• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 20
  • 10
  • 5
  • 2
  • Tagged with
  • 79
  • 30
  • 26
  • 14
  • 11
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Regularized equivariant Euler classes and gamma functions.

Lu, Rongmin January 2008 (has links)
We consider the regularization of some equivariant Euler classes of certain infinite-dimensional vector bundles over a finite-dimensional manifold M using the framework of zeta-regularized products [35, 53, 59]. An example of such a regularization is the Atiyah–Witten regularization of the T-equivariant Euler class of the normal bundle v(TM) of M in the free loop space LM [2]. In this thesis, we propose a new regularization procedure — W-regularization — which can be shown to reduce to the Atiyah–Witten regularization when applied to the case of v(TM). This new regularization yields a new multiplicative genus (in the sense of Hirzebruch [26]) — the ^Γ-genus — when applied to the more general case of a complex spin vector bundle of complex rank ≥ 2 over M, as opposed to the case of the complexification of TM for the Atiyah–Witten regularization. Some of its properties are investigated and some tantalizing connections to other areas of mathematics are also discussed. We also consider the application of W-regularization to the regularization of T²- equivariant Euler classes associated to the case of the double free loop space LLM. We find that the theory of zeta-regularized products, as set out by Jorgenson–Lang [35], Quine et al [53] and Voros [59], amongst others, provides a good framework for comparing the regularizations that have been considered so far. In particular, it reveals relations between some of the genera that appeared in elliptic cohomology, allowing us to clarify and prove an assertion of Liu [44] on the ˆΘ-genus, as well as to recover the Witten genus. The ^Γ₂-genus, a new genus generated by a function based on Barnes’ double gamma function [5, 6], is also derived in a similar way to the ^Γ-genus. / Thesis (Ph.D.) - University of Adelaide, School of Mathematical Sciences, 2008
52

Regularized equivariant Euler classes and gamma functions.

Lu, Rongmin January 2008 (has links)
We consider the regularization of some equivariant Euler classes of certain infinite-dimensional vector bundles over a finite-dimensional manifold M using the framework of zeta-regularized products [35, 53, 59]. An example of such a regularization is the Atiyah–Witten regularization of the T-equivariant Euler class of the normal bundle v(TM) of M in the free loop space LM [2]. In this thesis, we propose a new regularization procedure — W-regularization — which can be shown to reduce to the Atiyah–Witten regularization when applied to the case of v(TM). This new regularization yields a new multiplicative genus (in the sense of Hirzebruch [26]) — the ^Γ-genus — when applied to the more general case of a complex spin vector bundle of complex rank ≥ 2 over M, as opposed to the case of the complexification of TM for the Atiyah–Witten regularization. Some of its properties are investigated and some tantalizing connections to other areas of mathematics are also discussed. We also consider the application of W-regularization to the regularization of T²- equivariant Euler classes associated to the case of the double free loop space LLM. We find that the theory of zeta-regularized products, as set out by Jorgenson–Lang [35], Quine et al [53] and Voros [59], amongst others, provides a good framework for comparing the regularizations that have been considered so far. In particular, it reveals relations between some of the genera that appeared in elliptic cohomology, allowing us to clarify and prove an assertion of Liu [44] on the ˆΘ-genus, as well as to recover the Witten genus. The ^Γ₂-genus, a new genus generated by a function based on Barnes’ double gamma function [5, 6], is also derived in a similar way to the ^Γ-genus. / Thesis (Ph.D.) - University of Adelaide, School of Mathematical Sciences, 2008
53

Hipersuperfícies mínimas e completas de espaços simétricos / Complete minimal hipersurfaces in symmetric spaces

Jaime Leonardo Orjuela Chamorro 02 July 2012 (has links)
No presente trabalho construímos novos exemplos de hipersuperfícies mínimas, completas e H-equivariantes de espaços simétricos. Para tal, usamos o método da geometria diferencial equivariante (Hsiang-Lawson). Dividimos nosso estudo em duas partes, a saber, espaços simétricos G/K de tipo não compacto e compacto. No primeiro caso são estudadas ações polares de subgrupos H adaptados à decomposição de Iwasawa G=KAN. No segundo caso usamos a classificação (Podesta-Thobergsson) dos subgrupos H de Spin(9) que atuam com cohomogeneidade dois sobre o plano projetivo octoniônico F_4/Spin(9). / In the present work we construct new examples of complete minimal H-equivariant hypersurfaces of symmetric spaces G/K. For that, we use the equivariant differential geometry method (Hsiang-Lawson). We divide our research in two parts, namely, symmetric spaces of non-compact and compact type. In the first case we study polar actions of subgroups H adapted to the Iwasawa decomposition G=KAN. In the second case we use the classification (Podesta-Thobergsson) of the subgroups H of Spin(9) which act with cohomogeneity two on the octonionc projective plane F_4/Spin(9).
54

Mathematical Structures of Cohomological Field Theories

Jiang, Shuhan 29 August 2023 (has links)
In this dissertation, we developed a mathematical framework for cohomological field theories (CohFTs) in the language of ``QK-manifolds', which unifies the previous ones in (Baulieu and Singer 1988; Baulieu and Singer 1989; Ouvry, Stora, and Van Baal 1989; Atiyah and Jeffrey 1990; Birmingham et al. 1991; Kalkman 1993; Blau 1993). Within this new framework, we classified the (gauge invariant) solutions to the descent equations in CohFTs (with gauge symmetries). We revisited Witten’s idea of topological twisting and showed that the twisted super-Poincaré algebra gives rise naturally to a ``QK-structure'. We also generalized the Mathai-Quillen construction of the universal Thom class via a variational bicomplex lift of the equivariant cohomology. Our framework enables a uniform treatment of examples like topological quantum mechanics, topological sigma model, and topological Yang-Mills theory.
55

More efficient training using equivariant neural networks

Bylander, Karl January 2023 (has links)
Convolutional neural networks are equivariant to translations; equivariance to other symmetries, however, is not defined and the class output may vary depending on the input's orientation. To mitigate this, the training data can be augmented at the cost of increased redundancy in the model. Another solution is to build an equivariant neural network and thereby increasing the equivariance to a larger symmetry group. In this study, two convolutional neural networks and their respective equivariant counterparts are constructed and applied to the symmetry groups D4 and C8 to explore the impact on performance when removing and adding batch normalisation and data augmentation. The results suggest that data augmentation is irrelevant to an equivariant model and equivariance to more symmetries can slightly improve accuracy. The convolutional neural networks rely heavily on batch normalisation, whereas the equivariant models achieve high accuracy, although lower than with batch normalisation present.
56

Métodos algébricos para a obtenção de formas gerais reversíveis-equivariantes / Algebraic methods for the computation of general reversible-equivariant mappings

Oliveira, Iris de 10 March 2009 (has links)
Na análise global e local de sistemas dinâmicos assumimos, em geral, que as equações estão numa forma normal. Em presença de simetrias, as equações e o domínio do problema são invariantes pelo grupo formado por estas simetrias; neste caso, o campo de vetores é equivariante pela ação deste grupo. Quando, além das simetrias, temos também ocorrência de anti-simetrias - ou reversibilidades - as equações e o domínio do problema são ainda invariantes pelo grupo formado pelo conjunto de todas as simetrias e anti-simetrias; neste caso, o campo de vetores é reversível-equivariante. Existem muitos modelos físicos onde simetrias e anti-simetrias aparecem naturalmente e cujo efeito pode ser estudado de uma forma sistemática através de teoria de representação de grupos de Lie. O primeiro passo deste processo é colocar a aplicação que modela tal sistema numa forma normal e isto é feito com a dedução a priori da forma geral dos campos de vetores. Esta forma geral depende de dois componentes: da base de Hilbert do anel das funções invariantes e dos geradores do módulo das aplicações reversíveis-equivariantes. Neste projeto, nos concentramos principalmente na aplicação de resultados recentes da literatura para a construção de uma lista de formas gerais de aplicações reversíveisequivariantes sob a ação de diferentes grupos. Além disso, adaptamos ferramentas algébricas da literatura existentes no contexto equivariante para o estudo sistemático de acoplamento de células idênticas no contexto reversível-equivariante / In the global and local analysis of dynamical systems, we assume, in general, that the equations are in a normal form. In presence of symmetries, the equations and the problem domain are invariant under the group formed by these symmetries; in that case, the vector field is equivariant by the action of this group. When, in addition to the symmetries, we have the occurrence of anti-symmetries - or reversibility - the equations and the problem domain are still invariant by the group formed by the set of all symmetries and anti-symmetries; in this case, the vector field is reversible-equivariant. There are many physical models where both symmetries and anti-symmetries occur naturally and whose effect can be studied in a systematic way through group representation theory. The first step of this process is to put the mapping that model the system in a normal form, and this is done with the deduction of the general form of the vector field. This general form depends on two components: the Hilbert basis of the invariant function ring and also the generators of the module of the revesible-equivariants. In this work, we mainly focus on the applications of recent results of the literature to build a list of general forms of reversible-equivariant mappings under the action of different groups. We also adapt algebraic tools of the existing literature in the equivariant context to the systematic study of coupling of identical cells in the reversible-equivariant context
57

Teorida de G-índice e grau de aplicações G-equivariantes / G-index theory and degree of G-equivariant maps

Neyra, Norbil Leodan Cordova 07 May 2010 (has links)
Antes da publicação do trabalho An ideal-valued cohomological index theory with applications to Borsuk-Ulam and Bourgin-Yang theorems\"de Fadell e Husseini [20], haviam sido apenas considerados índices numéricos de G-espaços, nos casos G =\'Z IND. 2\' e G um grupo finito. No entanto, tais índices numéricos são obviamente insuficientes no caso de grupos mais complexos, como por exemplo a 1-esfera \'S POT. 1\'. Neste contexto, Fadell e Husseini introduziram o chamado Indice cohomológico de valor ideal: a cada G-espaço X paracompacto, eles associaram um ideal \'Ind POT. G\' (X;K) do anel de cohomología H*(BG;K), onde a cohomologia de Cech H* é considerada com coeficientes em um corpo K e BG é o espaço classificante do grupo G. Além disso, Fadell e Husseini associaram a este ideal o Índice cohomológico de valor numérico, o qual é definido como sendo a dimensão do K-espaço vetorial obtido do quociente entre o anel H*(BG;K) e o ideal \'Ind POT. G\' (X;K). O objetivo principal deste trabalho é apresentar um estudo detalhado deste índice e utilizá-lo no estudo dos resultados sobre grau de aplicações G-equivariantes provados por Hara em \"The degree of equivariant maps\"[24] / Before the appearance of the paper An ideal-valued cohomological index theory with applications to Borsuk-Ulam and Bourgin-Yang theorems\"of Fadell and Husseini [20], had been considered numerical indices of G-spaces, when G = \'Z IND. 2\' and when G is a finite group. However, such numerical indices are obviously insufficient in the case of groups more complexes, for example, G =\'S POT 1\'. In this context Fadell andHusseini, introduced the called valued-ideal cohomological index: to every paracompact G-space X they associated an ideal \'Ind POT. G\' (X,K) of the cohomology ring H*(BG;K), where the Cech cohomology H* is considered with coefficients in a field K and BG is the classifying space of the group G. Moreover, they associated to this ideal the numerical valued cohomological index, that is, the dimension of K-vector space obtained by the quotient between the ring H*(BG;K) and the ideal \'Ind POT. G\' (X,K). The main objective of this work is to present a detailed study of this index and use such index on the study of results on degree of equivariant maps proved by Hara in his paper The degree of equivariant maps\"[24]
58

Grau de aplicações G-equivariantes entre variedades generalizadas / Degree of G-equivariant maps between generalized manifolds

Neyra, Norbil Leodan Cordova 09 June 2014 (has links)
Neste trabalho estenderemos os resultados obtidos por Hara [34] e J. Jaworowski [38] substituindo as G-variedades por G-variedades generalizadas sobre Z. Além disso, provamos uma fórmula de comparação geral para grau de aplicações de uma variedade generalizada sobre uma esfera que são equivariantes com respeito a ações de grupos finitos, obtendo uma generalização do resultado de A. Kushkuley e Z. Balanov [40] / In this work, we extend the results obtained by Y. Hara [34] and J. Jaworowski [38] by replacing the free G-manifolds by free generalized G-manifolds over Z. Moreover, we prove a general comparison formula for degrees of equivariant maps from a generalized manifold to a sphere which are equivariant with respect to finite group actions, obtaining a generalization of the result of A. Kushkuley and Z. Balanov [40]
59

Teoria de forma normal para campos vetoriais reversíveis equivariantes / Normal form theory for reversible eqauivariant vector fields

Iris de Oliveira Zeli 25 April 2013 (has links)
Neste trabalho, apresentamos um método algébrico para obter formas normais de campos vetoriais reversíveis equivariantes. Adaptamos o método clássico de Belitskii-Elphick, usando ferramentas da teoria invariante para estabelecer fórmulas que consideram as simetrias e antissimetrias como ponto de partida. Mostramos que este método, mesmo sem simetrias, possui uma estreita relação com o método da transversal completa da teoria de singularidades. Com as ferramentas desenvolvidas nesta tese, a forma normal obtida e uma série formal que não depende do cálculo do kernel do chamado operador homológico. Formas normais para duas classes de campos, ressonantes e não ressonantes, são apresentadas, para diferentes representações do grupo \'Z IND. 2\' x \'Z IND. 2\' cuja linearização tem uma parte nilpotente de dimensão 2 e uma parte semi-simples com autovalores puramente imaginários / We give an algebraic method to obtain normal forms of reversible equivariant vector fields. We adapt the classical method by Belitskii-Elphick using tools from invariant theory to establish formulae that take symmetries into account as a starting point. We show that this method, even without symmetries, has a close relation to complete transversal of singularities theory. Applying the method developed in this thesis, the resulting normal form is a formal series which does not depend of the computation of the kernel of the so called homologic operator. Normal forms of two classes of non-resonant and resonant cases are presented, for dierent representations of the group \'Z INT. 2\' x \'Z INT. 2\' - with linearization having a 2 - dimensional nilpotent part and a semisimple part with purely imaginary eigenvalues
60

Simmetries in binary differential equations / Simetrias em equações diferenciais binárias

Patricia Tempesta 28 April 2017 (has links)
The purpose of this thesis in to introduce the systematic study of symmetries in binary differential equations (BDEs). We formalize the concept of a symmetric BDE, under the linear action of a compact Lie group. One of the main results establishes a formula that relates the algebraic and geometric effects of the occurrence of the symmetry in the problem. Using tools from invariant theory and representation theory for compact Lie groups we deduce the general forms of equivariant binary differential equations under compact subgroups of O(2). A study about the behavior of the invariant straight lines on the configuration of homogeneous BDEs of degree n is done with emphasis on cases in which n = 0 and n = 1. Also for the linear case (n = 1) the equivariant normal forms are presented. Symmetries of linear 1-forms are also studied and related with symmetries of tangent orthogonal vectors fields associated with it. / O objetivo desta tese é introduzir o estudo sistemático de simetrias em equações diferenciais binárias (EDBs). Neste trabalho formalizamos o conceito de EDB simétrica sobre a ação de um grupo de Lie compacto. Um dos principais resultados é uma fórmula que relaciona o efeito geométrico e algébrico das simetrias presentes no problema. Utilizando ferramentas da teoria invariante e de representação para grupos compactos deduzimos as formas gerais para EDBs equivariantes. Um estudo sobre o comportamento das retas invariantes na configuração de EDBs com coeficientes homogêneos de grau n é feito com ênfase nos casos de grau 0 e 1, ainda no caso de grau 1 são apresentadas suas formas normais. Simetrias de 1-formas lineares são também estudadas e relacionadas com as simetrias dos seus campos tangente e ortogonal.

Page generated in 0.0647 seconds