Spelling suggestions: "subject:"destimation nonparamétrique"" "subject:"destimation monoparamétrique""
101 |
Méthode non-paramétrique des noyaux associés mixtes et applications / Non parametric method of mixed associated kernels and applicationsLibengue Dobele-kpoka, Francial Giscard Baudin 13 June 2013 (has links)
Nous présentons dans cette thèse, l'approche non-paramétrique par noyaux associés mixtes, pour les densités àsupports partiellement continus et discrets. Nous commençons par rappeler d'abord les notions essentielles d'estimationpar noyaux continus (classiques) et noyaux associés discrets. Nous donnons la définition et les caractéristiques desestimateurs à noyaux continus (classiques) puis discrets. Nous rappelons aussi les différentes techniques de choix deparamètres de lissage et nous revisitons les problèmes de supports ainsi qu'une résolution des effets de bord dans le casdiscret. Ensuite, nous détaillons la nouvelle méthode d'estimation de densités par les noyaux associés continus, lesquelsenglobent les noyaux continus (classiques). Nous définissons les noyaux associés continus et nous proposons laméthode mode-dispersion pour leur construction puis nous illustrons ceci sur les noyaux associés non-classiques de lalittérature à savoir bêta et sa version étendue, gamma et son inverse, gaussien inverse et sa réciproque le noyau dePareto ainsi que le noyau lognormal. Nous examinons par la suite les propriétés des estimateurs qui en sont issus plusprécisément le biais, la variance et les erreurs quadratiques moyennes ponctuelles et intégrées. Puis, nous proposons unalgorithme de réduction de biais que nous illustrons sur ces mêmes noyaux associés non-classiques. Des études parsimulations sont faites sur trois types d’estimateurs à noyaux lognormaux. Par ailleurs, nous étudions lescomportements asymptotiques des estimateurs de densité à noyaux associés continus. Nous montrons d'abord lesconsistances faibles et fortes ainsi que la normalité asymptotique ponctuelle. Ensuite nous présentons les résultats desconsistances faibles et fortes globales en utilisant les normes uniformes et L1. Nous illustrons ceci sur trois typesd’estimateurs à noyaux lognormaux. Par la suite, nous étudions les propriétés minimax des estimateurs à noyauxassociés continus. Nous décrivons d'abord le modèle puis nous donnons les hypothèses techniques avec lesquelles noustravaillons. Nous présentons ensuite nos résultats minimax tout en les appliquant sur les noyaux associés non-classiquesbêta, gamma et lognormal. Enfin, nous combinons les noyaux associés continus et discrets pour définir les noyauxassociés mixtes. De là, les outils d'unification d'analyses discrètes et continues sont utilisés, pour montrer les différentespropriétés des estimateurs à noyaux associés mixtes. Une application sur un modèle de mélange des lois normales et dePoisson tronquées est aussi donnée. Tout au long de ce travail, nous choisissons le paramètre de lissage uniquementavec la méthode de validation croisée par les moindres carrés. / We present in this thesis, the non-parametric approach using mixed associated kernels for densities withsupports being partially continuous and discrete. We first start by recalling the essential concepts of classical continuousand discrete kernel density estimators. We give the definition and characteristics of these estimators. We also recall thevarious technical for the choice of smoothing parameters and we revisit the problems of supports as well as a resolutionof the edge effects in the discrete case. Then, we describe a new method of continuous associated kernels for estimatingdensity with bounded support, which includes the classical continuous kernel method. We define the continuousassociated kernels and we propose the mode-dispersion for their construction. Moreover, we illustrate this on the nonclassicalassociated kernels of literature namely, beta and its extended version, gamma and its inverse, inverse Gaussianand its reciprocal, the Pareto kernel and the kernel lognormal. We subsequently examine the properties of the estimatorswhich are derived, specifically, the bias, variance and the pointwise and integrated mean squared errors. Then, wepropose an algorithm for reducing bias that we illustrate on these non-classical associated kernels. Some simulationsstudies are performed on three types of estimators lognormal kernels. Also, we study the asymptotic behavior of thecontinuous associated kernel estimators for density. We first show the pointwise weak and strong consistencies as wellas the asymptotic normality. Then, we present the results of the global weak and strong consistencies using uniform andL1norms. We illustrate this on three types of lognormal kernels estimators. Subsequently, we study the minimaxproperties of the continuous associated kernel estimators. We first describe the model and we give the technicalassumptions with which we work. Then we present our results that we apply on some non-classical associated kernelsmore precisely beta, gamma and lognormal kernel estimators. Finally, we combine continuous and discrete associatedkernels for defining the mixed associated kernels. Using the tools of the unification of discrete and continuous analysis,we show the different properties of the mixed associated kernel estimators. All through this work, we choose thesmoothing parameter using the least squares cross-validation method.
|
102 |
Estimation non-paramétrique adaptative pour des modèles bruités / Nonparametric adaptive estimation in measurement error modelsMabon, Gwennaëlle 26 May 2016 (has links)
Dans cette thèse, nous nous intéressons au problème d'estimation de densité dans le modèle de convolution. Ce cadre correspond aux modèles avec erreurs de mesures additives, c'est-à-dire que nous observons une version bruitée de la variable d'intérêt. Pour mener notre étude, nous adoptons le point de vue de l'estimation non-paramétrique adaptative qui repose sur des procédures de sélection de modèle développées par Birgé & Massart ou sur les méthodes de Lepski. Cette thèse se divise en deux parties. La première développe des méthodes spécifiques d'estimation adaptative quand les variables d'intérêt et les erreurs sont des variables aléatoires positives. Ainsi nous proposons des estimateurs adaptatifs de la densité ou encore de la fonction de survie dans ce modèle, puis de fonctionnelles linéaires de la densité cible. Enfin nous suggérons une procédure d'agrégation linéaire. La deuxième partie traite de l'estimation adaptative de densité dans le modèle de convolution lorsque la loi des erreurs est inconnue. Dans ce cadre il est supposé qu'un échantillon préliminaire du bruit est disponible ou que les observations sont disponibles sous forme de données répétées. Les résultats obtenus pour des données répétées dans le modèle de convolution permettent d'élargir cette méthodologie au cadre des modèles linéaires mixtes. Enfin cette méthode est encore appliquée à l'estimation de la densité de somme de variables aléatoires observées avec du bruit. / In this thesis, we are interested in nonparametric adaptive estimation problems of density in the convolution model. This framework matches additive measurement error models, which means we observe a noisy version of the random variable of interest. To carry out our study, we follow the paradigm of model selection developped by Birgé & Massart or criterion based on Lepski's method. The thesis is divided into two parts. In the first one, the main goal is to build adaptive estimators in the convolution model when both random variables of interest and errors are distributed on the nonnegative real line. Thus we propose adaptive estimators of the density along with the survival function, then of linear functionals of the target density. This part ends with a linear density aggregation procedure. The second part of the thesis deals with adaptive estimation of density in the convolution model when the distribution is unknown and distributed on the real line. To make this problem identifiable, we assume we have at hand either a preliminary sample of the noise or we observe repeated data. So, we can derive adaptive estimation with mild assumptions on the noise distribution. This methodology is then applied to linear mixed models and to the problem of density estimation of the sum of random variables when the latter are observed with an additive noise.
|
103 |
Dependence modeling between continuous time stochastic processes : an application to electricity markets modeling and risk management / Modélisation de la dépendance entre processus stochastiques en temps continu : une application aux marchés de l'électricité et à la gestion des risquesDeschatre, Thomas 08 December 2017 (has links)
Cette thèse traite de problèmes de dépendance entre processus stochastiques en temps continu. Ces résultats sont appliqués à la modélisation et à la gestion des risques des marchés de l'électricité.Dans une première partie, de nouvelles copules sont établies pour modéliser la dépendance entre deux mouvements Browniens et contrôler la distribution de leur différence. On montre que la classe des copules admissibles pour les Browniens contient des copules asymétriques. Avec ces copules, la fonction de survie de la différence des deux Browniens est plus élevée dans sa partie positive qu'avec une dépendance gaussienne. Les résultats sont appliqués à la modélisation jointe des prix de l'électricité et d'autres commodités énergétiques. Dans une seconde partie, nous considérons un processus stochastique observé de manière discrète et défini par la somme d'une semi-martingale continue et d'un processus de Poisson composé avec retour à la moyenne. Une procédure d'estimation pour le paramètre de retour à la moyenne est proposée lorsque celui-ci est élevé dans un cadre de statistique haute fréquence en horizon fini. Ces résultats sont utilisés pour la modélisation des pics dans les prix de l'électricité.Dans une troisième partie, on considère un processus de Poisson doublement stochastique dont l'intensité stochastique est une fonction d'une semi-martingale continue. Pour estimer cette fonction, un estimateur à polynômes locaux est utilisé et une méthode de sélection de la fenêtre est proposée menant à une inégalité oracle. Un test est proposé pour déterminer si la fonction d'intensité appartient à une certaine famille paramétrique. Grâce à ces résultats, on modélise la dépendance entre l'intensité des pics de prix de l'électricité et de facteurs exogènes tels que la production éolienne. / In this thesis, we study some dependence modeling problems between continuous time stochastic processes. These results are applied to the modeling and risk management of electricity markets. In a first part, we propose new copulae to model the dependence between two Brownian motions and to control the distribution of their difference. We show that the class of admissible copulae for the Brownian motions contains asymmetric copulae. These copulae allow for the survival function of the difference between two Brownian motions to have higher value in the right tail than in the Gaussian copula case. Results are applied to the joint modeling of electricity and other energy commodity prices. In a second part, we consider a stochastic process which is a sum of a continuous semimartingale and a mean reverting compound Poisson process and which is discretely observed. An estimation procedure is proposed for the mean reversion parameter of the Poisson process in a high frequency framework with finite time horizon, assuming this parameter is large. Results are applied to the modeling of the spikes in electricity prices time series. In a third part, we consider a doubly stochastic Poisson process with stochastic intensity function of a continuous semimartingale. A local polynomial estimator is considered in order to infer the intensity function and a method is given to select the optimal bandwidth. An oracle inequality is derived. Furthermore, a test is proposed in order to determine if the intensity function belongs to some parametrical family. Using these results, we model the dependence between the intensity of electricity spikes and exogenous factors such as the wind production.
|
104 |
Contribution à la modélisation spatiale des événements extrêmes / Contributions to modeling spatial extremal events and applicationsBassene, Aladji 06 May 2016 (has links)
Dans cette de thèse, nous nous intéressons à la modélisation non paramétrique de données extrêmes spatiales. Nos résultats sont basés sur un cadre principal de la théorie des valeurs extrêmes, permettant ainsi d’englober les lois de type Pareto. Ce cadre permet aujourd’hui d’étendre l’étude des événements extrêmes au cas spatial à condition que les propriétés asymptotiques des estimateurs étudiés vérifient les conditions classiques de la Théorie des Valeurs Extrêmes (TVE) en plus des conditions locales sur la structure des données proprement dites. Dans la littérature, il existe un vaste panorama de modèles d’estimation d’événements extrêmes adaptés aux structures des données pour lesquelles on s’intéresse. Néanmoins, dans le cas de données extrêmes spatiales, hormis les modèles max stables,il n’en existe que peu ou presque pas de modèles qui s’intéressent à l’estimation fonctionnelle de l’indice de queue ou de quantiles extrêmes. Par conséquent, nous étendons les travaux existants sur l’estimation de l’indice de queue et des quantiles dans le cadre de données indépendantes ou temporellement dépendantes. La spécificité des méthodes étudiées réside sur le fait que les résultats asymptotiques des estimateurs prennent en compte la structure de dépendance spatiale des données considérées, ce qui est loin d’être trivial. Cette thèse s’inscrit donc dans le contexte de la statistique spatiale des valeurs extrêmes. Elle y apporte trois contributions principales. • Dans la première contribution de cette thèse permettant d’appréhender l’étude de variables réelles spatiales au cadre des valeurs extrêmes, nous proposons une estimation de l’indice de queue d’une distribution à queue lourde. Notre approche repose sur l’estimateur de Hill (1975). Les propriétés asymptotiques de l’estimateur introduit sont établies lorsque le processus spatial est adéquatement approximé par un processus M−dépendant, linéaire causal ou lorsqu'il satisfait une condition de mélange fort (a-mélange). • Dans la pratique, il est souvent utile de lier la variable d’intérêt Y avec une co-variable X. Dans cette situation, l’indice de queue dépend de la valeur observée x de la co-variable X et sera appelé indice de queue conditionnelle. Dans la plupart des applications, l’indice de queue des valeurs extrêmes n’est pas l’intérêt principal et est utilisé pour estimer par exemple des quantiles extrêmes. La contribution de ce chapitre consiste à adapter l’estimateur de l’indice de queue introduit dans la première partie au cadre conditionnel et d’utiliser ce dernier afin de proposer un estimateur des quantiles conditionnels extrêmes. Nous examinons les modèles dits "à plan fixe" ou "fixed design" qui correspondent à la situation où la variable explicative est déterministe et nous utlisons l’approche de la fenêtre mobile ou "window moving approach" pour capter la co-variable. Nous étudions le comportement asymptotique des estimateurs proposés et donnons des résultats numériques basés sur des données simulées avec le logiciel "R". • Dans la troisième partie de cette thèse, nous étendons les travaux de la deuxième partie au cadre des modèles dits "à plan aléatoire" ou "random design" pour lesquels les données sont des observations spatiales d’un couple (Y,X) de variables aléatoires réelles. Pour ce dernier modèle, nous proposons un estimateur de l’indice de queue lourde en utilisant la méthode des noyaux pour capter la co-variable. Nous utilisons un estimateur de l’indice de queue conditionnelle appartenant à la famille de l’estimateur introduit par Goegebeur et al. (2014b). / In this thesis, we investigate nonparametric modeling of spatial extremes. Our resultsare based on the main result of the theory of extreme values, thereby encompass Paretolaws. This framework allows today to extend the study of extreme events in the spatialcase provided if the asymptotic properties of the proposed estimators satisfy the standardconditions of the Extreme Value Theory (EVT) in addition to the local conditions on thedata structure themselves. In the literature, there exists a vast panorama of extreme events models, which are adapted to the structures of the data of interest. However, in the case ofextreme spatial data, except max-stables models, little or almost no models are interestedin non-parametric estimation of the tail index and/or extreme quantiles. Therefore, weextend existing works on estimating the tail index and quantile under independent ortime-dependent data. The specificity of the methods studied resides in the fact that theasymptotic results of the proposed estimators take into account the spatial dependence structure of the relevant data, which is far from trivial. This thesis is then written in thecontext of spatial statistics of extremes. She makes three main contributions.• In the first contribution of this thesis, we propose a new approach of the estimatorof the tail index of a heavy-tailed distribution within the framework of spatial data. This approach relies on the estimator of Hill (1975). The asymptotic properties of the estimator introduced are established when the spatial process is adequately approximated by aspatial M−dependent process, spatial linear causal process or when the process satisfies a strong mixing condition.• In practice, it is often useful to link the variable of interest Y with covariate X. Inthis situation, the tail index depends on the observed value x of the covariate X and theunknown fonction (.) will be called conditional tail index. In most applications, the tailindexof an extreme value is not the main attraction, but it is used to estimate for instance extreme quantiles. The contribution of this chapter is to adapt the estimator of the tail index introduced in the first part in the conditional framework and use it to propose an estimator of conditional extreme quantiles. We examine the models called "fixed design"which corresponds to the situation where the explanatory variable is deterministic. To tackle the covariate, since it is deterministic, we use the window moving approach. Westudy the asymptotic behavior of the estimators proposed and some numerical resultsusing simulated data with the software "R".• In the third part of this thesis, we extend the work of the second part of the framemodels called "random design" for which the data are spatial observations of a pair (Y,X) of real random variables . In this last model, we propose an estimator of heavy tail-indexusing the kernel method to tackle the covariate. We use an estimator of the conditional tail index belonging to the family of the estimators introduced by Goegebeur et al. (2014b).
|
105 |
Identification and control of wet grinding processes: application to the Kolwezi concentrator / Identification et commande de procédés de broyage humide: application au concentrateur de KolweziMukepe Kahilu, Moise 17 December 2013 (has links)
Enhancing mineral processing techniques is a permanent challenge in the mineral and metal industry. Indeed to satisfy the requirements on the final product (metal) set by the consuming market, control is often applied on the mineral processing whose product, the ore concentrate, constitutes the input material of the extractive metallurgy. Therefore much attention is paid on mineral processing units and especially on concentration plants. As the ore size reduction procedure is the critical step of a concentrator, it turns out that controlling a grinding circuit is crucial since this stage accounts for almost 50 % of the total expenditure of the concentrator plant. Moreover, the product particle size from grinding stage influences the recovery rate of the valuable minerals as well as the volume of tailing discharge in the subsequent process.<p> The present thesis focuses on an industrial application, namely the Kolwezi concentrator (KZC) double closed-loop wet grinding circuit. As any industrial wet grinding process, this process offers complex and challenging control problems due to its configuration and to the requirements on the product characteristics. In particular, we are interested in the modelling of the process and in proposing a control strategy to maximize the product flow rate while meeting requirements on the product fineness and density.<p> A mathematical model of each component of the circuit is derived. Globally, the KZC grinding process is described by a dynamic nonlinear distributed parameter model. Within this model, we propose a mathematical description to exhibit the increase of the breakage efficiency in wet operating condition. In addition, a relationship is proposed to link the convection velocity to the feed ore rate for material transport within the mills.<p> All the individual models are identified from measurements taken under normal process operation or from data obtained through new specific experiments, notably using the G41 foaming as a tracer to determine material transport dynamics within the mills. This technique provides satisfactory results compared to previous studies.<p>Based on the modelling and the circuit configuration, both steady-state and dynamic simulators are developed. The simulation results are found to be in agreement with the experimental data. These simulation tools should allow operator training and they are used to analyse the system and to design the suitable control strategy.<p> As the KZC wet grinding process is a Multi-Input Multi-Output (MIMO) system, we propose a decentralized control scheme for its simplicity of implementation. To overcome all the control issues, a Double Internal Model Control (DIMC) scheme is proposed. This strategy is a feedforward-feedback structure based on the use of both a modified Disturbance Observer (DOB) and a Proportional-Integral Smith-Predictor (PI-SP). A duality between the DOB and PI-SP is demonstrated in design method. The latter is exploited to significantly simplify the design procedure. The designed decentralized controllers are validated in simulation on the process linearized model. A progressive implementation of the control strategy is proposed in the context of the KZC grinding circuit where instrumentation might not be obvious to acquire./<p><p> Améliorer les techniques de traitement de minerais est un défi permanent dans l'industrie des minéraux et des métaux. En effet, pour satisfaire aux exigences du produit fini (métal ) fixées par le marché de consommation, la commande automatique est souvent appliquée à l'usine du traitement de minerais dont le produit, le concentré, constitue la matière première de la métallurgie extractive. Une attention particulière est donc dévolue aux unités de traitement de minerais et en particulier aux concentrateurs. Comme le processus de réduction des dimensions granulométriques du minerai est l'étape critique d'un concentrateur, il s'avère que la commande d'un circuit de broyage est cruciale, car ce stade représente près de 50 % des dépenses totales de l' usine de concentration. De plus, la dimension granulométrique du produit de l'étape de broyage influe sur le taux de récupération des minéraux utiles ainsi que sur le volume des rejets du processus ultérieur.<p> La présente thèse porte sur une application industrielle, à savoir le concentrateur de Kolwezi (KZC qui est un circuit de broyage humide à double boucle fermée. Comme tout processus industriel de broyage humide, ce procédé présente une problématique de commande complexe et difficile en raison de sa configuration et des exigences relatives aux caractéristiques du produit. En particulier, nous nous intéressons à la modélisation de ce procédé et à proposer une stratégie adéquate de commande dans le but de maximiser le débit de production tout en respectant les exigences quant à la finesse et à la densité de la pulpe produite.<p> Un modèle mathématique de chaque composant du circuit a été déterminé. Globalement, le processus de broyage de KZC est décrit par un modèle dynamique non linéaire à paramètres distribués. Dans ce modèle, une description mathématique de l'augmentation de l'efficacité du broyage en milieu humide est proposée. En outre, nous avons proposé une relation liant la vitesse de convection au débit d'alimentation de minerais dans le modèle du transport de la matière à l'intérieur des broyeurs.<p> Tous les modèles mathématiques ont été identifiés à partir de mesures prises sur le procédé en fonctionnement d'équilibre stable ou à partir des données obtenues grâce à des nouvelles expériences spécifiques, notamment en utilisant le moussant G41 comme traceur pour déterminer la dynamique de transport de la matière dans les broyeurs. Cette technique a produit des résultats cohérents par rapport aux études antérieurs réalisées au moyen du traceur colorant ou radioactif.<p> Les simulateurs statique et dynamique ont été développés sur la base de la modélisation mathématique et de la configuration du circuit. Les résultats des simulations sont en accord avec les données expérimentales. Ces outils de simulation devraient permettre la formation des opérateurs et ont été utilisés pour analyser le système et concevoir la stratégie de commande la plus appropriée.<p> Comme le processus de broyage humide de KZC est un système à plusieurs grandeurs d'entrée et plusieurs grandeurs de sortie, nous avons proposé une structure de commande décentralisée en raison de sa simplicité de mise en œuvre .Afin de surmonter tous les problèmes de commande, un schéma de commande à double modèle interne (CDMI) est proposée. Cette stratégie est une structure à anticipation - rétroaction basée sur l'utilisation d'un observateur de perturbations (OBP) et d'un Prédicteur de Smith doté d'un régulateur Proportionnel-Intégral (PS-PI). Une dualité entre l'OBP et le PS-PI est démontrée dans la méthode de conception. Cette propriété est exploitée pour simplifier considérablement la procédure de conception. Les régulateurs décentralisés ainsi conçus sont validés en simulation sur le modèle linéarisé du procédé. Une mise en œuvre progressive de la stratégie de commande est proposée dans le contexte du circuit de broyage de KZC où l'instrumentation peut ne pas être évidente à acquérir.<p> <p> / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
|
106 |
Applications du calcul stochastique à l'étude de certains processusGradinaru, Mihai 07 December 2005 (has links) (PDF)
Ce document contient la synthèse des travaux de recherche effectués <br />entre 1996 et 2005, après la thèse de doctorat de l'auteur, et concerne l'étude fine de <br />certains processus stochastiques : mouvement brownien linéaire ou plan, processus de diffusion, <br />mouvement brownien fractionnaire, solutions d'équations différentielles stochastiques ou <br />d'équations aux dérivées partielles stochastiques.<br />La thèse d'habilitation s'articule en six chapitres correspondant aux thèmes <br />suivants : étude des intégrales par rapport aux temps locaux de certaines diffusions, <br />grandes déviations pour un processus obtenu par perturbation brownienne d'un système <br />dynamique dépourvu de la propriété d'unicité des solutions, calcul stochastique <br />pour le processus gaussien non-markovien non-semimartingale mouvement brownien fractionnaire, <br />étude des formules de type Itô et Tanaka pour l'équation de la chaleur stochastique, <br />étude de la durée de vie du mouvement brownien plan réfléchi dans un domaine à<br />frontière absorbante et enfin, estimation non-paramétrique et construction d'un <br />test d'adéquation à partir d'observations discrètes pour le coefficient de diffusion d'une <br />équation différentielle stochastique. <br />Les approches de tous ces thèmes sont probabilistes et basées sur l'analyse stochastique. <br />On utilise aussi des outils d'équations différentielles, d'équations aux dérivées partielles <br />et de l'analyse.
|
107 |
Contribution à la statistique spatiale et l'analyse de données fonctionnelles / Contribution to spatial statistics and functional data analysisAhmed, Mohamed Salem 12 December 2017 (has links)
Ce mémoire de thèse porte sur la statistique inférentielle des données spatiales et/ou fonctionnelles. En effet, nous nous sommes intéressés à l’estimation de paramètres inconnus de certains modèles à partir d’échantillons obtenus par un processus d’échantillonnage aléatoire ou non (stratifié), composés de variables indépendantes ou spatialement dépendantes.La spécificité des méthodes proposées réside dans le fait qu’elles tiennent compte de la nature de l’échantillon étudié (échantillon stratifié ou composé de données spatiales dépendantes).Tout d’abord, nous étudions des données à valeurs dans un espace de dimension infinie ou dites ”données fonctionnelles”. Dans un premier temps, nous étudions les modèles de choix binaires fonctionnels dans un contexte d’échantillonnage par stratification endogène (échantillonnage Cas-Témoin ou échantillonnage basé sur le choix). La spécificité de cette étude réside sur le fait que la méthode proposée prend en considération le schéma d’échantillonnage. Nous décrivons une fonction de vraisemblance conditionnelle sous l’échantillonnage considérée et une stratégie de réduction de dimension afin d’introduire une estimation du modèle par vraisemblance conditionnelle. Nous étudions les propriétés asymptotiques des estimateurs proposées ainsi que leurs applications à des données simulées et réelles. Nous nous sommes ensuite intéressés à un modèle linéaire fonctionnel spatial auto-régressif. La particularité du modèle réside dans la nature fonctionnelle de la variable explicative et la structure de la dépendance spatiale des variables de l’échantillon considéré. La procédure d’estimation que nous proposons consiste à réduire la dimension infinie de la variable explicative fonctionnelle et à maximiser une quasi-vraisemblance associée au modèle. Nous établissons la consistance, la normalité asymptotique et les performances numériques des estimateurs proposés.Dans la deuxième partie du mémoire, nous abordons des problèmes de régression et prédiction de variables dépendantes à valeurs réelles. Nous commençons par généraliser la méthode de k-plus proches voisins (k-nearest neighbors; k-NN) afin de prédire un processus spatial en des sites non-observés, en présence de co-variables spatiaux. La spécificité du prédicteur proposé est qu’il tient compte d’une hétérogénéité au niveau de la co-variable utilisée. Nous établissons la convergence presque complète avec vitesse du prédicteur et donnons des résultats numériques à l’aide de données simulées et environnementales.Nous généralisons ensuite le modèle probit partiellement linéaire pour données indépendantes à des données spatiales. Nous utilisons un processus spatial linéaire pour modéliser les perturbations du processus considéré, permettant ainsi plus de flexibilité et d’englober plusieurs types de dépendances spatiales. Nous proposons une approche d’estimation semi paramétrique basée sur une vraisemblance pondérée et la méthode des moments généralisées et en étudions les propriétés asymptotiques et performances numériques. Une étude sur la détection des facteurs de risque de cancer VADS (voies aéro-digestives supérieures)dans la région Nord de France à l’aide de modèles spatiaux à choix binaire termine notre contribution. / This thesis is about statistical inference for spatial and/or functional data. Indeed, weare interested in estimation of unknown parameters of some models from random or nonrandom(stratified) samples composed of independent or spatially dependent variables.The specificity of the proposed methods lies in the fact that they take into considerationthe considered sample nature (stratified or spatial sample).We begin by studying data valued in a space of infinite dimension or so-called ”functionaldata”. First, we study a functional binary choice model explored in a case-controlor choice-based sample design context. The specificity of this study is that the proposedmethod takes into account the sampling scheme. We describe a conditional likelihoodfunction under the sampling distribution and a reduction of dimension strategy to definea feasible conditional maximum likelihood estimator of the model. Asymptotic propertiesof the proposed estimates as well as their application to simulated and real data are given.Secondly, we explore a functional linear autoregressive spatial model whose particularityis on the functional nature of the explanatory variable and the structure of the spatialdependence. The estimation procedure consists of reducing the infinite dimension of thefunctional variable and maximizing a quasi-likelihood function. We establish the consistencyand asymptotic normality of the estimator. The usefulness of the methodology isillustrated via simulations and an application to some real data.In the second part of the thesis, we address some estimation and prediction problemsof real random spatial variables. We start by generalizing the k-nearest neighbors method,namely k-NN, to predict a spatial process at non-observed locations using some covariates.The specificity of the proposed k-NN predictor lies in the fact that it is flexible and allowsa number of heterogeneity in the covariate. We establish the almost complete convergencewith rates of the spatial predictor whose performance is ensured by an application oversimulated and environmental data. In addition, we generalize the partially linear probitmodel of independent data to the spatial case. We use a linear process for disturbancesallowing various spatial dependencies and propose a semiparametric estimation approachbased on weighted likelihood and generalized method of moments methods. We establishthe consistency and asymptotic distribution of the proposed estimators and investigate thefinite sample performance of the estimators on simulated data. We end by an applicationof spatial binary choice models to identify UADT (Upper aerodigestive tract) cancer riskfactors in the north region of France which displays the highest rates of such cancerincidence and mortality of the country.
|
Page generated in 0.1256 seconds