Spelling suggestions: "subject:"evolutiva"" "subject:"evolutivas""
131 |
Uma abordagem de alinhamento múltiplo de sequências utilizando evolução diferencialSILVA JÚNIOR, Antônio Luiz Vieira da 27 February 2015 (has links)
Submitted by Isaac Francisco de Souza Dias (isaac.souzadias@ufpe.br) on 2016-03-30T17:14:18Z
No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
ANTONIO.pdf: 1896299 bytes, checksum: 6648d14ae9c1893123a82366b851c19a (MD5) / Made available in DSpace on 2016-03-30T17:14:18Z (GMT). No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
ANTONIO.pdf: 1896299 bytes, checksum: 6648d14ae9c1893123a82366b851c19a (MD5)
Previous issue date: 2015-02-27 / CAPES / Alinhamento Múltiplo de sequências (MSA) é uma das tarefas mais importantes em
bioinformática. A MSA é uma técnica fundamental para o estudo da função, estrutura e evolução
de biomoléculas. A partir do uso de métodos de MSA é possível a criação de modelos estatísticos
para a classificação de famílias de proteína , análise filogenética e a previsão de estruturas
secundárias de proteínas. Como trata-se de um problema do tipo NP-difícil, torna-se inviável o
uso de métodos exatos para a busca da melhor solução. Por isso, é importante o uso de métodos
de optimização baseado em heurística para resolver o problema de MSA. Nesta dissertação,
propomos uma abordagem para alinhamento múltiplo de sequências por meio da otimização
de uma função objetivo utilizando Evolução Diferencial. Embora a ideia de usar algoritmos
evolutivos não seja nova, a abordagem apresentada difere pelo uso da Evolução Diferencial e
pela definição do alinhamento como uma dispersão de lacunas ao longo das sequências, sem
levar em consideração fenômenos biológicos, como os de inserção ou surgimento de bases,
deleção ou mutação de bases. A solução proposta tem provado ser capaz de fazer melhorias
significativas em alinhamentos quando comparadas com o método do estado da arte Clustal. / Multiple sequence alignment (MSA) is one of the most important tasks in bioinformatics. The
MSA is a fundamental technique to the study of function, structure and evolution of biomolecules.
By using of MSA methods it’s possible to create statistical models for classification of protein
families, phylogenetic analysis and the prediction of secondary structures of proteins. Being a NPhard
problem, it is infeasible due to its completely, the use of exact methods to search for optimal
solutions. Because of this it is important to use heuristic-based optimization methods to solve
the MSA problem. In this dissertation, we propose an approach to multiple sequence alignment
by optimizing an objective function using Differential Evolution. Although the idea of using
Evolutionary Algorithms is not new, the approach presented differs from the use of Differential
Evolution and definition of alignment as a dispersion of gaps along the sequences, without
considering biological events such as insertion or emergence of bases, deletion or mutation
of bases. The proposed solution has proven to be able to make significant improvements in
alignments when compared to the state-of-the art Clustal method.
|
132 |
Robótica evolutiva aplicada ao problema de perseguição-evasão de pior caso com múltiplos robôs / Evolutionary robotics applied to the multi-robot worst-case pursuit-evasion problemGregorin, Livia do Vale 20 December 2016 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Over the years,there is a growing demand for the use of robots toassis thu mans in their tasks, especially those involving risks,such as search and rescue. For this reason,
coordination amongs everal robots has been acommonoption,and one of the ways to study and model these applications involves the problem of pursuit-evasion. This work proposes the use of an evolutionary robotics approach to solve the worst-case pursuit- evasion problem, in which evaders are considered arbitrarily fast and omniscient, while pursuers have limited sensing and communication capabilities. In this research,no prior knowledge is considered regarding environments, which retreated as discrete and canbe multiply connected. A decentralized multi-robot control system is proposed, based on a nite state machine with state-action mapping de ned by means of a genetic algorithm, applied in terms of evolutionary robotics. There sults show the proposed system is able to decontaminate several typesof maps, but does not generalize to all initial conditions,due to the incompleteness in the automaton mapping.Therefore, a complementary approach is presented in which draws a reused alternatively with the evolved automaton, indicating random actions in cases of states not su ciently visited during evolution. This investigation led to better results, indicating ways for future work.Ina ddition, a comparative analysis of the evolutionary approach is also carried out with another solution method for the same problem, with advantages and disadvantages of each work being discussed. / Com o passar dos anos, é crescente a demanda pela utilização de robôs em tarefas de auxílio aos seres humanos, em especial àquelas que envolvam riscos, como resgates e buscas. Para tais atividades, tem sido comum a utilização do trabalho conjunto e coordenado entre vários robôs, e uma das formas de estudar e modelar estas aplicações envolve o problema de perseguição-evasão. Este trabalho propõe o uso de uma abordagem baseada em robótica evolutiva para solucionar o problema de perseguição-evasão de pior caso, em que os evasores são considerados infinitamente rápidos e oniscientes, enquanto os perseguidores têm capacidade de sensoriamento e comunicação limitados. Nesta pesquisa, não é considerado nenhum conhecimento prévio a respeito dos ambientes, que são tratados de forma discreta e podem ser multiplamente conectados. É proposto um sistema de controle descentralizado para múltiplos robôs baseado em uma máquina de estados finitos cujo mapeamento de estados em ações é definido por meio de um algoritmo genético, aplicado nos termos da robótica evolutiva. Os resultados mostram que o sistema proposto é capaz de descontaminar significativos mapas, porém sem robustez para todas as inicializações de posição, devido à incompletude na definição do mapeamento do autômato. Por isso, é apresentada uma abordagem complementar em que o método random walk é utilizado em conjunto com o autômato evoluído, indicando ações aleatórias nos casos de estados pouco visitados durante a evolução, o que contribuiu para melhoria dos resultados e aponta caminhos para trabalhos futuros. Além disso, é também realizada uma análise comparativa da abordagem evolutiva proposta com outro método de solução para o mesmo problema, sendo discutidas vantagens e desvantagens de cada trabalho.
|
133 |
Algoritmo genético aplicado à formulação de ração para frangos de corte / Genetic algorithm applied to feed formulation for broiler chickensRogério Rodrigues Lacerda Costa 28 August 2017 (has links)
Este projeto teve por objetivo a implementação de software para formulação de ração de frangos de corte utilizando Algoritmo Genético (AG). A geração da população inicial foi direcionada, impedindo a geração de indivíduos que possuíam características restritivas. Realizou-se três experimentos, sendo o primeiro para definição do tamanho da população, número de gerações e método de seleção de pais, o segundo para comparar a formulação de ração do AG com a do Simplex e o terceiro para verificar a variabilidade de resultados do AG. O experimento 1 foi realizado em delineamento inteiramente ao acaso, com tratamentos arranjados em esquema fatorial 2 x 5 x 19, sendo os fatores: métodos de seleção de pais (roleta e torneio de três), tamanho de população (200, 360, 500, 1.000 e 1.500 indivíduos) e número de geração (10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900 e 1.000), totalizando 190 tratamentos, com 20 repetições resultando em 3.800 observações. A cada observação registrou-se o fitness que foi submetido a análise de variância e quando significativa (P<0,05) aplicou-se o teste de Scott-Knott (5%). No experimento 2 foram formuladas três rações, sendo uma ração pelo método Simplex e duas pelo AG. As rações formuladas com AG utilizaram os parâmetros de tamanho de população, método de seleção de pais e número de gerações definidos no experimento 1. Os resultados obtidos pelo AG proporcionaram rações que apresentam uma diferença média no atendimento das necessidades nutricionais de 0,34% para a ração formulada pelo método roleta e de 0,16% pelo método torneio de três, sendo essas diferenças pequenas e que provavelmente não impactam sobre o desempenho animal e sobre as características de carcaça. A variação de resultados existente no AG, devido a sua característica heurística, foi testada no experimento 3 por intermédio de 100 execuções para cada método de seleção de pais, roleta e torneio de três, utilizando os mesmos parâmetros de tamanho de população e número de gerações das rações formuladas no experimento 2. Os resultados obtidos demonstram baixa dispersão nos dados. Conclui-se que o AG é uma estratégia de otimização eficiente para formulação de rações para frangos de corte, pois aproxima-se do atendimento exato da exigência nutricional, com variação pequena, e com mínimo custo. / The objective of the present project was to implement software for the formulation of broiler chicken feed using a Genetic Algorithm (GA). The generation of the initial population was directed, preventing the production of individuals with restrictive characteristics. A total of three experiments were carried out: the first one to define the population size, number of generations, and the method of parent selection; the second to compare ration formulation using the GA with that of the Simplex method, and the third to verify result variability using the GA. Experiment 1 was performed in a completely randomized design, with arranged treatments in a 2 x 5 x 19 factorial scheme, assessing the following factors: parent selection methods (roulette-wheel selection and tournament selection of three), population size (200, 360, 500, 1 000 and 1 500 individuals), and number of generations (10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900 and 1 000 ), totaling 190 treatments, with 20 repetitions each, resulting in 3 800 recordings. At each observation, the registered fitness was submitted to variance analysis, and if significant (P < 0.05), the Scott-Knott test (5%) was applied. In the second experiment, three rations were formulated: one by the Simplex method, and two employing the GA. The feeds formulated with the GA used the parameters of population size, parent selection method, and number of generations, defined in experiment 1. The results obtained by the GA provided feeds that exhibited a mean difference in nutritional requirements of 0.34% for the ration formulated by the roulette-wheel method and 0.16% for the tournament selection of three technique. These differences are considered small and may not impact on animal performance and carcass characteristics. The variation regarding the GA results, given its heuristic attribute, was tested in experiment 3 using 100 repetitions of each method of parent selection, employing the same parameters regarding population size and number of generations of the rations formulated in experiment 2. The obtained results demonstrate low data dispersion. In conclusion, the GA is an efficient optimization strategy for the formulation of broiler chicken feeds, since it approximates the exact fulfillment of the nutritional requirement, with small variation, and with minimum cost.
|
134 |
Programação evolutiva com distribuição estável adaptativaCarvalho, Leopoldo Bulgarelli de 12 September 2007 (has links)
Made available in DSpace on 2016-03-15T19:38:05Z (GMT). No. of bitstreams: 1
Leopoldo Bulgarelli de Carvalho.pdf: 696477 bytes, checksum: f90764d3c257bf63305bda69583c731e (MD5)
Previous issue date: 2007-09-12 / Fundo Mackenzie de Pesquisa / Recent applications in evolutionary programming have suggested the use of different stable probability distributions, such as Cauchy and Lévy, in the random process associated with the mutations, as an alternative to the traditional (and also stable) Normal distribution. The motivation for this is the attempt to improve the results in some classes of optimisation problems, over those obtained with Normal distribution. Based upon an algorithm proposed in the literature, mostly its version in [Lee and Yao, 2004], that use non Normal stable distributions, we study herein the effect of turning it adaptive in respect to the determination of the more adequate stable distribution parameters for each problem. The evaluations relied upon standard benchmarking functions of the literature, and the comparative performance tests were carried out in respect to the baseline defined by a standard algorithm using Normal distribution. The results suggest numerical and statistical superiority of the stable distribution based approach, when compared with the baseline. However, they showed no improvement over the adaptive method of [Lee and Yao, 2004], possibly due to a consequence of implementation decisions that had to be made in the present implementation, that were not made explicit therein. / Aplicações recentes em programação evolutiva tem sugerido a utilização de diferentes distribuições estáveis de probabilidade, tais como de Cauchy e de Lévy, no processo aleatório associado às mutações, como alternativa à tradicional (e também estável) distribuição Normal. A motivação para tanto é melhorar os resultados em algumas classes de problemas de otimização, com relação aos obtidos através da distribuição Normal. Esse trabalho propõe uma nova classe de algoritmos auto-adaptativos com respeito à determinação dos parâmetros da distribuição estável mais adequada para cada problema de otimização. Tais algoritmos foram derivados de um existente na literatura, especialmente sua versão apresentada em [Lee e Yao, 2004]. Em um primeiro momento foram estudadas as principais características das distribuições estáveis que são, nesse trabalho, o foco dos processos aleatórios associados às mutações. Posteriormente, foram apresentadas as diferentes abordagens descritas pela literatura e as sugestões de algoritmos com características auto-adaptativas. As avaliações dos algoritmos propostos utilizaram funções de teste padrão da literatura, e os resultados comparativos de desempenho foram realizados com relação a um algoritmo tradicional baseado na distribuição Normal. Posteriormente, foram aplicados novos comparativos entre as diversas abordagens auto-adaptativas definidas no presente estudo, e feito um comparativo do melhor algoritmo auto-adaptativo aqui proposto com o melhor algoritmo adaptativo obtido de [Lee e Yao, 2004]. Os resultados evidenciaram superioridade numérica e estatística da abordagem baseada em distribuições estáveis, sobre o método tradicional baseado na distribuição Normal. No entanto, o método proposto não se mostrou mais eficaz que o método adaptativo sugerido em [Lee e Yao, 2004], o que pode ter sido decorrente de decisões de implementação não explícitas naquele trabalho, que tiveram de ser tomadas no presente contexto.
|
135 |
Busca evolutiva por redes booleanas na tarefa de classificação de densidadeMattos, Thiago de 02 May 2018 (has links)
Submitted by Marta Toyoda (1144061@mackenzie.br) on 2018-09-03T21:53:40Z
No. of bitstreams: 2
THIAGO DE MATTOS.pdf: 12639390 bytes, checksum: 3bda0715285cb44c6daf5752a11a5355 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Paola Damato (repositorio@mackenzie.br) on 2018-09-19T18:29:59Z (GMT) No. of bitstreams: 2
THIAGO DE MATTOS.pdf: 12639390 bytes, checksum: 3bda0715285cb44c6daf5752a11a5355 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-09-19T18:29:59Z (GMT). No. of bitstreams: 2
THIAGO DE MATTOS.pdf: 12639390 bytes, checksum: 3bda0715285cb44c6daf5752a11a5355 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2018-05-02 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Boolean networks consist of nodes that represent binary variables, which are computed as a function of the values represented by their adjacent nodes. This local processing entails global behaviors, such as the convergence to _xed points, a behavior found in the context of the density classi_cation problem, where the aim is the network's convergence to a fixed point of the prevailing node value in the initial global configuration of the network; in other words, a global decision is targeted, but according to a constrained,
non-global action. In this work, we rely on evolutionary searches in order to _nd rules
and network topologies with good performance in the task. All nodes' neighborhoods are
assumed to be de_ned by non-regular and bidirectional links, and the Boolean function
of the network initialized by the local majority rule. Firstly, is carried out a search in the
space of network topologies, guided by the ω metric, related to the "small-worldness" of
the networks, and then, in the space of Boolean functions, but constraining the network
topologies to the best family identified in the previous experiment.. / Redes Booleanas são compostas por nós que representam variáveis binárias computadas em função dos valores representados por nós adjacentes. Esta computação local leva a comportamentos globais, como a convergência para um estado fixo da rede. Tal comportamento é utilizado na tarefa de classificação de densidade, onde procura-se a convergência dos valores de todos os nós para um ponto fixo que reflete o estado predominante presente na configuração inicial da rede, ou seja, um objetivo global restrito a ações de caráter local. Neste trabalho são efetuadas buscas evolutivas de modo a encontrar regras e topologias de redes Booleanas com boa performance na classificação de densidade. Consideram-se exclusivamente vizinhanças irregulares e bidirecionais para todos os nós, representando inicialmente a função Booleana da rede através da regra da maioria da vizinhança. Primeiramente, efetuam-se buscas evolutivas por topologias de redes guiadas pela métrica ω, esta referente à classificação de redes de mundo pequeno, e em seguida, efetuam-se buscas evolutivas no espaço de possíveis funções Booleanas utilizando as topologias de redes encontradas anteriormente.
|
136 |
Redes neurais evolutivas com aprendizado extremo recursivo / Evolving neural networks with recursive extreme learningRosa, Raul Arthur Fernandes, 1989- 26 August 2018 (has links)
Orientadores: Fernando Antonio Campos Gomide, Marcos Eduardo Ribeiro do Valle Mesquita / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-26T08:06:32Z (GMT). No. of bitstreams: 1
Rosa_RaulArthurFernandes_M.pdf: 8750754 bytes, checksum: 0535142e4de0e75e311aea59a977386e (MD5)
Previous issue date: 2014 / Resumo: Esta dissertação estuda uma classe de redes neurais evolutivas para modelagem de sistemas a partir de um fluxo de dados. Esta classe é caracterizada por redes evolutivas com estruturas feedforward e uma camada intermediária cujo número de neurônios é variável e determinado durante a modelagem. A aprendizagem consiste em utilizar métodos de agrupamento para estimar o número de neurônios na camada intermediária e algoritmos de aprendizagem extrema para determinar os pesos da camada intermediária e de saída da rede. Neste caso, as redes neurais são chamadas de redes neurais evolutivas. Um caso particular de redes evolutivas é quando o número de neurônios da camada intermediária é determinado a priori, mantido fixo, e somente os pesos da camada intermediária e de saída da rede são atualizados de acordo com dados de entrada. Os algoritmos de agrupamento e de aprendizagem extrema que compõem os métodos evolutivos são recursivos, pois a aprendizagem ocorre de acordo com o processamento de um fluxo de dados. Em particular, duas redes neurais evolutivas são propostas neste trabalho. A primeira é uma rede neural nebulosa híbrida evolutiva. Os neurônios da camada intermediária desta rede são unineurônios, neurônios nebulosos com processamento sináptico realizado por uninormas. Os neurônios da camada de saída são sigmoidais. Um algoritmo recursivo de agrupamento baseado em densidade, chamado de nuvem, é utilizado para particionar o espaço de entrada-saída do sistema e estimar o número de neurônios da camada intermediária da rede; a cada nuvem corresponde um neurônio. Os pesos da rede neural nebulosa híbrida são determinados utilizando a máquina de aprendizado extremo com o algoritmo quadrados mínimos recursivo ponderado. O segundo tipo de rede proposto neste trabalho é uma rede neural multicamada evolutiva com neurônios sigmoidais na camada intermediária e de saída. Similarmente à rede híbrida, nuvens particionam o espaço de entrada-saída do sistema e são utilizadas para estimar o número de neurônios da camada intermediária. O algoritmo para determinar os pesos da rede é a mesma versão recursiva da máquina de aprendizado extremo. Além das redes neurais evolutivas, sugere-se também uma variação da rede adaptativa OS-ELM (online sequential extreme learning machine) mantendo o número de neurônios na camada intermediária fixo e introduzindo neurônios sigmoidais na camada de saída. Neste caso, a aprendizagem usa o algoritmo dos quadrados mínimos recursivo ponderado no aprendizado extremo. As redes foram analisadas utilizando dois benchmarks clássicos: identificação de forno a gás com o conjunto de dados de Box-Jenkins e previsão de série temporal caótica de Mackey-Glass. Dados sintéticos foram gerados para analisar as redes neurais na modelagem de sistemas com parâmetros e estrutura variantes no tempo (concept drif e concept shift). Os desempenhos foram quantificados usando a raiz quadrada do erro quadrado médio e avaliados com o teste estatístico de Deibold-Mariano. Os desempenhos das redes neurais evolutivas e da rede adaptativa foram comparados com os desempenhos da rede neural com aprendizagem extrema e dos métodos de modelagem evolutivos representativos do estado da arte. Os resultados mostram que as redes neurais evolutivas sugeridas neste trabalho são competitivas e têm desempenhos similares ou superiores às abordagens evolutivas propostas na literatura / Abstract: Abstract: This dissertation studies a class of evolving neural networks for system modeling from data streams. The class encompasses single hidden layer feedforward neural networks with variable and online de nition of the number of hidden neurons. Evolving neural network learning uses clustering methods to estimate the number of hidden neurons simultaneously with extreme learning algorithms to compute the weights of the hidden and output layers. A particular case is when the evolving network keeps the number of hidden neurons xed. In this case, the number of hidden neurons is found a priori, and the hidden and output layer weights updated as data are input. Clustering and extreme learning algorithms are recursive. Therefore, the learning process may occur online or real-time using data stream as input. Two evolving neural networks are suggested in this dissertation. The rst is na evolving hybrid fuzzy neural network with unineurons in the hidden layer. Unineurons are fuzzy neurons whose synaptic processing is performed using uninorms. The output neurons are sigmoidals. A recursive clustering algorithm based on density and data clouds is used to granulate the input-output space, and to estimate the number of hidden neurons of the network. Each cloud corresponds to a hidden neuron. The weights of the hybrid fuzzy neural network are found using the extreme learning machine and the weighted recursive least squares algorithm. The second network is an evolving multilayer neural network with sigmoidal hidden and output neurons. Like the hybrid neural fuzzy network, clouds granulate the input-output space and gives the number of hidden neurons. The algorithm to compute the network weights is the same recursive version of the extreme learning machine. A variation of the adaptive OS-ELM (online sequential extreme learning machine) network is also suggested. Similarly as the original, the new OS-ELM xes the number of hidden neurons, but uses sigmoidal instead of linear neurons in the output layer. The new OS-ELM also uses weighted recursive least square.The hybrid and neural networks were evaluated using two classic benchmarks: the gas furnace identi cation using the Box-Jenkins data, and forecasting of the chaotic Mackey-Glass time series. Synthetic data were produced to evaluate the neural networks when modeling systems with concept drift and concept shift. This a modeling circumstance in which system structure and parameters change simultaneously. Evaluation was done using the root mean square error and the Deibold-Mariano statistical test. The performance of the evolving and adaptive neural networks was compared against neural network with extreme learning, and evolving modeling methods representative of the current state of the art. The results show that the evolving neural networks and the adaptive network suggested in this dissertation are competitive and have similar or superior performance than the evolving approaches proposed in the literature / Mestrado / Engenharia de Computação / Mestre em Engenharia Elétrica
|
137 |
Uma abordagem evolutiva multiobjetivo para geração automática de casos de teste a partir de máquinas de estados / A multi-objective evolutionary approach for automatic generation of test cases from state machinesYano, Thaise, 1979- 19 August 2018 (has links)
Orientador: Eliane Martins / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-19T05:45:54Z (GMT). No. of bitstreams: 1
Yano_Thaise_D.pdf: 3255120 bytes, checksum: aeeb5d60f26f78fb86cf18e8d3342862 (MD5)
Previous issue date: 2011 / Resumo: A geração automática de casos de teste contribui tanto para melhorar a produtividade quanto para reduzir esforço e custo no processo de desenvolvimento de software. Neste trabalho é proposta uma abordagem, denominada MOST (Multi-Objective Search-based Testing approach from EFSM), para gerar casos de teste a partir de Máquina de Estados Finitos Estendida (MEFE) com a aplicação de uma técnica de otimização. No teste baseado em MEFE, é necessário encontrar uma sequência de entrada para exercitar um caminho no modelo, a fim de cobrir um critério de teste (e.g. todas as transições). Como as sequências podem ter diferentes tamanhos, motivou-se o desenvolvimento do algoritmo M-GEOvsl (Multi-Objective Generalized Extremal Optimization with variable string length) que permite gerar soluções de diferentes tamanhos. Além disso, por ser um algoritmo multiobjetivo, M-GEOvsl também possibilita que mais de um critério seja usado para avaliar as soluções. Com a aplicação desse algoritmo em MOST, tanto a cobertura da transição alvo quanto o tamanho da sequência são levados em consideração na geração de casos de teste. Para guiar a busca, são utilizadas informações das dependências do modelo. O algoritmo gera as sequências de entrada, incluindo os valores de seus parâmetros. Em MOST, um modelo executável da MEFE recebe como entrada os dados gerados pelo M-GEOvsl e produz dinamicamente os caminhos percorridos. Uma vez que os aspectos de controle e dados do modelo são considerados durante a execução do modelo, evita-se o problema de geração de caminhos infactíveis. Um caminho pode ser sintaticamente possível, mas semanticamente infactível, devido aos conitos de dados envolvidos no modelo. Para avaliar a abordagem proposta foram realizados vários experimentos com modelos da literatura e de aplicações reais. Os resultados da abordagem também foram comparados com os casos de teste obtidos em um trabalho relacionado. / Abstract: Automated test case generation can improve the productivity as well as reduce effort and cost in the software development process. In this work an approach, named MOST (Multi- Objective Search-based Testing approach from EFSM), is proposed to generate test cases from Extended Finite State Machine (EFSM) using an optimization technique. In EFSM based testing, an input sequence should be found to sensitize a path in the model, in order to cover a test criterion (e.g. all transitions). As the sequences can have different lengths, it motivates the development of the M-GEOvsl (Multi-Objective Generalized Extremal Optimization with variable string length) algorithm that makes possible the generation of solutions with different lengths. Moreover, as a multiobjective algorithm, M-GEOvsl also allows to use more than one criterion to evaluate the solutions. Using this algorithm in MOST, the coverage of the target transition as well as the sequence length are taken into account in the test case generation. To guide the search, the information about the model dependences is used. The algorithm generates the input sequences, including the values of their parameters. In MOST, an executable model of the EFSM receives as input the data generated by M-GEOvsl and produces the traversed paths dynamically. Since the control and data aspects are considered during model execution, the problem of infeasible path generation is avoided. A path can be syntatically possible, but semantically infeasible, due to the data conicts in the model. In order to evaluate the proposed approach, experiments were performed with models of the literature and real-world applications. The results were also compared to the test cases obtained in a related work / Doutorado / Ciência da Computação / Doutor em Ciência da Computação
|
138 |
Análise e controle de sistemas com folga / Analysis and control of systems with backlashSantos, Talía Simões dos, 1980- 20 August 2018 (has links)
Orientador: Yuzo Iano / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-20T09:30:28Z (GMT). No. of bitstreams: 1
Santos_TaliaSimoesdos_D.pdf: 2990786 bytes, checksum: 16233655fc341ea120d5c50710958ef8 (MD5)
Previous issue date: 2012 / Resumo: Este trabalho trata da eliminação dos efeitos indesejáveis da não linearidade tipo folga via desenvolvimento de três novos métodos computacionais para a análise de estabilidade, e controle de sistemas resultantes da interconexão de sistemas lineares com uma folga. Para solucionar o problema da análise de estabilidade, utilizam-se condições construtivas sob a forma de LMI, garantindo a estabilidade global do sistema, através de algumas funções de Lyapunov, generalizadas nas condições de contorno e representação politópica. Tais condições de estabilidade global impõem a presença de uma realimentação adicional entre a saída e a entrada da não linearidade saturação, incluída antes da folga. Este ganho adicional pode atenuar o comportamento indesejado das não linearidades. O conjunto de todos os admissíveis pontos de equilíbrio é definido precisamente. O problema de controle pode ser solucionado através de esquemas de controle adaptativo para sistemas discretos no tempo com folga desconhecida. Analisando de forma mais aprofundada, propõe-se um controlador adaptativo baseado na folga inversa que fornece novas regras adaptativas para a atualização dos parâmetros estimados da folga inversa. Dessa forma demonstra-se também que os efeitos prejudiciais da folga podem ser cancelados através de duas estruturas de controle propostas. é possível validar ainda mais este resultado projetando-se um filtro que estima a saída da folga desconhecida, ou seja, a entrada da planta. Além disso, mais um resultado de controle é conseguido, aplicando-se uma proposta de computação evolutiva para realizar o controle adaptativo de sistemas contínuos no tempo com folga desconhecida. Para cumprir este objetivo, adiciona-se também a estrutura da folga inversa antes do bloco da folga e utiliza-se o algoritmo CMA-ES (Covariance Matrix Adaptation-Evolution Strategy) para estimar os parâmetros da folga inversa adaptativa / Abstract: This work is concerned to the elimination of the undesirable effects of the nonlinearity type backlash developing three new computational methods for the stability analysis, and control of result systems of the interconection of linear systems with a nonlinearity backlash. To solve the stability analysis problem, it is used constructive conditions in LMI form to ensure the global stability of the system, are proposed by using some suitable Lyapunov functional, generalized sector conditions and polytopic representation. Such global stability conditions impose the presence of an additional feedback between the output and the input of the nonlinear element. This additional gain can mitigate the unwished behavior of the nonlinear elements. The boundary of the associated set of all the admissible equilibrium points is precisely defined. The control problem can be solved through schemes of an adaptive control for discrete-time systems with unknown backlash. Analysing in a depth way is proposed an adaptive controller based on backlash inverse that provides new adaptive laws for updating of the estimated parameters of the backlash inverse. Then, this is also demonstrated that the harmful effects of backlash can be cancelled through two proposed control structures. It is possible to validate this result better designing a filter to estimate the unknown backlash output, that is, the plant input. Moreover, one more control result is obtained, applying an evolutionary computation to realize the adaptive control of continuous-time systems with unknown backlash. In order to do this, it is added a backlash inverse structure before the backlash scheme and used the CMA-ES (Covariance Matrix Adaptation-Evolution Strategy) algorithm to estimate the parameters of the backlash inverse / Doutorado / Telecomunicações e Telemática / Doutor em Engenharia Elétrica
|
139 |
Uma proposta evolutiva para controle inteligente em navegação autonoma de robosCazangi, Renato Reder 28 May 2004 (has links)
Orientadores : Fernando Jose Von Zuben, Mauricio Fernandes Figueiredo / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-03T22:18:04Z (GMT). No. of bitstreams: 1
Cazangi_RenatoReder_M.pdf: 4678776 bytes, checksum: 1dcb6329650665ad67a84ce876b26edf (MD5)
Previous issue date: 2004 / Resumo: Este trabalho apresenta um sistema autônomo evolutivo aplicado ao controle de um robô móvel em tarefas de navegação por ambientes desconhecidos. O sistema é reativo, não possui conhecimento inicial e aprende a lidar eficientemente com situações nas quais o robô tem que capturar alvos evitando colisões contra obstáculos. Para isto, ele desenvolve estratégias gerais de navegação, controlando a direção e a velocidade do robô sem qualquer auxílio externo. A abordagem evolutiva do sistema de navegação se baseia em uma versão de sistemas classificadores com aprendizado, contendo novos operadores, fluxos de controle adicionais e mecanismos específicos para o atendimento dos requisitos de navegação. Um extenso conjunto de experimentos é realizado, envolvendo: apenas simulação computacional; simulação computacional para síntese do controlador e transferência deste a um robô Khepera lI; e emprego do robô Khepera II tanto na síntese do controlador quanto na atuação em ambientes reais. Os resultados obtidos apontam para a validade da proposta, indicando a eficácia e capacidade de generalização do controlador autônomo quando submetido a variadas configurações de ambiente de navegação / Abstract: This work presents an autonomous evolutionary system applied to the control of a mobile robot when navigating in unknown environments. The system is reactive, it does not have initial knowledge and learns efficiently to deal with situations where the robot must capture targets avoiding collisions against obstacles. Toward this end, it develops general strategies, controlling the robot direction and speed without any external assistance. The evolutionary approach of the navigation system is based on a version of learning classifier systems, including new operators, additional control flows and specific mechanisms devoted to attending the navigation requirements. An extensive set of experiments is perfonned involving: just computer simulation; a controller matured by computer simulation, and then transferred to a Khepera II robot; and both the maturation and validation of the controller in real environments, Le. in a Khepera II robot. The obtained results indicate the validity of the proposal, attesting the efficiency and generalization capability of the autonomous controller when navigation environments with distinct configurations are considered. / Mestrado / Engenharia de Computação / Mestre em Engenharia Elétrica
|
140 |
Computação Evolutiva para a Construção de Regras de Conhecimento com Propriedades Específicas / Evolutionary Computing for Knowledge Rule Construction with Specific PropertiesAdriano Donizete Pila 12 April 2007 (has links)
A maioria dos algoritmos de aprendizado de máquina simbólico utilizam regras de conhecimento if-then como linguagem de descrição para expressar o conhecimento aprendido. O objetivo desses algoritmos é encontrar um conjunto de regras de classificação que possam ser utilizadas na predição da classe de novos casos que não foram vistos a priori pelo algoritmo. Contudo, este tipo de algoritmo considera o problema da interação entre as regras, o qual consiste na avaliação da qualidade do conjunto de regras induzidas (classificador) como um todo, ao invés de avaliar a qualidade de cada regra de forma independente. Assim, como os classificadores têm por objetivo uma boa precisão nos casos não vistos, eles tendem a negligenciar outras propriedades desejáveis das regras de conhecimento, como a habilidade de causar surpresa ou trazer conhecimento novo ao especialista do domínio. Neste trabalho, estamos interessados em construir regras de conhecimento com propriedades específicas de forma isolada, i.e. sem considerar o problema da interação entre as regras. Para esse fim, propomos uma abordagem evolutiva na qual cada individuo da população do algoritmo representa uma única regra e as propriedades específicas são codificadas como medidas de qualidade da regra, as quais podem ser escolhidas pelo especialista do domínio para construir regras com as propriedades desejadas. O algoritmo evolutivo proposto utiliza uma rica estrutura para representar os indivíduos (regras), a qual possibilita considerar uma grande variedade de operadores evolutivos. O algoritmo utiliza uma função de aptidão multi-objetivo baseada em ranking que considera de forma concomitante mais que uma medida de avaliação de regra, transformando-as numa função simples-objetivo. Como a avaliação experimental é fundamental neste tipo de trabalho, para avaliar nossa proposta foi implementada a Evolutionary Computing Learning Environment --- ECLE --- que é uma biblioteca de classes para executar e avaliar o algoritmo evolutivo sob diferentes cenários. Além disso, a ECLE foi implementada considerando futuras implementações de novos operadores evolutivos. A ECLE está integrada ao projeto DISCOVER, que é um projeto de pesquisa em desenvolvimento em nosso laboratório para a aquisição automática de conhecimento. Analises experimentais do algoritmo evolutivo para construir regras de conhecimento com propriedades específicas, o qual pode ser considerado uma forma de análise inteligente de dados, foram realizadas utilizando a ECLE. Os resultados mostram a adequabilidade da nossa proposta / Most symbolic machine learning approaches use if-then know-ledge rules as the description language in which the learned knowledge is expressed. The aim of these learners is to find a set of classification rules that can be used to predict new instances that have not been seen by the learner before. However, these sorts of learners take into account the rule interaction problem, which consists of evaluating the quality of the set of rules (classifier) as a whole, rather than evaluating the quality of each rule in an independent manner. Thus, as classifiers aim at good precision to classify unseen instances, they tend to neglect other desirable properties of knowledge rules, such as the ability to cause surprise or bring new knowledge to the domain specialist. In this work, we are interested in building knowledge rules with specific properties in an isolated manner, i.e. not considering the rule interaction problem. To this end, we propose an evolutionary approach where each individual of the algorithm population represents a single rule and the specific properties are encoded as rule quality measure, a set of which can be freely selected by the domain specialist. The proposed evolutionary algorithm uses a rich structure for individual representation which enables one to consider a great variety of evolutionary operators. The algorithm uses a ranking-based multi-objective fitness function that considers more than one rule evaluation measure concomitantly into a single objective. As experimentation plays an important role in this sort of work, in order to evaluate our proposal we have implemented the Evolutionary Computing Learning Environment --- ECLE --- which is a framework to evaluate the evolutionary algorithm in different scenarios. Furthermore, the ECLE has been implemented taking into account future development of new evolutionary operators. The ECLE is integrated into the DISCOVER project, a major research project under constant development in our laboratory for automatic knowledge acquisition and analysis. Experimental analysis of the evolutionary algorithm to construct knowledge rules with specific properties, which can also be considered an important form of intelligent data analysis, was carried out using ECLE. Results show the suitability of our proposal
|
Page generated in 0.0402 seconds