• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Instabilidade e rigidez de hipersuperfícies e um teorema de unicidade em variedades semi-riemannianas / Rigidity and unstability of hypersurfaces and an unicity theorem on semi-Rieamannian manifolds

Bezerra, Kelton Silva January 2015 (has links)
BEZERRA, Kelton Silva. Instabilidade e rigidez de hipersuperfícies e um teorema de unicidade em variedades semi-riemannianas. 2015. 58 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2015. / Submitted by Rocilda Sales (rocilda@ufc.br) on 2016-04-04T15:45:05Z No. of bitstreams: 1 2015_tese_ksbezerra.pdf: 883491 bytes, checksum: f9e199361f39af1569cb1321de363c92 (MD5) / Approved for entry into archive by Rocilda Sales(rocilda@ufc.br) on 2016-04-04T15:48:16Z (GMT) No. of bitstreams: 1 2015_tese_ksbezerra.pdf: 883491 bytes, checksum: f9e199361f39af1569cb1321de363c92 (MD5) / Made available in DSpace on 2016-04-04T15:48:16Z (GMT). No. of bitstreams: 1 2015_tese_ksbezerra.pdf: 883491 bytes, checksum: f9e199361f39af1569cb1321de363c92 (MD5) Previous issue date: 2015 / Our aim in this work is threefold. First, we get an extension, to the spherical case, of a theorem due to J. Simons, which concerns unstability of minimal cones constructed over a certain class of minimal submanifolds of the Euclidean sphere. Second, we classify the quasi-Einstein structures of the Riemannian product Hn x R. Third, we get a rigidity theorem for complete hypersurfaces into the De Sitter space, under certain conditions on the mean and scalar curvatures. / Este trabalho aborda três problemas em Geometria Diferencial. Primeiro, obtemos uma extensão, para o caso esférico, de um teorema devido a J. Simons sobre instabilidade de cones mínimos construídos sobre uma certa classe de subvariedades mínimas da esfera Euclidiana. Depois, classificamos as estruturas quasi-Einstein existentes sobre o produto Riemanniano Hn X R. Por fim, obtemos um teorema de rigidez para hipersuperfícies tipo-espaço completas do espaço de De Sitter, sob certas condições sobre as curvaturas média e escalar, além de uma condição de integrabilidade.
2

Hipersuperfícies tipo-espaço com curvatura de ordem superior constante no Espaço de Sitter. / Space-type hypersurfaces with higher order curvature in the Sitter Space.

SANTOS, Fábio Reis dos. 07 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-07T21:04:25Z No. of bitstreams: 1 FÁBIO REIS DOS SANTOS - DISSERTAÇÃO PPGMAT 2013..pdf: 716996 bytes, checksum: 97f7fb742c257421cce66bdb68b5d76e (MD5) / Made available in DSpace on 2018-08-07T21:04:25Z (GMT). No. of bitstreams: 1 FÁBIO REIS DOS SANTOS - DISSERTAÇÃO PPGMAT 2013..pdf: 716996 bytes, checksum: 97f7fb742c257421cce66bdb68b5d76e (MD5) Previous issue date: 2013-03 / Capes / Neste trabalho, desenvolvemos as Fórmulas Integrais tipo-Minkowski para hipersuperfícies tipo-espaço, compactas com bordo imersas no espaço de Sitter S n+1 1 e possuindo alguma curvatura de ordem superior constante. Aplicamos estas, para estabelecer uma relação entre a curvatura média e a geometria do bordo quando se trata de uma esfera geodésica contida em um hiperplano do Steady State space Hn+1 ⊂ S n+1. / In this work we develop Minkowski-type formulae for compact spacelike immersed hypersurfaces with boundary and having some constant higher order mean curvature in de Sitter space S n+11. We apply them to establish a relation between the mean curvature and the geometry of the boundary, when it is a geodesic sphere contained into a horizontal hyperplane of the Steady State space Hn+1 ⊂ S n+1 1. .
3

Curvas no espaço de Minkowski / Curves in the Minkowski space

Sacramento, Andrea de Jesus 27 March 2015 (has links)
Nesta tese, investigamos a geometria de curvas no 3-espaço e no 4-espaço de Minkowski usando a teoria de singularidades, mais especificamente, a teoria de contato. Para isto, estudamos as famílias de funções altura e de funções distância ao quadrado sobre as curvas. Os conjuntos discriminantes e conjuntos de bifurcação destas famílias são ferramentas essenciais para o desenvolvimento deste trabalho. Para curvas no 3-espaço de Minkowski, estudamos seus conjuntos focais e conjunto de bifurcação da família de funções distância ao quadrado sobre estas curvas para investigar o que acontece próximo de pontos tipo luz. Estudamos também os conjuntos focais e conjuntos de bifurcação esféricos de curvas nos espaços de Sitter do 3-espaço e do 4-espaço de Minkowski. Definimos imagens normal Darboux pseudo-esféricas de curvas sobre uma superfície tipo tempo no 3-espaço de Minkowski e estudamos as singularidades e propriedades geométricas destas imagens normal Darboux. Além disso, investigamos a relação da imagem normal Darboux de Sitter (hiperbólica) de uma curva tipo espaço em S21 com a superfície tipo luz ao longo desta curva tipo espaço. Definimos as superfícies horoesférica e dual hiperbólica de curvas tipo espaço no espaço de Sitter S31 e estudamos estas superfícies usando técnicas da teoria de singularidades. Damos uma relação entre estas superfícies do ponto de vista de dualidades Legendrianas. Finalmente, consideramos curvas sobre uma hipersuperfície tipo espaço no 4-espaço de Minkowski e definimos a superfície hiperbólica desta curva. Estudamos a geometria local da superfície hiperbólica e da curva hiperbólica, que é definida como sendo o local das singularidades da superfície hiperbólica. / We study in this thesis the geometry of curves in Minkowski 3-space and 4-space using singularity theory, more specifically, the contact theory. For this we study the families of height functions and of the distance square functions on the curves. The discriminant sets and bifurcation sets of these families are essential tools in our work. For curves in Minkowski 3-space, we study their focal sets and the bifurcation set of the family of the distance square functions on these curves in order to investigate what happens near the lightlike points. We also study the spherical focal sets and bifurcation sets of curves in the de Sitter space in Minkowski 3-space and 4-space. We define pseudo-spherical normal Darboux images of curves on a timelike surface in Minkowski 3-space and study the singularities and geometric properties of these normal Darboux images. Furthermore, we investigate the relation of the de Sitter (hyperbolic) normal Darboux image of a spacelike curve in S21 with the lightlike surface along this spacelike curve. We define the horospherical and hyperbolic dual surfaces of spacelike curves in de Sitter space S31 and study these surfaces using singularity theory technics. We give a relation between these surfaces from the view point of Legendrian dualities. Finally, we consider curves on a spacelike hypersurface in Minkowski 4-space and define the hyperbolic surface of this curve. We study the local geometry of the hyperbolic surface and of the hyperbolic curve that is defined as being the locus of singularities of the hyperbolic surface.
4

Hipersuperfícies tipo-espaço completas com curvatura média constante imersas no steady state space. / Complete space-type hypersurfaces with constant mean curvature immersed in the steady state space.

SOUSA, Bruno Fontes de. 26 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-26T14:11:07Z No. of bitstreams: 1 BRUNO FONTES DE SOUSA - DISSERTAÇÃO PPGMAT 2011..pdf: 535617 bytes, checksum: 46dc8ee9ec90b36db973cafcc1d3a33e (MD5) / Made available in DSpace on 2018-07-26T14:11:07Z (GMT). No. of bitstreams: 1 BRUNO FONTES DE SOUSA - DISSERTAÇÃO PPGMAT 2011..pdf: 535617 bytes, checksum: 46dc8ee9ec90b36db973cafcc1d3a33e (MD5) Previous issue date: 2011-07-21 / Capes / Neste trabalho estudamos hipersuperfícies tipo-espaço completas com curvatura média constante em uma região aberta do espaço de Sitter, chamada Steady State Space. Primeiro estabelecemos fórmulas adequadas para o Laplaciano de uma função altura e de uma função suporte naturalmente relacionadas com estas hipersuperfícies. Em seguida, considerando hipóteses apropriadas sobre a curvatura média e o crescimento da função altura, obtemos condições necessárias para a existência de tais hipersuperfícies. No caso bidimensional, estabelecemos e mostramos resultados tipoBernstein. Além disso, mostramos que se a hipersuperfície está entre dois slices então a sua curvatura média é igual a um. Obtemos também outras consequências para hipersuperfícies que estão abaixo de um slice. Por fim, estendemos um de nossos resultados para um certo espaço Robertson-Walker generalizado. / In this work we study complete space-like hypersurfaces with constant mean curvature in the open region of de Sitter space, called the Steady State Space. First established suitable formulas for the Laplacian of a height function and of a suport function related to these hypersurfaces. Then, considering hypotheses appropriate on the mean curvature and growth of height functions we obtain necessary conditions for the existence of such hypersurfaces. In two-dimensional case, we set and show results-Bernstein type. Furthermore, we show that if the hypersurface is between two slices then its mean curvature is equal to one. We also obtain other consequences for hypersurfaces are below a slice. Finally, we extend one of our results to a certain space generalized Robertson-Walker.
5

Curvas no espaço de Minkowski / Curves in the Minkowski space

Andrea de Jesus Sacramento 27 March 2015 (has links)
Nesta tese, investigamos a geometria de curvas no 3-espaço e no 4-espaço de Minkowski usando a teoria de singularidades, mais especificamente, a teoria de contato. Para isto, estudamos as famílias de funções altura e de funções distância ao quadrado sobre as curvas. Os conjuntos discriminantes e conjuntos de bifurcação destas famílias são ferramentas essenciais para o desenvolvimento deste trabalho. Para curvas no 3-espaço de Minkowski, estudamos seus conjuntos focais e conjunto de bifurcação da família de funções distância ao quadrado sobre estas curvas para investigar o que acontece próximo de pontos tipo luz. Estudamos também os conjuntos focais e conjuntos de bifurcação esféricos de curvas nos espaços de Sitter do 3-espaço e do 4-espaço de Minkowski. Definimos imagens normal Darboux pseudo-esféricas de curvas sobre uma superfície tipo tempo no 3-espaço de Minkowski e estudamos as singularidades e propriedades geométricas destas imagens normal Darboux. Além disso, investigamos a relação da imagem normal Darboux de Sitter (hiperbólica) de uma curva tipo espaço em S21 com a superfície tipo luz ao longo desta curva tipo espaço. Definimos as superfícies horoesférica e dual hiperbólica de curvas tipo espaço no espaço de Sitter S31 e estudamos estas superfícies usando técnicas da teoria de singularidades. Damos uma relação entre estas superfícies do ponto de vista de dualidades Legendrianas. Finalmente, consideramos curvas sobre uma hipersuperfície tipo espaço no 4-espaço de Minkowski e definimos a superfície hiperbólica desta curva. Estudamos a geometria local da superfície hiperbólica e da curva hiperbólica, que é definida como sendo o local das singularidades da superfície hiperbólica. / We study in this thesis the geometry of curves in Minkowski 3-space and 4-space using singularity theory, more specifically, the contact theory. For this we study the families of height functions and of the distance square functions on the curves. The discriminant sets and bifurcation sets of these families are essential tools in our work. For curves in Minkowski 3-space, we study their focal sets and the bifurcation set of the family of the distance square functions on these curves in order to investigate what happens near the lightlike points. We also study the spherical focal sets and bifurcation sets of curves in the de Sitter space in Minkowski 3-space and 4-space. We define pseudo-spherical normal Darboux images of curves on a timelike surface in Minkowski 3-space and study the singularities and geometric properties of these normal Darboux images. Furthermore, we investigate the relation of the de Sitter (hyperbolic) normal Darboux image of a spacelike curve in S21 with the lightlike surface along this spacelike curve. We define the horospherical and hyperbolic dual surfaces of spacelike curves in de Sitter space S31 and study these surfaces using singularity theory technics. We give a relation between these surfaces from the view point of Legendrian dualities. Finally, we consider curves on a spacelike hypersurface in Minkowski 4-space and define the hyperbolic surface of this curve. We study the local geometry of the hyperbolic surface and of the hyperbolic curve that is defined as being the locus of singularities of the hyperbolic surface.

Page generated in 0.067 seconds