceptible to high rates of cation exchange due to low overburden stresses and high surface temperatures. GCLs used in bottom liner may experience inhibited cation exchange rates as a result of high vertical stresses and relative lower temperatures.

Page generated in 0.0685 seconds