• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 68
  • 44
  • 5
  • 3
  • Tagged with
  • 107
  • 107
  • 36
  • 34
  • 34
  • 25
  • 22
  • 22
  • 22
  • 18
  • 18
  • 16
  • 15
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Choix optimal du paramètre de lissage dans l'estimation non paramétrique de la fonction de densité pour des processus stationnaires à temps continu / Optimal choice of smoothing parameter in non parametric density estimation for continuous time stationary processes

El Heda, Khadijetou 25 October 2018 (has links)
Les travaux de cette thèse portent sur le choix du paramètre de lissage dans le problème de l'estimation non paramétrique de la fonction de densité associée à des processus stationnaires ergodiques à temps continus. La précision de cette estimation dépend du choix de ce paramètre. La motivation essentielle est de construire une procédure de sélection automatique de la fenêtre et d'établir des propriétés asymptotiques de cette dernière en considérant un cadre de dépendance des données assez général qui puisse être facilement utilisé en pratique. Cette contribution se compose de trois parties. La première partie est consacrée à l'état de l'art relatif à la problématique qui situe bien notre contribution dans la littérature. Dans la deuxième partie, nous construisons une méthode de sélection automatique du paramètre de lissage liée à l'estimation de la densité par la méthode du noyau. Ce choix issu de la méthode de la validation croisée est asymptotiquement optimal. Dans la troisième partie, nous établissons des propriétés asymptotiques, de la fenêtre issue de la méthode de la validation croisée, données par des résultats de convergence presque sûre. / The work this thesis focuses on the choice of the smoothing parameter in the context of non-parametric estimation of the density function for stationary ergodic continuous time processes. The accuracy of the estimation depends greatly on the choice of this parameter. The main goal of this work is to build an automatic window selection procedure and establish asymptotic properties while considering a general dependency framework that can be easily used in practice. The manuscript is divided into three parts. The first part reviews the literature on the subject, set the state of the art and discusses our contribution in within. In the second part, we design an automatical method for selecting the smoothing parameter when the density is estimated by the Kernel method. This choice stemming from the cross-validation method is asymptotically optimal. In the third part, we establish an asymptotic properties pertaining to consistency with rate for the resulting estimate of the window-width.
72

Sur l’utilisation des modèles multi-états pour la mesure et la gestion des risques d’un contrat d’assurance / On the use of multi-state models to measure and manage the risks of an insurance contract

Guibert, Quentin 07 December 2015 (has links)
La mise en place de Solvabilité II conduit les actuaires à s'interroger sur la bonne adéquation entre modèles et données. Aussi, cette thèse a pour objectif d'étudier plusieurs approches statistiques, souvent méconnues des praticiens, permettant l'utilisation de méthodes multi états pour modéliser et gérer les risques individuels en assurance. Le Chapitre 1 présente le contexte général de cette thèse et permet de faire positionner ses principales contributions. Nous abordons les concepts de base liés à l'utilisation de modèles multi-états en assurance et décrivons les techniques d'inférence classiques adaptées aux données rencontrées, qu'ils soient markoviens ou non-markoviens. Pour finir, nous présentons comment il est possible d'utiliser ces modèles pour la gestion des risques de crédit. Le Chapitre 2 se concentre sur l'utilisation de méthodes d'inférence non-paramétriques pour la construction de lois d'incidence en assurance dépendance. Puisque plusieurs causes d'entrée sont susceptibles d'intervenir et d'intéresser les actuaires, nous nous concentrons sur une méthode utilisée pour l'estimation de modèles multi-états markoviens en temps continu. Nous comparons, dans un second temps, ces estimateurs à ceux utilisés classiquement par les praticiens tires de l'analyse de survie. Cette seconde approche peut comporter des biais non négligeables car ne permettant pas d'appréhender correctement l'interaction possible entre les causes. En particulier, elle comprend une hypothèse d'indépendance ne pouvant être testée dans le cadre de modèles à risques concurrents. Notre approche consiste alors à mesurer l'erreur commise par les praticiens lors de la construction de lois d'incidence. Une application numérique est alors considérée sur la base des données d'un assureur dépendance / With the implementation of the Solvency II framework, actuaries should examine the good adequacy between models and data. This thesis aims to study several statistical approaches, often ignored by practitioners, enabling the use of multi-state methods to model and manage individual risks in insurance. Chapter 1 presents the general context of this thesis and positions its main contributions. The basic tools to use multi-state models in insurance are introduced and classical inference techniques, adapted to insurance data with and without the Markov assumption, are presented. Finally, a development of these models for credit risk is outlined. Chapter 2 focuses on using nonparametric inference methods to build incidence tables for long term care insurance contracts. Since there are several entry-causes in disability states which are useful for actuaries, an inference method for competing risks data, seen as a Markov multi-state model in continuous time, is used. In a second step, I compare these estimators to those conventionally used by practitioners, based on survival analysis methods. This second approach may involve significant bias because the interaction between entry-causes cannot be appropriately captured. In particular, these approaches assume that latent failure times are independent, while this hypothesis cannot be tested for competing risks data. Our approach allows to measure the error done by practitioners when they build incidence tables. Finally, a numerical application is considered on a long term care insurance dataset
73

Contributions à la statistique des processus et à l'estimation fonctionnelle

Rachdi, Mustapha 07 November 2006 (has links) (PDF)
Dans cette HDR, notre objectif premier est de présenter nos travaux sur la statistique non paramétrique des processus stochastiques et sur l'estimation fonctionnelle. Plutôt que de vouloir insister sur les détails mathématiques de nos résultats, que l'on pourra toujours retrouver dans les articles correspondants, nous avons choisi de les présenter d'une façon synthétique. Sans prétendre à l'exhaustivité, nous nous sommes attachés à indiquer les articles historiques et à faire un choix de certains articles nous paraîssant les plus intéressants. Les techniques non paramétriques ont pris une importance de plus en plus grande depuis une trentaine d'années dans la recherche en statistique mathématique. Le nombre toujours croissant d'articles sur ce thème en témoigne. Il faut également signaler que le développement des moyens informatiques et la puissance actuelle de calcul des ordinateurs permettent d'élargir toujours plus le champs d'application de ces méthodes. Ce document est organisé en respectant des thématiques. En fait, nous avons classifié l'ensemble de nos travaux en six chapitres. Dans chacun de ces chapitres, nous indiquons les travaux concernés avant un bref historique, ensuite nous résumons les principaux résultats, les idées sous-jacentes, et ce qui a motivé ce travail. Nous scindons nos recherches en deux grandes parties : d'abord, l'estimation fonctionnelle et la statistique des processus en dimension finie (chapitres 1, 2, 3 et 4), et puis, l'analyse statistique des données fonctionnelles (chapitre 5). Le dernier chapitre de ce mémoire est le fruit de nos investigations avec l'équipe de Telecom Lille 1 sur la modélisation statistique du canal de transmission à 60 GHz dans les milieux confinés.
74

Estimations et tests non paramétriques en tomographie quantique homodyne

Méziani, Katia 09 December 2008 (has links) (PDF)
En optique quantique, la reconstruction de l'état quantique (fonction de Wigner ou matrice de densité infini-dimensionnelle) d'un faisceau de lumière correspond en statistique à un problème inverse trés mal posé. Premièrement, nous proposons des estimateurs de la matrice de densité basés sur les fonctions \textit{pattern} et des estimateurs à noyau de la fonction de Wigner. Nous faisons l'hypothèse que la matrice de densité inconnue appartient à une classe non paramétrique définie en accord avec les exemples étudiés par les physiciens. Nous en déduisons pour la fonction de Wigner associée à cette matrice des propriétés de décroissance rapide et de régularité. Deuxièmement, nous estimons une fonctionnelle quadratique de la fonction de Wigner par une U-statistique d'ordre deux sur une classe plus large. Cette fonctionnelle peut être vue comme une indication sur la pureté de l'état quantique considéré. Nous en déduisons un estimateur adaptatif aux paramètres de régularité de la fonction de Wigner. La dernière partie de ce manuscrit est consacrée au problème de test d'adéquation à la matrice de densité. Cette procédure est construite à partir d'un estimateur de type projection sur les fonctions \textit{pattern}. Nous étudions les bornes supérieures de type minimax de toutes ces procédures. Les procédures d'estimation de la matrice de densité et de test d'adéquation à une matrice de densité sont implémentées et leurs performances numériques sont étudiées.
75

Inégalité, mobilité et hétérogénéité sur le marché du travail : Contribution Empiriques et Méthodiques

Bonhomme, Stéphane 23 May 2006 (has links) (PDF)
Ce travail rassemble quatre essais consacrés à l'étude de l'hétérogénéité et des dynamiques individuelles sur le marché du travail. Le premier chapitre met en évidence le lien entre mobilité (inertie) et le degré de persistance des inégalités. Nous employons une méthode statistique simple et originale pour étudier les trajectoires individuelles de salaires, et l'appliquons à des données françaises couvrant la période 1990-2002. Nous trouvons que la récession du début des années 1990 a été associée à une augmentation des inégalités longitudinales.<br />Dans le deuxième chapitre nous étudions l'effet de la mobilité entre emplois sur les corrélations entre salaires et caractéristiques non salariales. Dans notre modèle, de fortes préférences pour ces caractéristiques ne se traduisent pas nécessairement en corrélations négatives si les frictions de mobilité sont importantes. Sur données européennes, nous estimons de fortes préférences pour certaines caractéristiques telles que le type de travail ou la sécurité de l'emploi, ainsi que des différentiels de salaires très faibles entre niveaux d'aménités.<br />Les chapitres 3 et 4 introduisent une méthode de modélisation de l'hétérogénéité inobservée : l'analyse en composantes indépendantes. Celle-ci diffère de l'analyse en composantes principales en ce que les facteurs ne sont pas supposés simplement non corrélés, mais statistiquement indépendants. Cette hypothèse permet d'identifier les facteurs de manière non ambigüe. Nous appliquons notre méthode à des données de salaires de l'éducation pour l'année 1995 en France. Nos résultats suggèrent une relation complexe et multidimensionnelle entre le niveau d'étude et son rendement sur le marché du travail.
76

Estimation non paramétrique et problèmes inverses

Willer, Thomas 08 December 2006 (has links) (PDF)
On se place dans le cadre de<br />l'estimation non paramétrique pour les problèmes inverses, où une<br />fonction inconnue subit une transformation par un opérateur<br />linéaire mal posé, et où l'on en observe une version bruitée par<br />une erreur aléatoire additive. Dans ce type de problèmes, les<br />méthodes d'ondelettes sont très utiles, et ont été largement<br />étudiées. Les méthodes développées dans cette thèse s'en<br />inspirent, mais consistent à s'écarter des bases d'ondelettes<br />"classiques", ce qui permet d'ouvrir de nouvelles perspectives<br />théoriques et pratiques. Dans l'essentiel de la thèse, on utilise<br />un modèle de type bruit blanc. On construit des estimateurs<br />utilisant des bases qui d'une part sont adaptées à l'opérateur, et<br />d'autre part possèdent des propriétés analogues à celles des<br />ondelettes. On en étudie les propriétés minimax dans un cadre<br />large, et l'on implémente ces méthodes afin d'en étudier leurs<br />performances pratiques. Dans une dernière partie, on utilise un<br />modèle de regression en design aléatoire, et on étudie les<br />performances numériques d'un estimateur reposant sur la<br />déformation des bases d'ondelettes.
77

Contributions au traitement des signaux à valeurs sur des structures algébriques non-commutatives

Le Bihan, Nicolas 20 June 2011 (has links) (PDF)
Les travaux présentés s'intéressent au traitement des signaux à valeurs sur des espaces non-commutatifs, en particulier sur le groupe des rotations et les quaternions. Principalement, ce sont les signaux et processus aléatoires qui sont au centre de nos préoccupations, et nous présentons quelques résultats illustrant leur intérêt en physique des ondes polarisées. Nous montrons par exemple comment les processus aléatoires sur le groupe des rotations permettent d'étudier la diffusion multiple des ondes dans les milieux aléatoires et l'apparition de la phase géométrique pour les ondes polarisées dans ces milieux. Les résultats obtenus sont basés sur des notions empruntées à la théorie des groupes et de la représentation, la théorie des processus aléatoires et de l'estimation ainsi qu'à la géométrie différentielle. L'application majeure des résultats présentés est l'étude des ondes élastiques dans les milieux aléatoires.
78

Estimation utilisant les polynômes de Bernstein

Tchouake Tchuiguep, Hervé 03 1900 (has links)
Ce mémoire porte sur la présentation des estimateurs de Bernstein qui sont des alternatives récentes aux différents estimateurs classiques de fonctions de répartition et de densité. Plus précisément, nous étudions leurs différentes propriétés et les comparons à celles de la fonction de répartition empirique et à celles de l'estimateur par la méthode du noyau. Nous déterminons une expression asymptotique des deux premiers moments de l'estimateur de Bernstein pour la fonction de répartition. Comme pour les estimateurs classiques, nous montrons que cet estimateur vérifie la propriété de Chung-Smirnov sous certaines conditions. Nous montrons ensuite que l'estimateur de Bernstein est meilleur que la fonction de répartition empirique en terme d'erreur quadratique moyenne. En s'intéressant au comportement asymptotique des estimateurs de Bernstein, pour un choix convenable du degré du polynôme, nous montrons que ces estimateurs sont asymptotiquement normaux. Des études numériques sur quelques distributions classiques nous permettent de confirmer que les estimateurs de Bernstein peuvent être préférables aux estimateurs classiques. / This thesis focuses on the presentation of the Bernstein estimators which are recent alternatives to conventional estimators of the distribution function and density. More precisely, we study their various properties and compare them with the empirical distribution function and the kernel method estimators. We determine an asymptotic expression of the first two moments of the Bernstein estimator for the distribution function. As the conventional estimators, we show that this estimator satisfies the Chung-Smirnov property under conditions. We then show that the Bernstein estimator is better than the empirical distribution function in terms of mean squared error. We are interested in the asymptotic behavior of Bernstein estimators, for a suitable choice of the degree of the polynomial, we show that the Bernstein estimators are asymptotically normal. Numerical studies on some classical distributions confirm that the Bernstein estimators may be preferable to conventional estimators.
79

Méthodes avancées de traitement de la parole et de réduction de bruit pour les terminaux mobiles / Advanced methods of speech processing and noise reduction for mobile devices

Mai, Van Khanh 09 March 2017 (has links)
Cette thèse traite d'un des problèmes les plus stimulants dans le traitement de la parole concernant la prothèse auditive, où seulement un capteur est disponible avec de faibles coûts de calcul, de faible utilisation d'énergie et l'absence de bases de données. Basée sur les récents résultats dans les deux estimations statistiques paramétriques et non-paramétriques, ainsi que la représentation parcimonieuse. Cette étude propose quelques techniques non seulement pour améliorer la qualité et l'intelligibilité de la parole, mais aussi pour s'attaquer au débruitage du signal audio en général.La thèse est divisée en deux parties ; Dans la première partie, on aborde le problème d'estimation de la densité spectrale de puissance du bruit, particulièrement pour le bruit non-stationnaire. Ce problème est une des parties principales du traitement de la parole du mono-capteur. La méthode proposée prend en compte le modèle parcimonieux de la parole dans le domaine transféré. Lorsque la densité spectrale de puissance du bruit est estimée, une approche sémantique est exploitée pour tenir compte de la présence ou de l'absence de la parole dans la deuxième partie. En combinant l'estimation Bayésienne et la détection Neyman-Pearson, quelques estimateurs paramétriques sont développés et testés dans le domaine Fourier. Pour approfondir la performance et la robustesse de débruitage du signal audio, une approche semi-paramétrique est considérée. La conjointe détection et estimation peut être interprétée par Smoothed Sigmoid-Based Shrinkage (SSBS). Ainsi, la méthode Bloc-SSBS est proposée afin de prendre en compte les atomes voisinages dans le domaine temporel-fréquentiel. De plus, pour améliorer fructueusement la qualité de la parole et du signal audio, un estimateur Bayésien est aussi dérivé et combiné avec la méthode Bloc-SSBS. L'efficacité et la pertinence de la stratégie dans le domaine transformée cosinus pour les débruitages de la parole et de l'audio sont confirmées par les résultats expérimentaux. / This PhD thesis deals with one of the most challenging problem in speech enhancement for assisted listening where only one micro is available with the low computational cost, the low power usage and the lack out of the database. Based on the novel and recent results both in non-parametric and parametric statistical estimation and sparse representation, this thesis work proposes several techniques for not only improving speech quality and intelligibility and but also tackling the denoising problem of the other audio signal. In the first major part, our work addresses the problem of the noise power spectrum estimation, especially for non-stationary noise, that is the key part in the single channel speech enhancement. The proposed approach takes into account the weak-sparseness model of speech in the transformed model. Once the noise power spectrum has been estimated, a semantic road is exploited to take into consideration the presence or absence of speech in the second major part. By applying the joint of the Bayesian estimator and the Neyman-Pearson detection, some parametric estimators were developed and tested in the discrete Fourier transform domain. For further improve performance and robustness in audio denoising, a semi-parametric approach is considered. The joint detection and estimation can be interpreted by Smoothed Sigmoid-Based Shrinkage (SSBS). Thus, Block-SSBS is proposed to take into additionally account the neighborhood bins in the time-frequency domain. Moreover, in order to enhance fruitfully speech and audio, a Bayesian estimator is also derived and combined with Block-SSBS. The effectiveness and relevance of this strategy in the discrete Cosine transform for both speech and audio denoising are confirmed by experimental results.
80

Reconstruction adaptative des signaux par optimisation convexe / Adaptive signals recovery by convex optimization

Ostrovskii, Dmitrii 11 January 2018 (has links)
Nous considérons le problème de débruitage d'un signal ou d'une image observés dans le bruit gaussien. Dans ce problème les estimateurs linéaires classiques sont quasi-optimaux quand l'ensemble des signaux, qui doit être convexe et compact, est connu a priori. Si cet ensemble n'est pas spécifié, la conception d'un estimateur adaptatif qui ``ne connait pas'' la structure cachée du signal reste un problème difficile. Dans cette thèse, nous étudions une nouvelle famille d'estimateurs des signaux satisfaisant certains propriétés d'invariance dans le temps. De tels signaux sont caractérisés par leur structure harmonique, qui est généralement inconnu dans la pratique.Nous proposons des nouveaux estimateurs capables d'exploiter la structure harmonique inconnue du signal è reconstruire. Nous démontrons que ces estimateurs obéissent aux divers "inégalités d'oracle," et nous proposons une implémentation algorithmique numériquement efficace de ces estimateurs basée sur des algorithmes d'optimisation de "premier ordre." Nous évaluons ces estimateurs sur des données synthétiques et sur des signaux et images réelles. / We consider the problem of denoising a signal observed in Gaussian noise.In this problem, classical linear estimators are quasi-optimal provided that the set of possible signals is convex, compact, and known a priori. However, when the set is unspecified, designing an estimator which does not ``know'' the underlying structure of a signal yet has favorable theoretical guarantees of statistical performance remains a challenging problem. In this thesis, we study a new family of estimators for statistical recovery of signals satisfying certain time-invariance properties. Such signals are characterized by their harmonic structure, which is usually unknown in practice. We propose new estimators which are capable to exploit the unknown harmonic structure of a signal to reconstruct. We demonstrate that these estimators admit theoretical performance guarantees, in the form of oracle inequalities, in a variety of settings.We provide efficient algorithmic implementations of these estimators via first-order optimization algorithm with non-Euclidean geometry, and evaluate them on synthetic data, as well as some real-world signals and images.

Page generated in 0.1316 seconds