Spelling suggestions: "subject:"epitaxy."" "subject:"apitaxy.""
611 |
Magnetron Sputter Epitaxy of High-quality GaNand Plasma Characterization of the Process : Degree Project–Master’s ThesisLo, Yi-Ling January 2021 (has links)
Several sputtering depositions were done by direct current (DC) magnetron sputtering epitaxy (MSE) techniquefor the goal of improving the growth rate and crystalline quality of GaN thin film on Al2O3 substrate. Thegrowth rate was higher when substrate-to-target distance D = 7 cm compared with D = 9.3 cm with eitherfloating or positive bias on the substrate side. The crystalline quality was improved by raising up the growthtemperature from 700◦C to 900◦C, but the quality was declined from 900◦C to 1000◦C due to strong desorption.Gas composition in the metal mode gives better quality due to its sufficient Ga condition with less N2. Positivesubstrate bias boosted the plasma potential and therefore created higher actual sputtering power comparedwith the condition at floating substrate potential. In general, applying a higher power can elevate the growthrate and film quality. However, there has not been an evident difference of both growth rate and film qualitywhen the actual sputtering power is close for floating substrate potential and positive substrate bias.
|
612 |
Metal-Assisted Growth of III-V Nanowires By Molecular Beam EpitaxyPlante, Martin 02 1900 (has links)
<p> The mechanisms operating during the metal-assisted growth of III-V nanowires (NWs) by molecular beam epitaxy on (1 1 l)B substrates were investigated through a series of experiments aimed at determining the influence of growth conditions on the morphology and crystal structure. Using GaAs as the principal material system for these studies, it is shown that a good control of these two characteristics can be achieved via a tight control of the temperature, V /III flux ratio, and Ga flux. Low and intermediate growth temperatures of 400°C and 500°C resulted in a strongly tapered morphology, with stacking faults occurring at an average rate of 0.1 nm^(-1). NWs with uniform diameter and the occurrence of crystal defects reduced by more than an order of magnitude were achieved at 600°C, a V /III flux ratio of 2.3, and a Ga impingement rate on the surface of 0.07 nm/s, and suggest the axial growth is group V limited. Increasing the flux ratio favored uniform sidewall growth, thus making the process suitable for the fabrication of core-shell structures. Further observation of steps on the sidewall surface of strongly tapered NWs suggests that radial growth of the shell proceeds in a layer-by-layer fashion, with the edge progressing in a step-flow mode toward the tip. </p>
<p> From the experimental considerations, an analytical description of the growth is proposed, based on a simple material conservation model. Direct impingement of growth species on the particle, coupled to their diffusion from the sidewall and the substrate surface, are considered in the derivation of expressions for the time evolution of both axial and radial growths. Factors that take into account the nonunity probability of inclusion of group III adatoms in the axially growing crystal are introduced. Moreover, a step-mediated growth is included to describe the axial evolution of the shell. </p> / Thesis / Doctor of Philosophy (PhD)
|
613 |
Ferroelectric domains in potassium sodium niobate thin films: impact of epitaxial strain on thermally induced phase transitionsvon Helden, Leonard 26 July 2019 (has links)
Gegenstand dieser Arbeit ist die experimentelle Untersuchung der Verspannungs-Temperatur-Phasenbeziehungen in epitaktischen KxNa1-xNbO3 Dünnschichten, sowie deren Zusammenhang mit ferro- und piezoelektrischen Eigenschaften. Die präsentierten Ergebnisse ermöglichen es KxNa1-xNbO3 Dünnschichten für neuartige technologische Anwendung zu optimieren.
Zunächst wird eine detaillierte strukturelle Untersuchung der ferroelektrischen Domänenstruktur in epitaktischen K0.7Na0.3NbO3 Schichten auf (110) TbScO3 vorgestellt. Eine Analyse der ferroelektrischen Domänenstruktur mittels lateral aufgelöster Piezoresponse-Kraftmikroskopie (PFM) zeigt vier Arten von Superdomänen. Durch die ergänzende Untersuchung der zweidimensionalen und dreidimensionalen Abbildung des reziproken Raumes mittels hochauflösender Röntgenbeugung (HR-XRD) wird nachgewiesen, dass dieses Domänenmuster mittels monokliner Einheitszellen in einem MC Domänenmodell beschrieben werden kann.
Im Anschluss an die strukturelle Untersuchung wurden die elektromechanischen Eigenschaften der KxNa1-xNbO3 Schichten auf (110) TbScO3untersucht. Mittels Doppelstrahl-Laserinterferometrie (DBLI) wurde ein makroskopischer effektiver piezoelektrischer Koeffizient von bis zu d33,f = 23 pm/V nachgewiesen. Zudem wurden Oberflächenwellen-Experimente (SAW) durchgeführt. Diese zeigten außergewöhnlich hohe Signalstärken.
Um die Temperatur der ferroelektrischen Phasenübergänge gezielt einstellen zu können, wurde der Zusammenhang zwischen epitaktischer Verspannung und der Phasenübergangstemperatur untersucht. Dazu wurden KxNa1-xNbO3 Schichten mit unterschiedlicher Verspannung gewachsen. Die Änderung der Domänenstruktur und der piezoelektrischen Eigenschaften aufgrund von Temperaturänderung wurde in-situ durch temperaturabhängige PFM, HR-XRD und DBLI Messungen untersucht. Die Untersuchung zeigte, dass die Übergangstemperatur des Übergangs von der MC- in die c-Phase mit zunehmender kompressiver Verspannung kontinuierlich um mehr als 400 °C abnahm. / The subject of this thesis is the experimental investigation of the strain-temperature-phase relations in epitaxial KxNa1-xNbO3 thin films and their connection to ferro- and piezoelectric properties. This will enable the optimization of KxNa1-xNbO3 layers for novel technological devices.
First, a detailed structural investigation of the ferroelectric domain structure in epitaxial K0.7Na0.3NbO3 films on (110) TbScO3 is presented. An analysis of the ferroelectric domain structure with laterally resolved piezoresponse force microscopy (PFM) reveals four types of superdomains. By complementary two-dimensional and three-dimensional high resolution X-ray reciprocal space mapping this domain pattern is proven to be describable by an MC domain structure with monoclinic unit cells.
Subsequently to the structural investigation, the electromechanical properties of KxNa1-xNbO3 layers on (110) TbScO3 were investigated. Double beam laser interferometry (DBLI) revealed a macroscopic effective piezoelectric coefficient of up to d33,f = 23 pm/V. Furthermore, surface acoustic wave (SAW) experiments were performed. They exhibited extraordinary signal intensities.
In order to be able to selectively tune such phase transition temperatures, the correlation between epitaxial strain and the phase transition temperature was investigated. For this purpose, KxNa1-xNbO3 films with different compressive strain conditions were grown. The change of domain structure and piezoelectric properties upon temperature variation was investigated in-situ by temperature-dependent PFM, HR-XRD and DBLI measurements. The transition temperature between the MC- and c-phase was shown to continuously decrease by more than 400 °C with increasing compressive strain.
|
614 |
Skyrmions and Novel Spin Textures in FeGe Thin Films and Artificial B20 HeterostructuresAhmed, Adam Saied 24 August 2017 (has links)
No description available.
|
615 |
Growth and Scanning Tunneling Microscopy Studies of Magnetic Films on Semiconductors and Development of Molecular Beam Epitaxy/Pulsed Laser Deposition and Cryogenic Spin-Polarized Scanning Tunneling Microscopy SystemLin, Wenzhi 26 July 2011 (has links)
No description available.
|
616 |
Normally-off operating GaN-based pseudovertical MOSFETs with MBE grown source regionHentschel, Rico, Schmult, Stefan, Wachowiak, Andre, Großer, Andreas, Gärtner, Jan, Mikolajick, Thomas 05 October 2022 (has links)
In this report, the operation of a normally-off vertical gallium nitride (GaN) metal-oxide field effect transistor with a threshold voltage of 5 V is demonstrated. A crucial step during device fabrication is the formation of the highly n-doped source layer. The authors infer that the use of molecular beam epitaxy (MBE) is highly beneficial for suppressing diffusion of the magnesium (Mg) p-type dopants from the body layer grown by metal-organic vapor phase epitaxy into the source cap. Repassivation of the previously activated Mg acceptors by a hydrogen out-diffusion treatment is suppressed in the ultrahigh vacuum growth environment. Structural and electrical data indicate that the defect density of the GaN substrate is currently limiting device performance much more compared to other effects like varying surface morphology resulting from fluctuations in III/N stoichiometry during the MBE growth.
|
617 |
Green coloring of GaN single crystals introduced by Cr impurityZimmermann, F., Gärtner, G., Sträter, H., Röder, C., Barchuk, M., Bastin, D., Hofmann, P., Krupinski, M., Mikolajick, T., Heitmann, J., Beyer, F. C. 10 October 2022 (has links)
In this study unintentionally doped GaN grown by hydride vapor phase epitaxy that exhibits a sharply delimited region of green color was investigated. Optical analysis was performed by absorption and photoluminescence spectroscopy. An absorption band between 1.5 and 2.0 eV was found to be responsible for the green color and was related to a sharp emission at 1.193 eV by luminescence and excitation spectroscopy. The appearance of both optical signatures in the region of green color was related to an increase of Cr contamination detected by secondary ion mass spectrometry. We propose that the origin of green color as well as the emission line at 1.193 eV is attributed to internal transitions of Cr⁴⁺.
|
618 |
LATERAL DIFFUSION LPE GROWTH OF SINGLE CRYSTALLINE SILICON FOR PHOTOVOLTAIC APPLICATIONSLi, Bo 10 1900 (has links)
<p>A modified liquid phase epitaxy (LPE) technique, called lateral diffusion LPE (LDLPE), is invented for low cost and high efficiency solar cell applications. Potentially, LDLPE is able to produce single crystalline silicon wafers directly from the raw material, rather than cutting wafers from single crystalline silicon ingots, therefore reducing the cost by avoiding the cutting and polishing processes.</p> <p>By using a traditional LPE method, the silicon is epitaxially grown on the silicon substrate by cooling down the saturated silicon/indium alloy solution from a high temperature. The silicon precipitates on the substrate since its solubility in the indium solvent decreases during the cooling process. A SiO<sub>2</sub> mask is formed on the (111) substrate with 100µm wide opening windows as seedlines. Silicon is epitaxially grown on the seedline and forms thick epitaxial lateral overgrowth (ELO) layers on the oxide mask. The ELO layers are silicon strips with an aspect ratio of 1:1 (width: thickness), approximately. The strip grows both laterally in width and vertically in thickness.</p> <p>The concept of LDLPE is to intentionally block the silicon diffusion path from the top of the seedline, but leave the lateral diffusion path from the bulk indium melt to the seedline. Theoretically, by using the LDLPE method, the silicon strip should have a larger aspect ratio, because the laterally growth in width is allowed but the vertical growth in thickness is limited. In addition, single crystalline silicon wafers can be achieved if the strip grows continuously.</p> <p>A graphite slide boat is designed to place a plate over the seedline to block the diffusion path of silicon atoms from the top of the seedline. After one growth cycle, silicon strips grown by LDLPE are wider than LPE strips but have similar thicknesses. The aspect ratios are increased from 1:1 to a number larger than 2:1. A Monte-Carlo random walk model is used to simulate the change of LDLPE strip aspect ratio caused by placing a plate over the seedline.</p> <p>Wetting seedline by indium melt is very critical for a successful growth. Due to the small space between the plate and seedline and the surface tension of the indium melt, the indium melt cannot flow into the small space. A pre-wetting technique is used to fill the space prior to loading the graphite boat into the tube furnace and solve the wetting problem successfully.</p> <p>The structure of a LDLPE silicon strip is characterized by X-ray diffraction. The electrical properties are characterized by Hall Effect measurement and photoconductive decay measurement. LDLPE silicon strips are (111) orientated single crystal and are the same orientation as the substrate. For the growth temperature of 950°C, the LDLPE strip has an estimated effective minority carrier lifetime of 30.9µs. The experimental results demonstrate that LDLPE is feasible for photovoltaic application if continuous growth and scaling up can be achieved.</p> / Doctor of Philosophy (PhD)
|
619 |
Unveiling Transient Behaviors in Heterostructure NanowiresBoulanger, Jonathan P. 10 1900 (has links)
<p>GaAs/GaP heterostructure nanowires (NWs) were grown on GaAs(111)B and Si(111) substrates by gold (Au) assisted vapor-liquid-solid (VLS) growth in a molecular beam epitaxy (MBE) system. NW morphology and crystal structure were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Early results indicated substantial differences in the length and crystal structure of the GaAs/GaP heterostructures. Efforts to remove these inhomogeneities required an improved Au VLS seed deposition method as well as a better understanding of VLS growth across GaAs/GaP hetero-interfaces.</p> <p>Experiments with GaAs/GaP heterostructures yielded the observation of changes in crystal phase in GaP, including the first reported occurrence of the 4H polytype. These observations revealed the presence of transient growth behavior during the formation of the GaAs to GaP hetero-interface that was unique to the VLS technique. Further characterization required the need to move from VLS seeds formed by annealing thin Au films to Au particles formed precisely by electron beam lithography (EBL). NW growth using EBL patterned Au seeds was discovered to be inhibited by the formation of a thin silicon oxide layer, formed at low temperatures by Au-enhanced silicon oxidation. Elimination of this layer immediately prior to growth resulted in successful patterned VLS growth.</p> <p>A systematic study of the transient GaP growth behavior was then conducted using patterned arrays to grow GaAs/GaP heterostructure NWs with frequent, periodic oscillations in the group V composition. These oscillations were measured by high angle annular dark field (HAADF) to determine the instantaneous growth rate of many NWs. A phenomenological model was fit to the data and transient growth rate behavior following a GaAs to GaP hetero-interface was understood on the basis of transient droplet compositions, which arise due to the large difference in As or P alloy concentrations required to reach the critical supersaturation.</p> / Doctor of Philosophy (PhD)
|
620 |
An Investigation into the Role of Energy and Symmetry at Epitaxial InterfacesDevenyi, Gabriel A. 04 1900 (has links)
<p>Epitaxy is a key technological process for the production of thin films and nanostructures for electronic and optoelectronic devices. The epitaxial process has been traditionally studied through the lens of lattice-matched and chemically similar material systems, specifically the III-V quaternary material systems. This work investigates the role energy and symmetry play at epitaxial interfaces for cases far different than those of typical epitaxy. In the realm of energy, the impact of chemically dissimilar epitaxial interfaces was investigated, specifically between semiconductors and oxides, noble metals and oxides, and polar-on-nonpolar epitaxy. For symmetry at epitaxial interfaces, the role of symmetry breaking, through surface reconstructions and asymmetric surfaces was investigated. Investigations into energy found two key insights: 1) epitaxy is possible between materials which one would expect to be very weakly interacting (gold on oxides) and, 2) epitaxial interfaces, while promoting single crystal growth, can be weakly bonded enough to allow controlled liftoff of single crystal epitaxial thin films. Investigations into symmetry at epitaxial interfaces found three key insights: 1) intentional symmetry breaking of the growth substrate through steps can suppress twinning of zincblende thin films, 2) asymmetric (211)-oriented substrates can accommodate strain of mismatched zincblende thin films, and 3) reconstructed oxide substrates can provide unique epitaxial templates for thin films which significantly differ from their bulk lattice. The results of this investigation provide a path towards the improvement of epitaxy through the manipulation of symmetry at epitaxial surfaces, and the production of free standing thin films through the epitaxial liftoff process.</p> / Doctor of Philosophy (PhD)
|
Page generated in 0.0302 seconds