• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 150
  • 104
  • 49
  • 17
  • 15
  • 13
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 411
  • 100
  • 73
  • 61
  • 56
  • 54
  • 54
  • 48
  • 44
  • 36
  • 30
  • 26
  • 26
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Ressonância paramagnética eletrônica em sistemas antiferromagnéticos / Electron paramagnetic resonance in antiferromagnetic systems

Santana, Vinicius Tadeu 26 September 2016 (has links)
Neste trabalho, dois óxidos de metal de transição com ordem magnética de longo alcance e uma polianilina dopada com plastificante foram estudados através da técnica de ressonância paramagnética eletrônica. O sistema multiferróico óxido de bismuto-manganês, BiMn2O5, foi estudado em sua forma policristalina. Este material apresenta modos de ressonância antiferromagnética que foram identificados a partir de medidas multifrequência em altos campos magnéticos. Estes dados foram ajustados segundo a teoria de Yosida e Nagamiya da ressonância antiferromagnética para obtenção das constantes macroscópicas de anisotropia magnética K1=7.0 x 108 emu Oe mol1 e K2=3.9 x 108 emu Oe mol1, a partir das quais uma estimativa da constate de anisotropia microscópica foi determinada. A caracterização destas grandezas pode ser importante para trabalhos futuros, uma vez que a anisotropia magnética é considerada uma das causas da magnetoelasticidade que dá origem a ferroeletricidade neste material. A ludwigita homometálica de ferro, Fe3O2BO3, foi estudada em sua forma monocristalina. Este óxido de ferro possui uma estrutura com duas sub-redes de ferro praticamente independentes, que se ordenam magneticamente em temperaturas distintas, além de apresentar correlações eletrônicas desde temperatura ambiente. A existência dessas correlações numa dessas estruturas, conhecida como \"escada de três pernas\", foi demonstrada através do espectro de RPE associado com a existência de dímeros Fe3+-Fe2+ nessa estrutura, desde temperatura ambiente até baixas temperaturas. Mostrou-se que os dímeros formam um estado antiferromagneticamente acoplado sujeito a interação de troca dupla, estimando valores da integral de transferência de carga b. Medidas de RPE em filmes automontados de polianilinas dopadas com plastificantes sugerem a população e despopulação de um estado tripleto a partir dos parâmetros dos espectros em função da temperatura, típica de dímeros de spin 1. Diferenças nos parâmetros com ciclagens térmicas sugere o congelamento da estrutura em diferentes estados condizente com a existência de termocromismo nesses polímeros. Enfim, demonstrou-se a relevância da técnica de espectroscopia de ressonância paramagnética eletrônica na caracterização de sistemas sujeitos a interação de troca antiferromagnética. / In this work, two transition metal oxides presenting long range magnetic order and a plastdoped polyaniline were investigated via electron paramagnetic resonance. Polycrystalline samples of the multiferroic manganese oxide, BiMn2O5, showed antiferromagnetic resonance modes which were identified from high magnetic fields multi frequency electron paramagnetic resonance. These data were fitted according to Yosida and Nagamiya theory of antiferromagnetic resonance. The macroscopic constants of magnetic anisotropy K1=7.0 x 108 emu Oe mol1 and K2=3.9 x 108 emu Oe mol1 were obtained from this fitting and allowed for estimating the microscopic constant of anisotropy. Magnetic anisotropy may lead to magnetoelasticity, which is related to the ferroelectricity in this material. Thus, the characterization of this physical quantities may be useful to future research. Single crystals of a homometallic iron ludwigite, Fe3O2BO3, were investigated in its distinct magnetic phases. This system has two independent iron sub-lattices which order magnetically in two distinct temperatures, presenting electronic correlations from room temperature. Despite the broad and superposed lines in the EPR spectra, the presence of such correlations was demonstrated in one of these structures, which is known as three leg ladders (3LL). A dimer Fe3+-Fe2+ was identified at room temperature, showing an antiferromagnetically coupled state subjected to double exchange interactions. The charge transfer integral b was estimated. Temperature sweep EPR measurements in films of plastdoped polyanilines suggested the population and depopulation if a triplet state typical of spin 1 dimers. Differences in the parameters after thermal cycling suggested the freezing of the structure at different states in accordance to observed thermocromism in these polymers. In conclusion, the relevance of the EPR technique was demonstrated to the characterization of exchange coupled systems.
252

Estudo através da técnica de ressonância paramagnética eletrônica, em bandas X e Q, dos compostos dinucleares Cu2(TzTs)4 e [Cu(flu)2DMF]2 / Electron paramagnetic resonance studies at X- and Q- bands of the dinuclear compounds Cu2(TzTs)4 and [Cu(flu)2DMF]2

Napolitano, Lia Munhoz Benati 29 May 2009 (has links)
Esta tese relata um estudo pormenorizado, efetuado através da técnica de Ressonância Paramagnética Eletrônica (RPE) em bandas X (~ 9.5 GHz) e Q (~ 34.5 GHz), de amostras nas formas cristalina e pulverizada dos compostos dinucleares Cu2(TzTs)4, C40H36Cu2N8O8S8, e [Cu(flu)2DMF]2, C62H50Cu2F12N6O10. Tratamentos meticulosos dos espectros de RPE pertinentes a tais compostos propiciaram determinar tanto o parâmetro de interação antiferromagnética, J0, entre pares de íons Cu(II) existentes em uma unidade dinuclear (Hex = J0 S1·S2) como também os valores principais alusivos às matrizes g e D; onde a primeira refere-se à interação Zeeman [Hz = BB0(g1·S1 + g2·S2)] e a última reporta as interações spin-spin anisotrópicas (Hani = S1·D·S2) entre pares de íons Cu(II) presentes em uma unidade dinuclear. Ademais, medidas de RPE realizadas com um monocristal do composto Cu2(TzTs)4 permitiram detectar e estimar, no contexto interdinuclear, o fraco acoplamento de exchange, |J\'| = (0.060 ± 0.015) cm-1, existente entre unidades dinucleares vizinhas: este acoplamento existente entre uma unidade dinuclear e o meio randômico constituído pelas unidades dinucleares vizinhas conduz à decoerência (i.e. uma transição de fase quântica que colapsa a interação dipolar quando a magnitude do acoplamento de exchange isotrópico entre as unidades dinucleares vizinhas iguala-se à magnitude do acoplamento dipolar intradinuclear). No âmbito concernente ao composto [Cu(flu)2DMF]2, foi possível simular acuradamente as sete linhas de ressonância características do desdobramento hiperfino advindo de n = 2 núcleos equivalentes de centros paramagnéticos Cu2+ (I = 3/2) e, por conseguinte, os valores principais pertinentes à matriz de interação hiperfina A (Hhyper = S1·A·I1 + S2·A·I2) puderam ser precisamente determinados. / We report detailed Electron Paramagnetic Resonance (EPR) studies at X-band (~ 9.5 GHz) and Q-band (~ 34.5 GHz) of powder and single-crystal samples of the dinuclear compounds Cu2(TzTs)4, C40H36Cu2N8O8S8, and [Cu(flu)2DMF]2, C62H50Cu2F12N6O10. Meticulous investigations of their EPR data allow determining the antiferromagnetic interaction parameter, J0, between Cu(II) ions in the dinuclear unit (Hex = J0 S1·S2) as well as the principal values of both matrices g and D, where the first one is related to the Zeeman interaction [Hz = BB0(g1·S1 + g2·S2)] and the latter is associated with the anisotropic spin-spin interactions (Hani = S1·D·S2) between Cu(II) ion pairs in a dinuclear unit. In addition, EPR measurements of single-crystal samples of the compound Cu2(TzTs)4 allow detecting and estimating very weak exchange couplings between neighbour dinuclear units with an estimated magnitude |J\'| = (0.060 ± 0.015) cm-1: this coupling with the environment leads to decoherence (i.e. a quantum phase transition that collapses the dipolar interaction when the isotropic exchange coupling with neighbor dinuclear units equals the magnitude of the intradinuclear dipolar coupling). With reference to [Cu(flu)2DMF]2 compound, it was possible to simulate precisely the seven-line copper hyperfine splitting arising from n = 2 nonequivalent nuclei related to paramagnetic Cu2+ (I = 3/2) centers and, as a consequence of these accurate simulations, the principal values of the hyperfine interaction matrix A (Hhyper = S1·A·I1 + S2·A·I2) could be reliably obtained.
253

An investigation of the phototoxicity of decabromodiphenyl ether and triclosan

Suh, Yang-Won 01 December 2010 (has links)
Decabromodiphenylether (deca-BDE) and triclosan (2,4,4'-trichloro-2'-hydroxydiphenylether) are used in consumer products as flame retardant and bactericide, respectively. Dermal contact is a major human exposure pathway. Deca-BDE and triclosan are known to be photolytically degraded to compounds like lower-BDEs and dioxins. My hypothesis is that photolysis of deca-BDE and triclosan generates free radicals and degradation products which cause toxic effects including cytotoxicity, growth inhibition, oxidative stress and genotoxicity in skin. To test this hypothesis radical formation and photolytic products of deca-BDE and toxic effects of deca-BDE and triclosan alone/with UV-exposure were determined using immortal human keratinocytes (HaCaT) and primary human skin fibroblasts (HSF). My electron paramagnetic resonance and GC-MS studies indicate that deca-BDE is photoreactive and UV irradiation of deca-BDE in organic solvents generates free radicals and lower-BDEs. The free radical formation is wavelength-dependent and positively related to the irradiation time and deca-BDE concentration. In structure-activity relationship studies with deca-BDE, octa-BDE, PBB 209, PCB 209 and diphenyl ether, the presence of halogen atoms (Br > Cl), and/or an ether bond enhance free radical formation. Debromination and hydrogen abstraction from the solvents are the mechanism of radical formation with deca-BDE, which raises concerns about possible toxic effects in UV-exposed skin. In cell culture experiments high levels of triclosan plus UV irradiation and repetitive deca-BDE and UV exposures caused synergistic cytotoxicity in HaCaT. However, neither triclosan nor deca-BDE can be regarded as a phototoxicant following the OECD test and evaluation guidelines. In HSF, no synergistic cytotoxicity was observed, although HSF were more sensitive to deca-BDE and triclosan alone than HaCaT. Contrary to expectations, the photodegradation products of triclosan were less toxic than triclosan itself to HaCaT. However, UV irradiation of triclosan-exposed cells produced a dose dependent increase in intracellular oxidative stress (dichlorofluorescein formation). Comet experiments did not show consistent results of genotoxicity in HaCaT. Overall, deca-BDE and triclosan had no or weak phototoxic potential in cells with the experimental conditions employed. To my knowledge, my research is the first prove of free radical formation during UV irradiation of deca-BDE and the first investigation of phototoxicity of deca-BDE and triclosan in human skin cells.
254

Density functional studies of EPR and NMR parameters of paramagnetic systems

Telyatnyk, Lyudmyla G. January 2006 (has links)
Experimental methods based on the magnetic resonance phenomenon belong to the most widely used experimental techniques for investigations of molecular and electronic structure. The difficulty with such experiments, usually a proper interpretation of data obtained from high-resolution spectra, opens new challenges for pure theoretical methods. One of these methods is density functional theory (DFT), that now has an advanced position among a whole variety of computational techniques. This thesis constitutes an effort in this respect, as it presents theory and discusses calculations of electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) parameters of paramagnetic molecules. It is known that the experimental determination of the magnetic resonance parameters of such molecules, especially in the case of NMR, is quite complicated and requires special techniques of spectral detection. On the other hand, paramagnetics play an important role in many areas, such as molecular magnets, active centers in biological systems, and defects in inorganic conductive materials. Therefore, they have spurred great interest among experimentalists, motivating us to facilitate the interpretation of spectral data through theoretical calculations. This thesis describes new methodologies for the determination of magnetic properties of paramagnetic molecules in the framework of DFT, which have been developed in our laboratory, and their applications in calculations of a wide range of molecular systems. The first two papers of this thesis deal with the theoretical determination of NMRparameters, such as nuclear shielding tensors and chemical shifts, in paramagnetic nitroxides that form core units in molecular magnets. The developed methodology is aimed to realize a high calculational accuracy for these systems. The effects of hydrogen bonding are also described in that context. Our theory for the evaluation of nuclear shielding tensors in paramagnetic molecules is consistent up to second order in the fine structure constant and considers orbital, fully anisotropic dipolar, and isotropic contact contributions to the shielding tensor. The next projects concern electron paramagnetic resonance. The well-known EPR parameters, such as the g-tensors and the hyperfine coupling constants are explored. Calculations of electronic g-tensors were carried out in the framework of a spin-restricted open-shell Kohn-Sham method combined with the linear response theory recently developed in our laboratory and allowing us to avoid by definition the spin-contamination problem. The inclusion of solvent effects, described by the polarizable continuum model, extends the possibility to treat molecular systems often investigated in solution. For calculations of the hyperfine coupling constants a so-called restricted-unrestricted approach to account for the spin polarization effect has been developed in the context of DFT. To examine the validity of the approximations implicit in this scheme, the neglect ii of singlet operators, a generalized RU methodology was implemented, which includes a fully unrestricted treatment with both singlet and triplet operators. The small magnitude of the changes in hyperfine coupling constants confirms the validity of the original scheme. / QC 20100923
255

Thérapie génique à l'aide de nanocapsules lipidiques PEGylées

Morille, Marie 20 November 2009 (has links) (PDF)
A ce jour, l'objectif principal de la thérapie génique par voie intraveineuse est le développement de vecteurs pouvant encapsuler et délivrer des acides nucléiques au niveau de cellules cibles, avec l'efficacité de transfection des vecteurs viraux. Dans ce but, des nanocapsules lipidiques chargées en lipoplexes de DOTAP/DOPE, les LNC ADN, ont été utilisées. Ainsi, ces vecteurs ont été post-insérés avec de longues chaînes de poly (éthylène glycol) (PEG), grâce à l'utilisation de deux types de polymères amphiphiles : le DSPE-mPEG2000 et le copolymère F108. Une étude physico-chimique de la modification de surface a été réalisée. La présence de chaînes de DSPE-mPEG2000 en configuration brosse, a permis l'obtention d'un vecteur furtif aux yeux du système immunitaire capable de s'accumuler de manière significative au niveau des tissus tumoraux, grâce à un effet EPR. En parallèle, un modèle de ciblage extracellulaire du récepteur aux asialoglycoprotéines des hépatocytes a été envisagé. Le greffage de résidus galactose à l'extrémité des chaînes de PEG du copolymère F108, a permis l'expression spécifique d'un transgène au niveau des hépatocytes primaires de rat.
256

Simulation of Relaxation Processes in Fluorescence, EPR and NMR Spectroscopy / Simulering av Relaxationsprocesser inom Fluoresens, EPR och NMR Spektroskopi

Håkansson, Pär January 2004 (has links)
Relaxation models are developed using numerical solutions of the Stochastic Liouville Equation of motion. Simplified descriptions such as the stochastic master equation is described in the context of fluorescence depolarisation experiments. Redfield theory is used in order to describe NMR relaxation in bicontinuous phases. The stochastic fluctuations in the relaxation models are accounted for using Brownian Dynamics simulation technique. A novel approach to quantitatively analyse fluorescence depolarisation experiments and to determine intramolecular distances is presented. A new Brownian Dynamics simulation technique is developed in order to characterize translational diffusion along the water lipid interface of bicontinuous cubic phases.
257

Managing and optimizing decentralized networks with resource sharing

Gui, Luyi 08 April 2013 (has links)
Resource sharing is a common collaborative strategy used in practice. It has the potential to create synergistic value and leads to higher system efficiency. However, realizing this synergistic value can be challenging given the prevalence of decentralization in practice, where individual operators manage resources based on their own benefits. Hence, optimizing a decentralized system requires understanding not only the optimal operational strategy in terms of the overall system efficiency, but also the implementation of the strategy through proper management of individual incentives. However, traditional network optimization approaches typically assume a centralized perspective. The classic game theory framework, on the other hand, addresses incentive issues of decentralized decision makers, but mainly takes a high-level, economic perspective that does not fully capture the operational complexity involved in optimizing systems with resource sharing. The purpose of this thesis is to bridge this gap between practice and theory by studying the design of tools to manage and optimize the operations in decentralized systems with resource sharing using approaches that combine optimization and game theory. In particular, we focus on decentralized network systems and analyze two research streams in two application domains: (i) implementation of environmental legislation, and (ii) managing collaborative transportation systems. These applications are characterized by their decentralized multi-stakeholder nature where the conflicts and tension between the heterogeneous individual perspectives make system management very challenging. The main methodology used in this thesis is to adopt game theory models where individual decisions are endogenized as the solutions to network optimization problems that reflect their incentives. Such an approach allows us to capture the connection between the operational features of the system (e.g., capacity configuration, network structure, synergy level from resource sharing) and the individual incentives thus the effectiveness of the management tools, which is a main research contribution of this thesis. In the first research stream, we consider designing effective, efficient and practical implementation of electronic waste take-back legislation based on the widely-adopted Extended Producer Responsibility (EPR) concept that mandates the financial responsibility of post-use treatment of their products. Typical implementations of EPR are collective, and allocate the resulting operating cost to involved producers. In this thesis, we demonstrate the complexity of collective EPR implementation due to the tension among different stakeholder perspectives, based on a case analysis of the Washington implementation. We then perform analytical studies of the two prominent challenges identified in current implementations: (i) developing cost allocation mechanisms that induce the voluntary participation of all producers in a collective system, thus promoting implementation efficiency; and (ii) designing collective EPR so as to encourage environmentally-friendly product design, thus promoting implementation effectiveness. Specifically, we prescribe new cost allocation methods to address the first challenge, and demonstrate the practicality and economic impact of the results using implementation data from the state of Washington. We then analyze the tensions between design incentives, efficiency and the effectiveness of the cost allocation to induce voluntary participation under collective EPR implementation. We show there exists a tradeoff among the three dimensions, driven by the network effects inherent in a collective system. The main contribution of this research stream is to demonstrate how the implementation outcomes of an environmental policy is influenced by the way that the policy ``filters' through operational-level factors, and to propose novel and implementation mechanisms to achieve efficient and effective EPR implementation. Hence, our study has the potential to provide guidance for practice and influence policy-making. In the second research stream, motivated by the practice of transportation alliances, we focus on a decentralized network setting where the individual entities make independent decisions regarding the routing of their own demand and the management of their own capacity, driven by their own benefits. We study the use of market-based exchange mechanisms to motivate and regulate capacity sharing so as to achieve the optimal overall routing efficiency in a general multicommodity network. We focus on the design of capacity pricing strategies in the presence of several practical operational complexities, including multiple ownership of the same capacity, uncertainty in network specifications, and information asymmetry between the central coordinator and individual operators. Our study in this research stream produces two sets of results. First, we demonstrate the impact of the underlying network structure on the effectiveness of using market-based exchange mechanisms to coordinate resource sharing and to allocate the resulting synergistic benefit, and characterize the network properties that matter. Second, we propose efficient and effective pricing policies and other mechanism design strategies to address different operational complexities. Specifically, we develop duality-based pricing algorithms, and evaluate different pricing strategies such as commodity-based price discrimination, which is shown to have an advantage in coordinating networks under uncertainty.
258

Einsatz der elektronischen Patientenakte im Operationssaal am Beispiel der HNO-Chirurgie

Dressler, Christian 04 June 2013 (has links) (PDF)
Wenn ein Chirurg heutzutage während der Operation Informationen aus der Patientenakte benötigt, ist er gezwungen, sich entweder unsteril zu machen oder Personal anzuweisen, ihm die entspre-chenden Informationen zugänglich zu machen. Aus technischer Sicht ist ein System zur intraoperati-ven Bedienung und Darstellung sehr einfach zu realisieren. Grundlage dafür ist eine elektronische Patientenakte (EPA), welche beispielsweise softwaregenerierten oder eingescannten Dokumenten verwaltet. Die vorliegende Arbeit widmet sich den folgenden Fragen: Wird ein solches System im Operationssaal sinnvoll genutzt? Welche Methoden zur sterilen Bedienung kommen infrage? Wie muss die grafische Darstellung auf den Operationssaal abgestimmt werden? Kann durch das Imple-mentieren aktueller Kommunikationsstandards auf alle verfügbaren Patientendaten zugegriffen werden? Dazu wurden in einer ambulanten HNO-Klinik zwei Pilotstudien durchgeführt. In der ersten Studie wurde das erste auf dem Markt befindliche kommerzielle Produkt „MI-Report“ der Firma Karl Storz evaluiert, welches per Gestenerkennung bedient wird. Für die zweite Studie wurde ein EPA-System entwickelt (Doc-O-R), welches eine Vorauswahl der angezeigten Dokumente in Abhängigkeit des Eingriffs traf und mit einem Fußschalter bedient werden konnte. Pro System wurden ca. 50 Eingriffe dokumentiert. Dabei wurde jedes angesehene Dokument und der Nutzungsgrund protokolliert. Die Systeme wurden durchschnittlich mehr als einmal pro Eingriff genutzt. Die automatische Vorauswahl der Dokumente zur Reduzierung der Interaktionen zeigte sehr gute Ergebnisse. Da das behandelte Thema noch in den Anfängen steckt, wird in der Arbeit am Ende auf die Vielzahl von Möglichkeiten eingegangen, welche bezüglich neuartiger Darstellungsmethoden, Bedienvorrich-tungen und aktueller Standardisierungsaktivitäten noch realisiert werden können. Dadurch werden zukünftig auch die Abläufe in der Chirurgie beeinflusst werden.
259

X-Irradiation of DNA Components in the Solid State: Experimental and Computational Studies of Stabilized Radicals in Guanine Derivatives

Jayatilaka, Nayana Kumudini 26 May 2006 (has links)
Single crystals of sodium salt of guanosine dihydrate and 9 Ethyl Guanine were X-irradiated with the objective of identifying the radical products. Study with K-band EPR, ENDOR, and ENDOR-Induced EPR techniques indicated at least four radical species to appear in both crystals in the temperature range of 6K to room temperature. Three of these radicals (Radicals R1, R2, and R3) were present immediately after irradiation at 6K. Computational chemistry and EPR spectrum simulation methods were also used to assist in radical identifications. Radical R1, the product of net hydrogen addition to N7, and Radical R2, the product of electron loss from the parent molecule, were observed in both systems. Radical R3, in Na+.Guanosine-.2H2O, is the product of net hydrogen abstraction from C1' of ribose group and radical R3 in 9EtG was left unassigned due to insufficient experimental data. Radical R4, the C8-H addition radical, was also detected in both systems. For Na+.Guanosine-.2H2O, R4 was observed after warming the irradiated crystals to the room temperature. But for the 9EtG crystals the corresponding radical form was detected after irradiation at room temperature. Density functional theory (DFT) based computational studies was conducted to investigate the radical formation mechanisms and their stability. Here possibilities of proton transfers from the neighboring molecules were considered. The first approach was to consider the proton affinities of the acceptor sites and deprotonation enthalpies of the donor sites. This approach supported the formation of radicals observed in both systems. The second approach, applied only to the 9EtG system, was based on proton transfers between 9EtG base-pair anion and cation radicals. Even though the charge and spins were localized as expected, the computed thermodynamic data predicted that the proton transfer processes are unfavorable for both anionic and cationic base-pairs. This indicates the need for additional work to draw final conclusions. In addition, DFT methods were used to compute the geometries and hyperfine coupling constants of 9EtG derived radicals in both single molecule and cluster models. The calculated results agreed well with the experimental results.
260

EPR, ENDOR and DFT Studies on X-Irradiated Single Crystals of L-Lysine Monohydrochloride Monohydrate and L-Arginine Monohydrocloride Monohydrate

Zhou, Yiying 16 July 2009 (has links)
When proteins and DNA interact, arginine and lysine are the two amino acids most often in close contact with the DNA. In order to understand the radiation damage to DNA in vivo, which is always associated with protein, it is important to learn the radiation chemistry of arginine and lysine independently, and when complexed to DNA. This work studied X-irradiated single crystals of L-lysine monohydrochloride dihydrate (L-lysine·HCl·2H2O) and L-arginine monohydrochloride monohydrate (L-arginine·HCl·H2O) with EPR, ENDOR, EIE techniques and DFT calculations. In both crystal types irradiated at 66K, the carboxyl anion radical and the decarboxylation radical were detected. DFT calculations supported these assignments. Specifically, the calculations performed on the cluster models for the carboxyl anion radicals reproduced the proton transfers to the carboxyl group from the neighboring molecules through the hydrogen bonds. Moreover, computations supported the identification of one radical type as the guanidyl radical anion with an electron trapped by the guanidyl group. In addition, the radical formed by dehydrogenation of C5 was identified in the L-arginine·HCl·H2O crystals irradiated at 66K. For both crystal types, the deamination radicals and the dehydrogenation radicals were identified following irradiation at 298K. Different conformations of main-chain deamination radicals were detected at 66K and at 298K. In L-lysine·HCl·2H2O, these conformations are the result of the different rotation angles of the side chain. In L-arginine·HCl·H2O, one conformation at 66K has no O-H dipolar protons while the others have two O-H dipolar protons. In L-lysine·HCl·2H2O, two radicals with very similar sets of hyperfine couplings were identified as the result of dehydrogenation from C3 and C5. Two other radicals in low concentration detected only at 66K, were tentatively assigned as the radical dehydrogenated from C3 and the side-chain deamination radical. In L-argnine·HCl·H2O, the radicals from dehydrogenation at C5 and C2 also were identified. DFT calculations supported these assignments and reproduced conformations of these radicals.Finally, based on the radicals detected in the crystal irradated at 66K and at 298K, the annealing experiments from the irradiation at 66K, and the previous studies on the irradiated amino acids, the mechanisms of the irradiation damage on lysinie and arginine were proposed.

Page generated in 0.0647 seconds