• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude des mécanismes d'internalisation des peptides pénétrants. / Towards the Internalization Mechanisms of Cell Penetrating Peptides

Swiecicki, Jean-Marie 29 October 2014 (has links)
Les peptides pénétrants (CPP) se caractérisent par deux propriétés : ils pénètrent dans l'espace intracellulaire et favorisent l'internalisation de cargaisons moléculaires auxquelles ils sont associés. Si les CPP sont très utilisés comme vecteurs en recherche fondamentale, la méconnaissance des mécanismes de pénétration et de leurs distributions intracellulaires limite leur utilisation thérapeutique. Il est admis que les CPP et leurs cargaisons sont internalisés par transport actif (endocytose) et par transport passif (translocation directe). J'ai étudié la translocation directe à l'échelle moléculaire en utilisant des membranes modèles. Les CPP usuels sont internalisés et permettent l'accumulation de cargaisons dans des vésicules unilamellaires. J'ai alors démontré que la translocation directe se déroule via la formation de complexes neutres et hydrophobes CPP-phospholipides.La pénétration intracellulaire des CPP est le plus souvent étudiée par microscopie confocale. J'ai démontré que des fortes concentrations locales de CPP induit une auto-inhibition de leur fluorophore. Cet artefact a conduit à des erreurs d'interprétation dans la littérature quant à la localisation des CPP. Un protocole permettant de révéler la fluorescence éteinte a été proposé et conduit à réévaluer la localisation subcellulaire des CPP ainsi que l'importance relative des mécanismes d'internalisation.Ces résultats ont permis de développer rationnellement de nouveaux vecteurs pénétrants : les oligoarginines acylées par des chaînes grasses dont des insaturations sont de stéréochimie cis. Leur internalisation passive particulièrement importante conduit à la libération de la cargaison dans le cytosol. / Cell penetrating peptides (CPPs) are short cationic sequences capable of shuttling bioactive cargoes into eukaryotic cells. If CPPs are common delivery tools in basic research, their therapeutic use is currently limited because their internalization mechanisms and intracellular distributions remain to be elucidated. In living cells there is evidence for both endocytosis of the CPPs and for “direct translocation”, an energy-independent uptake pathway. I analyzed the direct translocation phenomenon at the molecular level with model membranes. CPPs are internalized into large unilamellar vesicles and trigger the internalization of various cargoes. I then demonstrated that direct translocation occurs through membranes via the formation of a neutral and hydrophobic CPP-anionic phospholipids complex. CPPs internalization is mostly analyzed by confocal microscopy. I demonstrated that fluorescence self-quenching occurs if fluorescently labeled CPPs are locally too concentrated. This severe artifact led to misinterpretation of the subcellular distribution of CPPs. I developed a reliable procedure to avoid this artifact and ranked subcellular regions of living cells depending on their CPP concentration. As a result, I was able to rationalize the subcellular distribution of CPPs and to deduce their penetration mechanisms. The studies that I performed provided valuable information that I used to design a new family of delivery vectors: minimalist oligoarginines peptides acylated by unsaturated fatty acids (cis unsaturations). The direct translocation of these lipopeptides is particularly important yielding to an efficient delivery of a cargo inside the cytosol of living cells.
2

Formation de domaines de type "rafts" dans des vésicules unilamellaires et mécanismes physico-chimiques de l'extraction de domaines membranaires

Coste, Virginie 05 July 2006 (has links) (PDF)
Les membranes modèles représentent un outil indispensable pour l'étude des membranes biologiques, elles ont en effet grandement contribué à leur description. Dans ce travail, nous nous sommes intéressés à l'étude de la coexistence de phases liquide-ordonnée (lo) et liquide-désordonnée (ld) au sein de membranes modèles de type LUV (« Large Unilamellar Vesicle »). Nous avons cherché en premier lieu à mettre au point une méthodologie permettant de détecter la formation de la phase lo et d'estimer quantitativement la fraction membranaire Φo en phase lo dans des LUVs de composition ternaire PC/SM/Chol (phosphatidylcholine / sphingomyéline / cholestérol), capable d'induire une coexistence de phase. Pour cela, les propriétés d'auto-extinction de fluorescence et de distribution sélective en fonction de la phase lipidique d'une sonde fluorescente unique (C12NBD-PC) ont été mises à profit. La deuxième partie de notre travail a été consacrée à l'étude de la solubilisation par le détergent Triton X-100 des membranes de LUVs présentant une coexistence de phase lo/ld. Nous avons cherché à démontrer qu'il était possible d'extraire la fraction membranaire se trouvant strictement en phase lo. Pour cela, les transitions de structure induites par l'interaction du Triton X-100 avec des LUVs à 4°C ont été étudiées par une procédure de séparation par gradient de densité. Nous avons tenté d'évaluer le rapport effectif approprié détergent/lipides nous permettant d'isoler les fractions résistantes correspondant aux domaines en phase lo existant au niveau de la membrane des LUVs avant l'addition de détergent.
3

Étude théorique de l'extinction de fluorescence des protéines fluorescentes : champ de forces, mécanisme moléculaire et modèle cinétique

Jonasson, Gabriella 18 July 2012 (has links) (PDF)
Les protéines fluorescentes, comme la GFP (green fluorescent protein), sont des protéines naturellement fluorescentes qui sont utilisées pour leur rôle de marqueur, permettant de localiser des protéines dans les cellules et d'en suivre les déplacements. De nombreuses études expérimentales et théoriques ont été menées ces dix dernières années sur les protéines fluorescentes. De là, se forge une compréhension essentiellement qualitative du rôle de la protéine vis-à-vis de l'obtention ou non d'une émission radiative : il apparaît que la protéine permet la fluorescence en bloquant les processus qui la désactivent ; ces processus de désactivation sont très rapides et efficaces (à l'échelle de la picoseconde) dans le cas du chromophore seul, et ils sont bien identifiés comme étant des torsions autour des liaisons intercycles (tau et phi). Dans la protéine, la sensibilité des temps de vie de fluorescence à des mutations proches ou non du chromophore, à des modifications de pH ou de température laisse supposer un contrôle de la dynamique du chromophore par différents paramètres, sans qu'ils soient pour autant identifiés et mis en relation.Une étude de la dynamique de la protéine permettrait de faire la lumière sur les mécanismes responsables de ces phénomènes photophysiques pour lesquels une analyse structurale ne suffit pas. Cependant l'étude de la dynamique est limitée par la taille du système (>30 000 atomes), par l'échelle de temps des phénomènes photophysiques considérés (dizaine de nanosecondes) et par le fait que les deux torsions tau et phi sont fortement couplées dans l'état excité du chromophore. Ces trois facteurs excluent les méthodes de dynamique existantes aujourd'hui ; dynamique quantique (AIMD), dynamique mixte classique-quantique (QM/MD) et dynamique moléculaire classique (MD).Nous avons surmonté le problème par la modélisation de la surface d'énergie potentielle de torsion du chromophore à l'état excité basée sur des calculs quantiques de haute précision, par une interpolation des valeurs obtenues par une expression analytique appropriée en fonction des angles de torsion tau et phi et avec une précision suffisante pour reproduire des barrières de l'ordre de la kcal/mol, et enfin, par l'implémentation de cette expression analytique dans le programme parallèle AMBER. Une deuxième difficulté théorique concerne la simulation et l'analyse statistique d'événements peu fréquents à l'échelle de la nanoseconde, et dont on ne connait pas le chemin de réaction, ici les déformations de la protéine et du chromophore conduisant aux géométries favorables à la conversion interne. Grâce à ces développements et aux simulations qu'ils ont permises, nous avons réalisé la première modélisation de la désactivation non-radiative par conversion interne à l'échelle de la nanoseconde dans trois protéines fluorescentes différentes. L'analyse des dynamiques moléculaires classiques nous donne une évaluation quantitative des temps de vie de l'extinction de fluorescence, en accord avec les données expérimentales. Par ailleurs elle nous a permis d'identifier les mouvements moléculaires concertés de la protéine et du chromophore conduisant à cette extinction. De ces résultats, émerge une représentation plus complète du mécanisme qui libère la torsion du chromophore ou qui la déclenche : il peut venir d'un mouvement spécifique de la protéine, qui se produit à l'échelle de la nanoseconde, ou bien de plusieurs mouvements spécifiques, plus fréquents (rupture de liaisons hydrogène, rotation de chaînes latérales, dynamique d'agrégats d'eau), mais qui coïncident seulement à l'échelle de la nanoseconde. Ces mouvements spécifiques n'ont pas un coût énergétique important mais la nécessité de leur coïncidence crée un délai de l'ordre de quelques nanosecondes alors que dans le vide la torsion se produit en quelques picosecondes. Dans le cas des protéines étudiées, on a identifié en grande partie les mécanismes et les acides aminés qui sont impliqués.
4

Préparation de nanobiosenseurs à base d'aptamères / Preparation of based-aptamers biosensors

Trouiller, Anne-Juliette 25 November 2016 (has links)
L'une des stratégies mise en œuvre pour améliorer la prise en charge thérapeutique des patients concerne le développement d'outils diagnostiques sensibles et spécifiques. Les aptamères sont des oligonucléotides artificiels obtenus par SELEX avec une très haute affinité ainsi qu'une excellente spécificité pour leurs cibles. L'immobilisation de ces motifs de reconnaissance moléculaire à la surface de nanomatériaux tels que des nanoparticules d'or (AuNPs), dont les propriétés optiques et électroniques sont uniques, permet d'amplifier le signal généré par l'interaction du ligand avec sa cible. Deux systèmes de biosensing ont été élaboré en fonctionnalisant des AuNPs avec des aptamères, l'un dirigé contre la thrombine et le second dirigé contre une marque épigénétique portée par une protéine histone. La réduction des sels d'or aurique précurseurs a été réalisée en présence de PEG4 et a conduit à l'obtention d'une population homodisperse de AuNPs sphériques d'un diamètre moyen de 14 nm et présentant une isotropie de taille et de forme. Ces AuNPs ont ensuite été fonctionnalisées par des bras espaceurs de longueur variable constitués d'unités tétraéthylène glycol successives reliées entre elles par des ponts éthers ou triazoles. L'acide lipoique a été utilisé comme motif d'ancrage à la surface des AuNPs via une liaison covalente Au-S et a été couplé aux différents bras espaceurs via une réaction de Steglich. Les linkers étaient porteurs d'un groupement terminal azoture afin de réaliser le couplage par chimie-click avec les aptamères. La stratégie de détection de la thrombine utilisait les propriétés de quenching de fluorescence des AuNPs alors que la détection de l'histone était colorimétrique et mettait à profit l'effet de résonance plasmonique de surface des nanoparticules d'or. / Improving patients therapeutic care needs the development of sensitive and specific diagnostic tools. Aptamers are synthetic oligonucleotides obtained by SELEX with a very high affinity and excellent specificity for their targets. Grafting of these molecular recognition patterns onto nanomaterials such as gold nanoparticles (GNPs), which unique optical and electronic properties, can amplify the signal induce by the interaction between the ligand and its target. Two biosensing systems have been developed by GNP functionalization with aptamers, one is directed against thrombin and the second against an epigenetic mark carried by a histone protein. Gold precursors was reduced in the presence of PEO4 and led to a homodisperse population of spherical GNP with an average diameter of 14 nm and an isotropy of size and shape. GNP were functionalized with tetraethylene glycol units interconnected by ether or triazoles bridges as a linker. Lipoic acid was used as an anchor moiety onto gold surface via a covalent Au-S bond and was coupled to the spacer through a Steglich reaction. The linkers were functionalized with an azide group to perform the coupling with aptamers by click chemistry. The thrombin sensing strategy used the fluorescence quenching properties of GNPs while the histone detection involved the gold nanoparticle plasmon resonance surface effect.
5

Étude théorique de l’extinction de fluorescence des protéines fluorescentes : champ de forces, mécanisme moléculaire et modèle cinétique / A theoretical study of the fluorescence quenching in fluorescent proteins : force field, molecular mechanism and kinetic model

Jonasson, Gabriella 18 July 2012 (has links)
Les protéines fluorescentes, comme la GFP (green fluorescent protein), sont des protéines naturellement fluorescentes qui sont utilisées pour leur rôle de marqueur, permettant de localiser des protéines dans les cellules et d'en suivre les déplacements. De nombreuses études expérimentales et théoriques ont été menées ces dix dernières années sur les protéines fluorescentes. De là, se forge une compréhension essentiellement qualitative du rôle de la protéine vis-à-vis de l’obtention ou non d’une émission radiative : il apparaît que la protéine permet la fluorescence en bloquant les processus qui la désactivent ; ces processus de désactivation sont très rapides et efficaces (à l'échelle de la picoseconde) dans le cas du chromophore seul, et ils sont bien identifiés comme étant des torsions autour des liaisons intercycles (tau et phi). Dans la protéine, la sensibilité des temps de vie de fluorescence à des mutations proches ou non du chromophore, à des modifications de pH ou de température laisse supposer un contrôle de la dynamique du chromophore par différents paramètres, sans qu’ils soient pour autant identifiés et mis en relation.Une étude de la dynamique de la protéine permettrait de faire la lumière sur les mécanismes responsables de ces phénomènes photophysiques pour lesquels une analyse structurale ne suffit pas. Cependant l'étude de la dynamique est limitée par la taille du système (>30 000 atomes), par l'échelle de temps des phénomènes photophysiques considérés (dizaine de nanosecondes) et par le fait que les deux torsions tau et phi sont fortement couplées dans l'état excité du chromophore. Ces trois facteurs excluent les méthodes de dynamique existantes aujourd'hui ; dynamique quantique (AIMD), dynamique mixte classique-quantique (QM/MD) et dynamique moléculaire classique (MD).Nous avons surmonté le problème par la modélisation de la surface d’énergie potentielle de torsion du chromophore à l’état excité basée sur des calculs quantiques de haute précision, par une interpolation des valeurs obtenues par une expression analytique appropriée en fonction des angles de torsion tau et phi et avec une précision suffisante pour reproduire des barrières de l’ordre de la kcal/mol, et enfin, par l’implémentation de cette expression analytique dans le programme parallèle AMBER. Une deuxième difficulté théorique concerne la simulation et l’analyse statistique d’événements peu fréquents à l’échelle de la nanoseconde, et dont on ne connait pas le chemin de réaction, ici les déformations de la protéine et du chromophore conduisant aux géométries favorables à la conversion interne. Grâce à ces développements et aux simulations qu'ils ont permises, nous avons réalisé la première modélisation de la désactivation non-radiative par conversion interne à l’échelle de la nanoseconde dans trois protéines fluorescentes différentes. L’analyse des dynamiques moléculaires classiques nous donne une évaluation quantitative des temps de vie de l’extinction de fluorescence, en accord avec les données expérimentales. Par ailleurs elle nous a permis d'identifier les mouvements moléculaires concertés de la protéine et du chromophore conduisant à cette extinction. De ces résultats, émerge une représentation plus complète du mécanisme qui libère la torsion du chromophore ou qui la déclenche : il peut venir d’un mouvement spécifique de la protéine, qui se produit à l’échelle de la nanoseconde, ou bien de plusieurs mouvements spécifiques, plus fréquents (rupture de liaisons hydrogène, rotation de chaînes latérales, dynamique d'agrégats d’eau), mais qui coïncident seulement à l’échelle de la nanoseconde. Ces mouvements spécifiques n’ont pas un coût énergétique important mais la nécessité de leur coïncidence crée un délai de l’ordre de quelques nanosecondes alors que dans le vide la torsion se produit en quelques picosecondes. Dans le cas des protéines étudiées, on a identifié en grande partie les mécanismes et les acides aminés qui sont impliqués. / Fluorescent proteins, like GFP (green fluorescent protein), are efficient sensors for a variety of physical-chemical properties and they are extensively used as markers in living cells imaging. These proteins have been widely studied both experimentally and theoretically the last decade. The comprehension of the protein's role in the regulation of the radiative emission is today essentially qualitative: it appears that the protein enables the fluorescence by blocking the processes that deactivates it; the deactivating processes are very quick and efficient (on the picosecond time scale) when the chromophore is isolated, and they are identified as being the torsions around the central bonds of the chromophore (tau and phi). The fluorescence lifetimes of a protein is very sensitive to mutations in the vicinity of the chromophore, to modifications in pH or in temperature. This seems to indicate a control of the dynamics of the chromophore by different parameters, that are not necessarily identified.A study of the dynamics of the protein would allow a deeper understanding of the mechanisms that are responsible for the fluorescence quenching. From a theoretical point of view, one is faced with three difficulties in this type of study: the size of the system (>30 000 atoms including a water box), the required time scale (tens of nanoseconds) and the fact that the torsions tau and phi are strongly coupled in the excited state of the chromophore. We must thus rule out the already existing dynamics methods: quantum dynamics (AIMD), mixed classical-quantum dynamics (QM/MD) and classical molecular dynamics (MD).We have overcome this problem by modeling the torsional potential energy surface of the chromophore in the first excited state trough high precision quantum calculations, by interpolating the energy values with an analytical fitting expression depending on the torsions tau and phi and with a precision high enough to reproduce barriers of the order of 1 kcal/mol, and lastly, by implementing this fitting expression in a parallelized version of the MD program AMBER. Another theoretical difficulty concerns the simulation and the statistical analysis of rare events on the nanosecond time scale without knowing the reaction path in advance, i.e. the deformations of the protein and of the chromophore leading to geometries where the internal conversion is favored. As a result of these developments and of the simulations they have enabled, we have been able to model, for the first time, the non-radiative deactivation by internal conversion at the nanosecond time scale in three different fluorescent proteins. The analysis of the classical molecular dynamics gives us a quantitative evaluation of the lifetime of the fluorescence extinction, in agreement with experimental results. In addition, it has allowed us to identify the concerted molecular movements between the protein and the chromophore leading to this extinction. A more complete representation of the mechanism that liberates or provokes the chromophore torsion emerges from these results: it could be a specific movement of the protein, that occurs on the nanosecond timescale, or several specific movements that occur more frequently (breakage of a hydrogen bond, rotation of side chains, dynamics of a water cluster), but that coincide only on the nanosecond time scale. These specific movements do not have a high energy cost but the need for them to coincide creates a delay of several nanoseconds compared to the chromophore torsion in vacuo which occurs after a few picoseconds. In the proteins we have studied (GFP, YFP and Padron), we have identified the principle components of the mechanisms and the amino acids that are implicated in this chromophore-protein interplay.

Page generated in 0.1297 seconds