• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Μελέτη του ρόλου του αυξητικού παράγοντα HARP (Heparin Affin Regulatory Peptide) στην αγγειογένεση in vivo

Δρόσου, Γεωργία 21 April 2008 (has links)
H HARP (heparin-affin regulatory peptide), γνωστή και ως πλειοτροπίνη (PTN), είναι ένας 18 kDa αυξητικός παράγοντας, ο οποίος έχει υψηλή συγγένεια για την ηπαρίνη. Η HARP έχει πολλαπλές βιολογικές δράσεις, όπως συμμετέχει στη ρύθμιση του κυτταρικού πολλαπλασιασμού, στη μετανάστευση και τη διαφοροποίηση. Επιπλέον η έκφραση της σχετίζεται με την φυσιολογική και καρκινική αγγειογένεση in vitro και in vivo. Στην παρούσα εργασία μελετήθηκε η έκφραση της HARP και των υποδοχέων της, ALK και RPTPβ/ζ, στις διάφορες ημέρες ανάπτυξης της CAM εμβρύου όρνιθας. Επίσης, μελετήθηκε η μείωση της έκφρασης της ενδογενούς HARP, με πλασμίδιο που φέρει την αντινοηματική αλληλουχία (AS-HARP), στην αγγειογένεση in vivo, στη φωσφορυλίωση των Εrk1,2 και στη λεμφαγγειογένεση της CAM εμβρύου όρνιθας. Ανάλυση κατά Western και RT-PCR στις διάφορες ημέρες ανάπτυξης του εμβρύου έδειξε ότι η έκφραση της HARP συμβαδίζει με τη δημιουργία νέων αγγείων στη CAM, ενώ η έκφραση των υποδοχέων της HARP στην CAM φαίνεται να είναι αυξημένη στα πρώτα στάδια ανάπτυξης του ιστού. Επίσης, η μείωση της έκφρασης της HARP μετά τη χορήγηση του πλασμιδίου AS-HARP, μείωσε τα επίπεδα της πρωτεΐνης, το μήκος των αγγείων και τη φωσφορυλίωση των Erk1/2 στο in vivo μοντέλο της CAM εμβρύου όρνιθας. Αντίθετα, η μείωση της έκφρασης της HARP μετά τη χορήγηση του πλασμιδίου AS-HARP, δεν επηρέασε τη λεμφαγγειογένεση της CAM εμβρύου όρνιθας. Σαν τελικό συμπέρασμα προκύπτει ότι η έκφραση της ενδογενούς HARP στην CAM εμβρύου όρνιθας είναι σημαντική για τη φυσιολογική αγγειογένεση in vivo. / Heparin-affin regulatory peptide (HARP), also known as pleiotrophin or heparin-binding growth-associated molecule, is an 18 kDa growth factor that has a high affinity for heparin. HARP is involved in the control of cellular proliferation, migration and differentiation. Moreover, there is a strong correlation between HARP expression and tumor growth and angiogenesis. In the present work, we studied the expression of HARP and its receptors, ALK and RPTPβ/ζ, during development of the chicken embryo chorioallantoic membrane (CAM), in relation to angiogenesis. By western blot analysis and RT-PCR, it was shown that HARP, ALK and RPTPβ/ζ expression increased at days of on-going angiogenesis and decreased at later time points. Transfection of CAMs with an anti-sense HARP gene construct led to a significant decrease in HARP amounts compared to vector control transfected CAMs, a significant decrease in the length of CAM blood vessels, and a decrease in the phosphorylation of Erk1/2. Contrary, transfection of CAMs with the anti-sense HARP gene construct had no influence in lymphangiogenesis of the chicken embryo chorioallantoic membrane (CAM). These data suggest that endogenous HARP is involved in angiogenesis in vivo.
2

Modification of ion channel auxiliary subunits in cardiac disease

Al Katat, Aya 10 1900 (has links)
L’infarctus du myocarde (IM) survenant après l’obstruction de l’artère coronaire est la cause principale des décès cardiovasculaires. Après l’IM, le coeur endommagé répond à l’augmentation du stress hémodynamique avec une cicatrice et une hypertrophie dans la région non-infarcie du myocarde. Dans la région infarcie, la cicatrice se forme grâce au dépôt du collagène. Pendant formation de la cicatrice, les cardiomyocytes ventriculaires résidant dans la région non-infarcie subissent une réponse hypertrophique après l’activation chronique due au système sympathique et à l’angiotensine II. La cicatrisation préserve l’intégrité structurale du coeur et l'hypertrophie des cardiomyocytes apporte un support ionotropique. Le canal CaV1.2 joue un rôle dans la réponse hypertrophique après l’IM. L’activation du CaV1.2 déclenche la signalisation dépendante de Ca2+ induisant l’hypertrophie. Cependant, il est rapporté que l’ouverture des canaux potassiques (KATP) ATP sensitifs joue un rôle sélectif dans l’expansion de la cicatrice après IM. Malgré leur expression dans les coeurs mâles, les KATP fournissent une cardioprotection sexe dépendante limitant l’expansion de la cicatrice chez les femelles. L’administration de rapamycine aux rates ayant subi un infarctus produit l’expansion de la cicatrice, soutenant la relation possible entre la cible de rapamycine, mTORC1 et les KATP dans la cardioprotection sexe spécifique. Effectivement, dans les cellules pancréatiques α, la signalisation mTORC1 était couplée à l'activation du KATP. Cependant, le lien entre mTORC1 et les canaux KATP dans le coeur reste inconnu. L'objectif de la thèse est d’examiner le rôle des canaux ioniques dans le remodelage cardiaque post-IM, surtout des canaux calciques dans l'hypertrophie et d'élucider la relation entre les KATP et mTORC1. L’hypothèse première teste que l’hypertrophie médiée par le système sympathique des cardiomyocytes ventriculaires des rats néonataux (NRCM) produit une augmentation de l’influx calcique après une augmentation des sous-unités du CaV1.2. Le traitement de norépinéphrine (NE) quadruple l’amplitude du courant calcique type L et double l’expression protéique des sous unités de CaVα2δ1 et CaVβ3. L’hypertrophie des NRCM au NE s’associe à une augmentation de la phosphorylation de la Kinase ERK 1/2. Le β1-bloqueur metoprolol et l’inhibiteur ii de ERK1/2 diminuent l’effet de NE sur CaVα2δ1. Cependant, l’augmentation de CaVβ3 et de la réponse hypertrophique persiste. Ainsi, le signal β1-adrenergique à travers ERK augmente les sous-unités CaVα2δ1 outre l’hypertrophie. L’autre hypothèse examine la spécificité du sexe sur l’expansion cicatricielle médiée par rapamycine et l’influence de mTOR sur l’expression de KATP. Rapamycin augmente la surface de la cicatrice et inhibe la phosphorylation de mTOR chez les coeurs de femelles. Dans les coeurs des deux sexes, la phosphorylation de mTOR et l’expression de KATP, Kir6.2 et SUR2A sont similaires. Cependant, une grande inactivation de la tubérine et une faible expression de raptor sont détectées chez les femelles. Le traitement à l’ester de phorbol des NRCM induit l’hypertrophie, augmente la phosphorylation de p70S6K et l’expression SUR2A. Le prétraitement par Rapamycine atténue chacune des réponses. Rapamycin démontre un patron d’expansion cicatriciel sexe spécifique et une régulation de phosphorylation de mTOR dans IM. Aussi, l’augmentation de SUR2A dans les NRCM traités par PDBu révèle une interaction entre mTOR et KATP. / Myocardial infarction (MI) secondary to the obstruction of the coronary artery is the main cause of cardiovascular death. Following MI, the damaged heart adapts to the increased hemodynamic stress via formation of a scar and a hypertrophic response of ventricular cardiomyocytes in the non-infarcted myocardium. In the infarcted region, a scar is formed via the rapid deposition of collagen. With ongoing scar formation, ventricular cardiomyocytes in the non-infarcted myocardium undergo a hypertrophic response secondary to the chronic activation by the sympathetic system and angiotensin II. Collectively, scar formation and cardiomyocyte hypertrophy preserve the structural integrity of the heart and provide inotropic support, respectively. CaV1.2 channels play a significant role in the hypertrophic response post-MI. Notably, the activation of CaV1.2 channel triggers Ca2+-dependent signaling that induces hypertrophy. By contrast, the opening of ATP-sensitive potassium (KATP) channels was shown to partake in selective scar expansion following MI. Notwithstanding its expression in male hearts, KATP channels endow a sex-dependent cardioprotection limiting scar expansion selectively in females. Moreover, administration of the macrolide rapamycin to the infarcted female rat heart led to scar expansion, supporting the possible relationship between the target of rapamycin, mTORC1 and KATP channels in providing sex-specific cardioprotection. Indeed, in pancreatic-α cells, mTORC1 signaling was coupled to KATP channel activation. However, whether mTORC1 targets KATP channels in the heart remains unknown. Thus, the AIM of the thesis was to explore the role of ion channels in cardiac remodeling post-MI by specifically addressing the role of Ca channels in cardiomyocyte hypertrophy and elucidate the potential relationship between KATP channels and mTORC1 signaling. The first study tested the hypothesis that hypertrophied neonatal rat ventricular cardiomyocytes (NRVMs) following sympathetic stimulation translated to an increase in calcium influx secondary to the augmentation of CaV1.2 channel subunits. NE treatment led to a 4-fold increase of L-type Ca2+ peak current associated with a 2-fold upregulation of CaVα2δ1 and CaVβ3 protein subunits in hypertrophied NRVMs. The hypertrophic response of NNVMs to NE was associated with the increased phosphorylation of extracellular regulated kinase (ERK1/2). The β1-blocker metoprolol and the ERK1/2 inhibitor suppressed NE-mediated protein upregulation of CaVα2δ1 whereas CaVβ3 upregulation and the hypertrophic response persisted. Therefore, sympathetic mediated β1-adrenergic signaling via ERK selectively upregulated the CaVα2δ1 subunit independent of NRVM hypertrophy. The second study tested the hypothesis that rapamycin-mediated scar expansion was sexspecific and mTOR influenced KATP channel subunit expression. Rapamycin administration translated to scar expansion and inhibited mTOR phosphorylation exclusively in females. In normal adult male and female rat hearts, mTOR phosphorylation and protein levels of KATP channel subunits Kir6.2 and SUR2A were similar. However, greater tuberin inactivation and reduced raptor protein levels were detected in females. NRVMs treated with a phorbol ester induced hypertrophy, increased p70S6K phosphorylation and SUR2A protein levels and rapamycin pretreatment attenuated each response. Thus, rapamycin administration to MI rats unmasked a sex-specific pattern of scar expansion and highlighted the disparate regulation of mTOR phosphorylation. Moreover, rapamycin-dependent upregulation of SUR2A in PDButreated NRVMs revealed a novel interaction between mTOR and KATP channel subunit expression
3

Signal Transduction: Dopamine D1 receptor-induced signaling cascades in the striatum in Parkinson's disease

Maslava, Natallia January 2012 (has links)
Parkinsons sjukdom är en av de vanligaste progressiva neurodegenerativa sjukdomer som drabbar upp till tio miljoner människor i världen. Sjukdomen orsakas av död av de nervceller som producerar signalämnet dopamin. För att kompensera bristen på dopamin, får patienter läkemedlet levodopa som är en precursor för dopamin. Men tyvärr leder denna behandling till ett ännu svårare tillstånd – levodopa-inducerad dyskinesi (LID). Dyskinesier innebär onormala ofrivilliga rörelser. För att förstå mekanismer som orsakar LID har djurmodeller utvecklats som simulerar Parkinsons sjukdom. Många studier har påpekat att LID uppstår på grund av ökad fosforylering av extracellulära signalreglerade kinaser 1 och 2 (ERK1/2). Det är viktigt att förstå hur ERK1/2 aktiveras vid Parkinsons sjukdom via dopaminreceptorer på cellmembranet hos nervceller i striatum för att utveckla någon rimlig behandling av LID eller för att förhindra det tillståndet. Syftet med denna studie var att undersöka signalvägar som induceras av dopamin D1-receptorn i vävnadsprov från regionen striatum i hjärnan från lesionerade råttor. Nivån av fosforylation ERK1/2 mättes med hjälp av Western blot. Genom att blockera målmolekyler kunde olika signalvägar blockeras, och resultaten tyder på att det finns tydliga förändringar i dopamin D1-receptor inducerade signalvägar. Aktivering av dopamin D1 receptor inducerade fosforylering av ERK1/2, dopamin D1-receptor inducerad fosforylering av ERK1/2 visade sig att vara beroende av calcium signalering, och det var möjligt att reglera fosforylering av ERK1/2 via signalväg som är inducerad av Grupp 1 metabotropiska glutamatreceptorer. Projektet är inte slutfört och fler målmolekyler behöver testas för att dra definitiva slutsatser om hur signalvägarna interagerar med varandra och hur man på ett effektivt sätt kan reglera dessa. Under arbetets gång hade Western blot-tekniken förbättrats och optimiserats. / Parkinson's disease is one of the most common neurodegenerative diseases affecting up to ten million people worldwide. The disease is caused by the death of neurons that produce the neurotransmitter dopamine. To compensate the lack of dopamine, patients are treated with levodopa, a precursor of dopamine. Levodopa invariably causes a troublesome complication in the form of unwanted involuntary movements known as “levodopa-induced dyskinesia”. Many studies have pointed out that levodopa-induced dyskinesia occurs due to increased phosphorylation of extracellular signal regulated kinases 1 and 2 (ERK1/2). It is important to understand how ERK1/2 is activated in Parkinson's disease by dopamine receptors in order to develop a reasonable treatment for LID or to prevent this condition in levodopa-treatment of Parkinsonian patients. The aim of this study was to investigate the pathways induced by the dopamine D1 receptor in striatal “slices” from parkinsonian rats. The level of phosphorylation of ERK1/2 (pERK 1/2) was measured by Western blot. Along the pathways leading to the activation of pERK 1/2 different target molecules were blocked. The clear alterations in the dopamine D1 induced signaling pathways were observed. Activation of the dopamine D1 receptor induced phosphorylation of ERK1/2, the dopamine D1 receptor-mediated increase of pERK was shown to be dependent on calcium signaling, and the DA D1 receptor-induced phosphorylation of ERK1/2 was possible to modulate via Group 1 metabotropic glutamate receptor pathway. The project is to be continued in the future and more target molecules should be tested in order to draw definite conclusions about how these signaling pathways interact with each other and how to regulate them effectively. During the project, Western blot technique was improved and optimized for the future experiments of the present study.
4

Studying the Role of Peroxiredoxin 1 in ROS Modulation and Drug Resistance / Etude du rôle de la Peroxiredoxine 1 dans la modulation redox et la résistance aux drogues anticancéreuses

He, Tiantian 04 July 2014 (has links)
Les peroxyrédoxines sont des enzymes essentielles de la cellule. Outre leur rôle d’antioxydant, elles sont aussi des régulateurs de la signalisation cellulaire et des suppresseurs de tumeurs. La péroxiredoxine 1 (Prx1) est la plus abondante parmi les six isoformes de peroxyrédoxines humaines. Elle est fréquemment surexprimée dans plusieurs types de cellules cancéreuses, et on a pu associer Prx1 aux processus de carcinogenèse et de métastase, ainsi qu’à la résistance à la radiothérapie ou la chimiothérapie. Ainsi, Prx1 pourrait donc être une cible anticancéreuse intéressante. Au cours de ce travail de thèse, nous avons d’abord évalué l'impact d’une diminution de Prx1 (Prx1 knockdown (Prx1–)) sur la sensibilité cellulaire à des dizaines de médicaments anticancéreux dont la vinblastine, le taxol, la doxorubicine, la daunorubicine, l’actinomycine D, et le 5-fluorouracile, et d’agents connus pour provoquer la production d’espèces réactives de l’oxygène (ROS), dont le peroxyde d'hydrogène, le 2-phényléthyle isothiocyanate, le β-lapachone (β-lap) et la ménadione. Nous avons mis en évidence qu’une diminution de Prx1 augmente significativement la sensibilité des cellules à l'effet cytotoxique de la β-lap et de la ménadione, deux naphtoquinones possédant une activité anti-tumorale.Nous avons étudié les mécanismes responsables de l'augmentation de la cytotoxicité de la β-lap dans un contexte Prx1–. Nous montrons que la toxicité accrue de la β-lap dans des cellules Prx1– est due à une accumulation intracellulaire de ROS. Cet effet est dépendant de l’activité NADPH quinone oxydoréductase (NQO1) et s’accompagne d’une phosphorylation de c-Jun N-terminal kinases (JNK), protein 38 (p38), extracellular signal-regulated kinases (Erk) et des mitogen-activated protein kinases (MAPK), mais aussi d’une diminution des niveaux protéiques de la thiorédoxine 1. En se basant sur le fait que Prx1 est une enzyme antioxydante et un partenaire d'au moins ASK1 et JNK, deux éléments clés de la voie MAPK, nous proposons que la sensibilisation à la β-lap, observée après diminution de Prx1, est provoquée par une action synergique entre l'accumulation de ROS et l'induction de la voie MAPK, conduisant ainsi à l'apoptose.Nous avons ensuite étudié les mécanismes responsables de l'augmentation de la cytotoxicité de la ménadione dans le contexte Prx1–. La sensibilité accrue des cellules à l'effet cytotoxique de la ménadione et également associée à l'accumulation rapide et massive des ROS intracellulaire et à une mort cellulaire ressemblant à la nécrose programmée (necroptosis). L’accumulation de ROS induite par la ménadione et très rapidement détectée dans le cytosol, le noyau, et de façon encore plus importante, dans la matrice mitochondriale. Ce phénomène est en corrélation avec l'oxydation importante des thiorédoxine 2 et peroxiredoxine 3, deux protéines antioxydantes localisées dans la mitochondrie. La diminution de l’expression de Prx1 s’accompagne d’une augmentation des quantités tant de l’ARNm que de la protéine NRH: quinone oxydoréductase 2 (NQO2). Cette augmentation de l'activité de NQO2 est en grande partie responsable de l'accumulation intracellulaire de ROS et de la mort cellulaire après le traitement à la ménadione. Nos données révèlent que l’accumulation de ROS dans les cellules Prx1– provient de la résultante entre l’augmentation de leur production par NQO2 au cours du métabolisme de la ménadione et la diminution de leur élimination par Prx1. Enfin et de façon surprenante, selon la nature des naptoquinones (β-lap ou ménadione), les voies métaboliques qui conduisent à l'accumulation des ROS, ou les voies de signalisation et les mécanismes de mort cellulaire impliqués semblent être distincts. / Peroxiredoxins have multiple cellular functions as major antioxidants, signaling regulators, molecular chaperones and tumor suppressors. Peroxiredoxin 1 (Prx1) is the most abundant among the six isoforms of human peroxiredoxins. It is frequently over-expressed in various cancer cells, which is known associated with carcinogenesis, metastasis and resistance to radiotherapy or chemotherapy. Prx1 could thus be an interesting anticancer target. In this study, we first evaluated the impact of Prx1 knockdown (Prx1–) on cellular sensitivity to dozens of anticancer drugs including vinblastine, taxol, doxorubicin, daunorubicin, actinomycin D, and 5-fluorouracil, and of reactive oxygen species (ROS)-generating agents, including hydrogen peroxide, 2-phenylethyl isothiocyanate, β-lapachone (β-lap) and menadione. We observed that Prx1 knockdown significantly enhanced cancer cell sensitivity to β-lap and menadione, two naphthoquinones with anti-cancer activity.We first investigated the underlying mechanisms responsible for the specifically enhanced cytotoxicity to β-lap in a Prx1 knockdown context. Prx1 knockdown markedly potentiated β-lap-induced cytotoxicity through ROS accumulation. This effect was largely NAD(P)H:quinone oxidoreductase 1 (NQO1)-dependent and associated with the phosphorylation of c-Jun N-terminal kinases (JNK), protein 38 (p38) and extracellular signal-regulated kinases (Erk) proteins in mitogen-activated protein kinase (MAPK) pathways, and a decrease in thioredoxin 1 protein levels. Based on the fact that Prx1 is a major ROS scavenger and a partner of apoptosis signaling kinase 1 (ASK1) and JNK, two key components of MAPK pathways, we propose that Prx1 knockdown-induced sensitization to β-lap is achieved through the combined action of ROS accumulation and MAPK pathway activation, leading to cell apoptosis.We then investigated the underlying mechanisms responsible for the specifically enhanced cytotoxicity to menadione in Prx1– cells. Enhanced sensitivity to menadione was associated with a rapid and significant intracellular ROS accumulation and necroptotic-like cell death. Menadione-induced ROS accumulation occurred immediately in the cytosol, the nucleus, and even more noticeably in the mitochondrial matrix, correlated with significant oxidation of both mitochondria-localized thioredoxin 2 and peroxiredoxin 3. Prx1 knockdown significantly up-regulated mRNA and protein levels of NRH: quinone oxidoreductase 2 (NQO2). Increased activity of NQO2 was largely responsible for menadione-induced ROS accumulation and consequent cell death. Our data indicate that massive ROS accumulation results from the combined effect of increased ROS generation by higher NQO2 activity during menadione metabolism, and diminished Prx1 scavenging activity. Finally and noteworthy, the metabolic pathways that lead to ROS accumulation, downstream signaling pathways and cell death mechanisms appear to be distinct for β-lap and menadione.

Page generated in 0.1415 seconds