• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 10
  • 7
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 99
  • 99
  • 36
  • 26
  • 25
  • 25
  • 23
  • 22
  • 18
  • 17
  • 15
  • 13
  • 12
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Le système pédagogique de Winnetka

Smits-Jenart, A.M. January 1932 (has links)
Doctorat en sciences psychologiques / info:eu-repo/semantics/nonPublished
72

X-ray Measurements of Mass and Temperature Distributions in Multiphase Flows

Naveed Rahman (12898085) 24 June 2022 (has links)
<p>Multiphase flows, such as liquid/gas and solid/gas, dominate many different areas of life, including the medical, agricultural, propulsion, and chemical industries. Gaining insight into the dynamic processes that drive these multiphase flows can therefore have far-reaching impact in many sectors of scientific research. Of key interest is the non-invasive tracking of important state properties such as the mass and temperature distributions in high optical depth multiphase flows. To accomplish this, X-ray diagnostic approaches are utilized due to their ability to probe complex phenomena without being hampered by multiple scattering that arise from complex interactions at the flow surface boundaries.</p> <p>This work accomplishes the measurement of mass distribution through time-resolved tomographic reconstructions of the liquid mass distributions in fuel sprays within liquid/gas flows. The developed diagnostic tool shown here uses a novel multiple line of sight tube source tomography setup to obtain simultaneous time-resolved two-dimensional radiographs of different spray geometries at various perspectives. Through tomographic reconstruction, these radiographs are converted into volumetric reconstructions to give a true sense of mass distribution—where exactly is the liquid mass located in the <em>x</em>, <em>y</em>, <em>z</em> spatial extents at a specific moment in time <em>t</em>? This technique is first showcased in a simple spray as a feasibility test and later applied to a more complex spray geometry and compared against other state-of- the-art diagnostics for a full quantitative understanding of the developed technique. Outside of tomography, improvements in decreasing the uncertainties in line of sight averaged mass distribution measurements in radiography imaging experiments are also showcased through source characterization efforts both for tube source and synchrotron source experiments.</p> <p>Efforts in ascertaining the temperature distributions in liquid/gas flows is done through an application of wide angle X-ray scattering, a technique that is commonly used in the materials, chemistry, and biology sciences but has yet to be widely used in the propul- sion community. These newly developed X-ray scattering measurements are accomplished through the use of a focused monochromatic beam available at the Advanced Photon Source synchrotron facility, and is applied first in calibration jets and later towards more complex dynamic sprays and multi-species liquid solutions.</p>
73

EXPERIMENTAL ASSESSMENT OF TRANS SONIC ROSSITER CAVITY IN DEVELOPING ACOUSTIC STREAMING AND ITS EFFECTS ON HEAT TRANSFER

James E Twaddle (15339181) 29 April 2023 (has links)
<p>  </p> <p>Acoustic streaming is a phenomenon which occurs when acoustic excitations interact with a fluid (stationary or non-stationary). Exploitation of this phenomenon has the potential to open doors to new methods of flow control through the enhancement or diminishment of the present flow instabilities. A particular use of acoustic streaming shown by previous numerical studies is the enhancement of heat transfer in violation of the Reynold’s Analogy within a small range of Mach numbers and frequencies of periodic excitation. The focus of this thesis is to experimentally assess the usage of a Rossiter cavity in generating periodic acoustic excitations and its effects on the shear stress and heat transfer. </p> <p>In the present research, two large models are tested using a blow-down facility. The models are made of aluminum and Teflon and were developed to ensure optical access for infrared thermography. The geometries are tested at Mach number ranging from 0.373 to 0. 866. The target Mach number-frequency pair where significant heat transfer enhancement is a free stream Mach number at the cavity, Mc, of 0.75 and the frequency, fc, of 7.5 kHz. The cavity is tuned using the Rossiter equation with Rossiter constants k = 0.66 and y = 0.25. The heat transfer and skin friction enhancement are measured immediately upstream and downstream of the cavity and compared to the previous numerical studies.</p> <p>When testing the Teflon model with an ambient back pressure and 11 lb/s mass flow, a frequency of 7.8 kHz was generated by the cavity. For the aluminum model tested at a high vacuum and 3 lb/s mass flow, frequencies near 7, 10, and 20 kHz were generated by the cavity with 10 and 20 kHz appearing most often. High speed schlieren imaging was used to confirm the flow structures being generated in the flow. There was good agreement with the Rossiter modes at lower Mach numbers and moderate agreement at transonic Mach numbers. A correlation is presented which defines a band of Mach number-Reynolds number pairs which present with a discontinuous frequency behavior during operation of the wind tunnel. Measurable effects on both skin friction and heat transfer between tests with comparable operating conditions to a reference were observed and are presented.</p>
74

Nonlinear Stiffness and Edge Friction Characterization of Coned Disk Springs

Mastricola, Nicholas Palma January 2016 (has links)
No description available.
75

Mechanische Simulation der Interaktion Sportler-Sportgerät-Umwelt

Schwanitz, Stefan 12 May 2015 (has links) (PDF)
In der vorliegenden Arbeit wird eine Methodik zur Entwicklung mechanischer Simulationen der Interaktion Sportler-Sportgerät-Umwelt zur Untersuchung der Funktionalität von Sportgeräten konzipiert und vorgestellt. Die mechanische Simulation ist die gegenständliche Nachbildung spezieller Teilaspekte des Sportlers, z.B. der Körperform, der Trägheitseigenschaften, der Masse, der Interaktionskräfte zur Umwelt oder charakteristischer Bewegungsabläufe zum Zweck der Durchführung gezielter Experimente zur Untersuchung des dynamischen Systemverhaltens Sportler-Sportgerät-Umwelt. Dazu werden drei Fallbeispiele aus der Forschungstätigkeit der Arbeitsgruppe HLST an der Technischen Universität Chemnitz mit Methoden zur Verifikation von Simulationsmodellen – dem strukturierten Durchgehen, der Validierung im Dialog und dem Schreibtischtest – analysiert. Die Analyseergebnisse werden in eine Grobstruktur eingebettet, die aus relevanten Vorarbeiten zur Anwendung der Allgemeinen Modelltheorie abgeleitet ist. Die in den jeweiligen Fallbeispielen verwendeten Prozessschritte, Methoden und Werkzeuge werden dargestellt und die Entwicklungsergebnisse erörtert. Im Abschluss jedes Fallbeispiels wird der Entwicklungsprozess anhand von einheitlichen Kriterien bewertet. In einem abschließenden Schritt erfolgt die Zusammenführung der im Stand der Technik dargelegten Grundlagen und der in den drei Fallbeispielen gewonnenen Informationen zu einer strukturieren und kommentierten Methodik. / In this dissertation a methodology is conceived that aims to structure the development process of test arrangements that mechanically simulate the interaction of athlete, sports equipment and environment. Mechanical simulation in this context is defined as the physical replication of specific properties of the athlete (e.g. the shape of the human body, body weight, joint kinematics, inertia, external forces in specific movements) in order to conduct experiments to investigate the dynamic behavior of the system athlete-equipment-environment. Therefore, three case studies of mechanical simulation models that have been developed at Technische Universität Chemnitz are analyzed by applying the validation and verification methods “structured walkthrough”, “face validity” and “desk checking”. The results of that analysis are embedded into a framework that is derived by literature review on applied model theory. For each of the three development processes the procedure model is identified and main tools and methods are discussed. Every case study is finally assessed by using standardized evaluation criterions. Finally, the main findings of the analysis of the case studies as well as knowledge obtained by reviewing the state of the art in model theory and simulation methods are used to build up a structured and commentated guideline.
76

Developing and implementing a peer tutoring program at the middle school level

Witvliet, Mark Derryl 01 January 2004 (has links)
The purpose of this study was to design a peer tutoring program in the middle school setting that help students who are not reaching their full potential.
77

Problematika obrábění titanových slitin / Problems in machining of titanium alloys

Drábek, Tomáš January 2013 (has links)
The theoretical part of the thesis contains a brief overview of some experimental methods that are used in machining technologies. The experimental part at first elaborates on the analysis of two titanium alloys. The actual experiment, which consists of milling of the two aforementioned materials with the use of several tools and holders, is then described. It was conducted in collaboration with the company Frentech Aerospace s.r.o. When milling, forces were measured with piezoelectric dynamometer. Further, the analysis of acquired data that is followed with discussion about its main findings, is provided. The conclusion of the thesis deals with the found facts corresponding with the information obtained by analysis of materials. The main results arise out of the comparison of used combinations of tools and holders for milling of material Ti-Al6-V4, observation of impact of particular factors on measured force, or out of different values of measured forces when milling two given materials.
78

Modeling The Position-Dependent Inner Drop Velocity For A Millimeter-Size Core-Shell Drop As It Approaches Failure At Low Reynolds Numbers

Brandon J Wells (11108403) 16 June 2022 (has links)
<p>Co-axial dripping is one of the many ways to make drops with a core-shell structure for encapsulated materials. However, in systems where the capsule components are not density matched or surfactants are not used, the shell will eventually thin and break if not solidified in time. If the shell fails before solidifying, the core will leak out and result in a non-functional capsule. This study assumes that all capsules will fail once the core has reached 80% eccentricity, meaning a shell region has thinned to 20% of its original thickness (~70 µm). In reality, rupture of the shell depends more on stochastic defects and disturbances, but locally decreasing the shell thickness will increase the probability of capsule rupture. With this assumption, the survival time of a core-shell drop is inversely proportional to the relative velocity of the inner drop, where the greater this relative velocity, the faster the shell phase will thin. Stoke's law is generally used to approximate the speed of a sphere in a fluid. However, this study demonstrates that Stoke's law is insufficient for predicting the inner drop's motion for a compound drop. This is due to internal flows that develop within all fluid drops because of shear forces on the drop’s external face during freefall. For core-shell drops, prior studies report how the inner drop velocity can change in magnitude and direction as a function of its eccentricity, meaning its position within the outer drop. Since previous studies did not analyze this core-shell drop relationship with a 50 vol% core and a high viscosity shell, a model was built in COMSOL Multiphysics to understand how the claims from literature would apply to a previous encapsulation study (Betancourt, 2021). The model was also put through a series of validation tests that confirmed the model’s ability to accurately represent the speed and direction of inner drop motion. The final model configuration was then used to identify the transition point between buoyancy-driven and internal flow-driven failure modes observed during the production of core-shell drops in a previous encapsulation study for phase change materials (Betancourt, 2021). The model results showed how the estimated inner drop velocity was significantly reduced once accounting for the internal flows within the shell phase of a compound drop. While this study does help characterize the motion of an inner drop and could be used to find a material system with a favorable velocity profile, it is still recommended to use an in-air curing system to produce concentric capsules. Achieving a concentric capsule would still require this co-axial dripping setup to be modified significantly. </p> <p>Betancourt-Jimenez, D., Wells, B., Youngblood, J. P., & Martinez, C. J. (2021). Encapsulation of biobased fatty acid amides for phase change material applications. <em>Journal of Renewable and Sustainable Energy</em>, <em>13</em>(6), 064101. https://doi.org/10.1063/5.0072105</p>
79

<strong>CHARACTERIZATION AND MECHANISTIC PREDICTION OF HEAT PIPE PERFORMANCE UNDER TRANSIENT OPERATION AND DRYOUT CONDITIONS</strong>

Kalind Baraya (16643466), Justin A. Weibel (1762510), Suresh V. Garimella (1762513) 26 July 2023 (has links)
<p>  </p> <p>Heat pipes and vapor chambers are passive two-phase heat transport devices that are used for thermal management in electronics. The passive operation of a heat pipe is facilitated by capillary wicking of the working fluid through a porous wick, and thus is subject to an operational limit in terms of the maximum pressure head that the wick can provide. This operational limit, often termed as the capillary limit, is the maximum heat input at which the pressure drop in the wick is balanced by the maximum capillary pressure head; operating a heat pipe or a vapor chamber above the capillary limit at steady-state leads to dryout. It thus becomes important to predict the performance of heat pipes and vapor chambers and explore the parametric design space to provide guidelines for minimized thermal resistance while satisfying this capillary limit. An increasingly critical aspect is to predict the transient thermal response of vapor chambers. Moreover, heat pipes and vapor chambers are extensively being used in electronic systems where the power input is dictated by the end-user activity and is expected to even exceed the capillary limit for brief time intervals. Thus, it is imperative to understand the behavior of heat pipes and vapor chambers when operated at steady and transient heat loads above the capillary limit as dryout occurs. However, review of the literature on heat pipe performance characterization reveals that the regime of dryout operation has been virtually unexplored, and thus this thesis aims to fill this critical gap in understanding.</p> <p>The design for minimized thermal resistance of a vapor chamber or a heat pipe is guided by the relative contribution of thermal resistance due to conduction across the evaporator wick and the saturation temperature gradient in the vapor core. In the limit of very thin form factors, the contribution from the vapor core thermal resistance dominates the overall thermal resistance of the vapor chamber; recent work has focused on working fluid selection to minimize overall thermal resistance in this limit. However, the wick thermal resistance becomes increasingly significant as its thickness increases to support higher heat inputs while avoiding the capillary limit. A thermal resistance network model is thus utilized to investigate the importance of simultaneously considering the contributions of the wick and vapor core thermal resistances. A generalized approach is proposed for vapor chamber design which allows <em>simultaneous</em> selection of the working fluid and wick that provides minimum overall thermal resistance for a given geometry and operating condition. While the thermal resistance network model provides a convenient method for exploring the design space, it cannot be used to predict 3-D temperature fields in the vapor chamber. Moreover, such thermal resistance network models cannot predict transient performance and temperature evolution for a vapor chamber. Therefore, an easy-to-use approach is proposed for mapping of vapor chamber transport to the heat diffusion equation using a set of appropriately defined effective anisotropic thermophysical properties, thus allowing simulation of vapor chamber as a sold conduction block. This effective anisotropic properties approach is validated against a time-stepping analytical model and is shown to have good match for both spatial and transient temperature predictions.</p> <p>Moving the focus from steady-state and transient operation of vapor chambers, a comprehensive characterization of heat pipe operation above capillary limit is performed. Different user needs and device workloads can lead to highly transient heat loads which could exceed the notional capillary limit for brief time intervals. Experiments are performed to characterize the transient thermal response of a heat pipe subjected to heat input pulses of varying duration that exceed the capillary limit. Transient dryout events due to a wick pressure drop exceeding the maximum available capillary pressure can be detected from an analysis of the measured temperature signatures. It is discovered that under such transient heating conditions, a heat pipe can sustain heat loads higher than the steady-state capillary limit for brief periods of time without experiencing dryout. If the heating pulse is sufficiently long as to induce transient dryout, the heat pipe may experience an elevated steady-state temperature even after the heat load is reduced back to a level lower than the capillary limit. The steady-state heat load must then be reduced to a level much below the capillary limit to fully recover the original thermal resistance of the heat pipe. The recovery process of heat pipes is further investigated, and a mechanism is proposed for the thermal hysteresis observed in heat pipe performance after dryout. A model for <em>steady-state</em> heat pipe transport is developed based on the proposed mechanism to predict the parametric trends of thermal resistance following recovery from dryout-induced thermal hysteresis, and the model is mechanistically validated against experiments. The experimental characterization of the recovery process demonstrates the existence of a maximum hysteresis curve, which serves as the worst-case scenario for thermal hysteresis in heat pipe after dryout. Based on the learnings from the experimental characterization, a new procedure is introduced to experimentally characterize the steady-state dryout performance of a heat pipe.</p> <p>To recover the heat pipe performance under steady-state, it has been shown that the heat input needs to be lowered down or <em>throttled</em> significantly below the capillary limit. However, due to the highly transient nature of power dissipation from electronic devices, it becomes imperative to characterize heat pipe recovery from dryout under transient operations. Hence, power-throttling assisted recovery of heat pipe from dryout has been characterized under transient conditions. A minimum throttling time interval, defined as time-to-rewet, is identified to eliminate dryout induced thermal hysteresis using power throttling. Dependence of time-to-rewet on throttling power is explored, and guidelines are presented to advise the throttling need and choice of throttling power under transient conditions. </p> <p>The experimental characterization of heat pipe operation at pulse loads above the capillary limit and power throttling following the pulse load helped define the dryout and recovery performance of a heat pipe. Next, a physics-based model is developed to predict the heat pipe <em>transient</em> thermal response under dryout-inducing pulse load and power throttling assisted recovery. This novel model considers wick as a partially saturated media with spatially and temporally varying liquid saturation, and accounts for the effect of wick partial saturation in heat pipe transport. The model prediction are validated against experiments with commercial heat pipe samples, and it is shown that the model can accurately predict dryout and recovery characteristics, namely time-to-dryout, time-to-rewet, and dryout-induced thermal hysteresis, for heat pipes with a range of wick types, heat pipe lengths and pulse loads above the capillary limit. </p> <p>The work discussed in this thesis opens certain questions that are expected to guide further research in this area. First, the thermal hysteresis mechanism proposed could be further validated with direct visualization of the liquid in a vapor chamber. To achieve this, X-ray microscopy is proposed as a viable option for the imaging <em>in situ</em> wetting dynamics in a vapor chamber. Second, the model developed to predict the dryout and recovery characteristics of the heat pipe can be used to design heat pipe with improved performance under pulse loads and power throttling. Third, novel wick designs can be explored that utilize the understanding developed of governing mechanisms for recovery from dryout, and can eliminate thermal hysteresis at powers closer to capillary limit. Fourth, the modeling approach can be extended to predict dryout and recovery trends in vapor chamber since the heat transfer pathways in a vapor chamber are different than those of a heat pipe. Fifth, and lastly it was observed several times during experiments that some of the heat pipe samples would exhibit complete dryout (sudden catastrophic rise in temperature and thermal resistance at the point of dryout) whereas other samples would exhibit partial dryout (noticeable but small increase in thermal resistance at dryout) at operating powers just above the capillary limit. Exploring and explaining the cause of complete dryout, in particular, would be an extremely valuable contribution to the heat pipe research. </p> <p>The work discussed in this thesis has led to the comprehensive development of a functional and mechanistic understanding of heat pipe operation above the notional capillary limit. The experimental procedures developed in this work are utilized to characterize a heat pipe performance under dryout and recovery. The models based on the mechanistic understanding developed from experimental characterization of dryout and recovery operation of a heat pipe have been experimentally validated and are useful for predicting heat pipe performance under dryout-inducing pulse loads and power-throttling.   </p>
80

DURABLE RADIATIVE COOLING PAINTS FOR REDUCED GLOBAL GREENHOUSE EFFECT

Emily Barber (15332044) 21 April 2023 (has links)
<p>  </p> <p>Recent developments in radiative cooling paints have shown significant promise towards commercialization of the technology. Therefore, questions have been asked as to how the durability of these paints could be evaluated and improved, as well as how these paints could impact energy use and global climate change. In this work, a paint formulation was developed using nanoplatelet hBN pigments with an MP-101 binder from SDC Technologies, Inc. This formulation shows similar reflective properties to that of an hBN acrylic formulation (97.5% and 97.9% reflectance, respectively) while boosting a water droplet contact angle of as much as 120°, proving hydrophobicity and therefore self-cleaning properties. Additionally, a comprehensive study was conducted to understand the potential impact of the radiative cooling paints on the changing global climate. Three potential impacts of the paint were discussed, including capture and utilization of CO2 into the CaCO3 paint, the reduction of HVAC usage on buildings painted with the RC paints, and net cooling of the earth due to the solar reflection and thermal emission of the paint into deep space. It was discovered that all three parts had a positive impact on the global climate, regardless of which US climate zone the representative building was in. Additionally, it was found that the paints could reduce as much as an equivalent 539 lbs CO2eq from the atmosphere for each m2 of the paint applied.</p>

Page generated in 0.0674 seconds