• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 6
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 66
  • 35
  • 19
  • 11
  • 10
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

The development of proton detection based paramagnetic solid-state NMR methods as a general structural biology tool

Thomas, Justin K 24 October 2022 (has links)
No description available.
52

Regulation of Collagen Fibril Structure and Function by DDR1 in the Murine Aorta

Tonniges, Jeffrey R. 30 December 2016 (has links)
No description available.
53

Producing the biobased films of tomorrow : Nanocellulose dewatering with non-confined mechanical pressing

Roos, John Eric January 2024 (has links)
Cellulose Nano Fibrils (CNFs) can be extracted from wood and other plants. These CNFs are expected to play a large roll in future materials owing to their interesting properties and biobased nature. In this project, dewatering of gels made from CNF by non-confined mechanical pressing has been studied. A CNF suspension was gelled by the addition of HCl at pH 2 to form gel cakes and then pressed mechanically. The goal was to find the pressure limits of the gel cakes for different starting concentrations, in weight percentage [wt%], of CNF to optimize the pressure used when dewatering CNF gels. The non-confined pressing was achieved via the useof a Zwick/Roell Torsion multi-axis testing system. Gel cakes were pressed until a pressing equilibrium was reached. Equilibrium was reached when compression was less than 0.01 mm per 100 seconds. Gel cakes were frozen with liquid N2, freeze-dried, and analysed with Scanning Electron Microscopy (SEM). The results observed from the pressing data showed that gel cakes with higher CNF starting concentrations could survive higher pressures. Using the highest pressure available, at the pressure limit, yielded both the shortest run time and the highest dryness content. SEM imaging showed that the compression of the gel cakes starts at the surfaces and continuous inwards through the bulk. The mechanical pressure creates sheets of CNF both vertically and horizontally. By plotting the starting concentrations vs applied pressure a limit map with pressure regions could be created. From the limit map further optimization can be achieved to shorten the dewatering process of the CNF gels.
54

Molecular and cellular mechanism of α-synuclein assemblies transfer between neuronal cells : role of Tunneling nanotubes / Mécanismes moléculaire et cellulaire du transfert des assemblages de la protéine α-synucléine entre cellules neuronales : rôle des Tunneling nanotubes

Abounit, Saïda 04 May 2015 (has links)
Les synucléionopathies représentent un groupe de maladies neuro-dégénératives incurables du système nerveux central. Elles regroupent entre autres la maladie de Parkinson, l’atrophie multi-systématisée et la maladie à corps de Lewy. Toutes ces maladies se caractérisent par un déclin progressif des fonctions motrices, cognitives, comportementales et autonomiques. La mal-conformation et l’agrégation de la protéine α-synuclein qui forme des inclusions intraneuronales sont des éléments communs à toutes les synucleinopathies. Ces inclusions portent le nom de corps de Lewy et se forment dans des neurones ou cellules gliales appartenant à des régions cérébrales spécifiques. Elles sont vraisemblablement à l’origine de la perte progressive de neurones dans certaines parties du cerveau. Dans le cas de la maladie de Parkinson et dans d’autres maladies neuro-dégénératives, il a été démontré que la pathologie se propage anatomiquement d’une manière spécifique et prévisible au niveau cérébrale. Ceci suggère donc que la progression de la maladie est étroitement liée au transfert des agrégats d’α-synucléine. Ce procédé est très similaire à celui impliqué dans la maladie du prion qui elle en revanche est infectieuse. Par ailleurs, des inclusions neuronales d’α-synucléine ont été identifiées dans des neurones dopaminergiques d’origine fœtaux qui avaient été transplanté dans des cerveaux de patients parkinsoniens. Cette étude a permis d’envisager pour la première fois la possibilité de la transmission d’inclusions d’α-synucléine entre les neurones. Bien que de nombreuses études aient démontré la propagation d’α-synucléine in vitro et in vivo, le mécanisme permettant ce transfert n’est pas clairement établi. Par conséquent, ma thèse s’attache à étudier le mécanisme de transfert d’assemblages d’α-synucléine (i.e., oligomères et fibrilles). Dans un premier temps, j’ai apporté la preuve que les assemblages d’α-synucléine transfèrent de manière efficace entre les cellules neuronales via les Tunneling nanotubes (TNT). Les TNT sont définis comme étant des ponts membranaires riches en F-actine et permettant de connecter physiquement le cytoplasme de cellules éloignées. Au niveau subcellulaire, j’ai démontré que les assemblages d’α-synucléine qui transfèrent se trouvent dans des lysosomes. En revanche, après le transfert, ces assemblages se retrouvent libres dans le cytoplasme. J’ai également mis en évidence qu’à la suite du transfert, permis par les TNT, les fibrilles d’α-synucléine sont capables de recruter et d’induire l’agrégation de l’α-synucléine soluble afin de perpétuer le processus d’agrégation à l’infinie. Ces résultats indiquent que les TNT peuvent représenter un moyen efficace permettant le transfert d’assemblages d’α-synucléine. Cette découverte offre de nouvelles opportunités pour le développement de nouveaux agents neuro-protectifs contre la propagation des synucléinopathies. / Synucleinopathies are a group of fatal neurodegenerative diseases including Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy, characterized by a chronic and progressive decline in motor, cognitive, behavioral, and autonomic functions. The hallmark of these diseases is the misfolding and aggregation of α-synuclein protein accumulating into intracellular inclusions Lewy bodies in neurons and glial cells which leads to the loss of neurons in specific brain regions. In the case of Parkinson’s disease and other neurodegenerative diseases, the pathology was shown to progress throughout the brain in a specific and predictable manner suggesting that the progression of the diseases is linked to the transfer of aggregated α-synuclein that is reminiscent of prion diseases that are infectious. Importantly, upon transplantation of fetal dopaminergic neurons in the brain of Parkinson’s patients, neuronal inclusions were found in the grafted neurons strongly suggesting that α-synuclein inclusions could transmit between neurons. While several studies showed α-synuclein propagation in vitro and in vivo the mechanism of intercellular transfer remains elusive. The aim of my thesis was to study the mechanism of transfer of α-synuclein assemblies (i.e., oligomers and fibrils) involved in Parkinson’s pathogenesis. I evidenced that α-synuclein assemblies transferred efficiently via tunneling nanotubes (TNT), F-actin based membranous bridges connecting the cytoplasm of remote cells. I demonstrated that, at the sub-cellular level, the transferred α-synuclein assemblies were specifically confined in lysosomes and that upon transfer a large amount of α-synuclein was found free in the cytosol of acceptor cells. Finally, I showed that after TNT-mediated transfer α-synuclein fibrils recruited and seeded the aggregation of the soluble α-synuclein protein in order to perpetuate aggregation. The identification of TNT as an efficient means of α-synuclein transfer opens new avenues to the development of novel therapies targeting the spreading into the brain of amyloidogenic proteins involved in neurodegenerative diseases.
55

Strukturuntersuchungen an biologischen Materialien mit Hilfe rasterkraftmikroskopiebasierender Nanotomographie

Röper, Stephanie 01 June 2011 (has links) (PDF)
Ziel ist die räumliche Abbildung biologischer Materialien (Knochen, Kollagenfibrillen und Zähne) hinsichtlich deren Struktur auf der Nanometerskala mit Hilfe der Nanotomographie. Die Nanotomographie ist eine moderne dreidimensionale Volumenabbildungsmethode auf der Nanometerskala basierend auf der Rasterkraftmikroskopie. Für die Nanotomographie wurden Ätzprotokolle an Zähnen, Kollagenfibrillen und Knochen entwickelt, die einen gleichmäßigen Abtrag bewirken. Lineare Verschiebungen der aufgenommenen Schichten werden mit Hilfe der manuellen Registrierung korrigiert und zu einem Volumenbild rekonstruiert. Ein zentrales Ergebnis sind dabei erste hochaufgelöste Volumenbilder einzelner Kollagenfibrillen im nativen Knochen. Neben der konventionellen Nanotomographie wird ein Ansatz zur automatisierten Nanotomographie mit einer Auflösung von 10 nm am Beispiel des menschlichen Knochens und Zahnes demonstriert. Mit Hilfe von mikroskopischen und elektronenmikroskopischen Techniken wurden die verschiedenen Strukturebenen des humanen Zahn und Knochens abgebildet und die räumlichen Strukturen der TM-AFM-Bilder auf der Mikro- und Nanometerskala eingeordnet. Darüber hinaus konnte mit Hilfe analytischer Messmethoden die chemische Zusammensetzung des kortikalen nativen Knochens erfasst werden und Änderungen durch das Ätzen detektiert werden.
56

Protein Dynamics by Solid-State NMR with Ultra-Fast Magic-Angle Spinning : from Microcrystals to Amyloid Fibrils and Membrane Proteins / Dynamique des Protéines par RMN à l’Etat Solide avec Rotation Ultra Rapide à l’Angle Magique : des Microcristaux aux Fibrilles Amyloïdes et Protéines Membranaires

Le Marchand, Tanguy 10 July 2018 (has links)
La Résonance Magnétique Nucléaire (RMN) à l’état solide avec rotation à l’angle magique (MAS) est une technique de choix pour l’étude de la structure et de la dynamique de molécules biologiques peu ou non solubles. Un grand nombre d’approches ont été développées pour la reconstitution de structures tridimensionelles à partir de mesures précises de proximités internucléaires, ainsi que pour la détection de mouvements moléculaires avec une résolution atomique sur des échelles de temps couvrant plusieurs ordres de grandeur. Malgré d’impressionnants progrès, les études par RMN MAS sont cependant loin d’être réalisées en routine. Les déterminations structurelles et de dynamique sont souvent démontrées sur des préparations microcristallines modèles, mais sont encore rares pour des systèmes plus complexes tels que les fibrilles amyloïdes non cristallines ou les protéines trans-membranaires insérées dans des bi- couches lipidiques. Mon travail a pour objectif d’étendre les possibilités de la RMN MAS pour l’étude de systèmes biomoléculaires complexes dans différents états d’agrégation. Pour cela, j’ai exploité les possibilités uniques offertes par les hauts champs magnétiques (fréquence de Larmor du 1H 700, 800 et 1000 MHz) combinés avec les sondes MAS de dernières générations capables d’atteindre des vitesses de rotations supérieures à 60 kHz. Ces conditions expérimentales per- mettent d’augmenter la sensibilité de la RMN MAS à l’aide de la détection 1H à haute résolution et d’enrichir la palette de paramètres RMN rapporteurs de la dynamique des protéines. La première partie de cette thèse décrit le développement de nouvelles stratégies pour l’attribution des résonances du squelette de protéines, pour l’élucidation de structures, et pour l’étude de la dynamique du squelette peptidique et des chaînes latérales. Les méthodes présentées réduisent significative- ment les besoins en termes de temps expérimental, de quantités d’échantillon et de marquage isotopique, et permettent d’analyser par RMN des systèmes de plus hauts poids moléculaire. La seconde partie décrit l’application de la RMN MAS avec détection en 1H pour l’évaluation du rôle de la dynamique des protéines dans des processus tels que la formation de fibrilles amyloïdes et le fonctionnement de protéines membranaires. Une première application est l’étude de la tendance de la β-2 microglobuline humaine à former des fibrilles amyloïdes. Une comparaison de la dynamique du squelette peptidique de la protéine sauvage et du mutant D76N dans leur forme cristalline, ainsi que la détermination de propriétés structurales de la forme fibrillaire m’ont permis d’identifier la présence de repliements pathologiques et de formuler des hypothèses sur le mécanisme de formation des fibrilles. Finalement, la dynamique locale et globale de protéines membranaires dans des bicouches lipidiques a été étudiée. En particulier, le mécanisme d’action d’un transporteur d’alkanes, AlkL, de P. putida a été examiné dans un environnement lipidique. La détermination de paramètres pour la dynamique rapide (ps-ns) et lente (μs-ms) du squelette peptidique de la protéine en présence ou en absence de substrat met en évidence des acheminements possibles pour le transfert de molécules vers la membrane et jette les bases pour une meilleure compréhension du processus. / Solid-state NMR with magic angle spinning (MAS) has emerged as a powerful technique for investigating structure and dynamics of insoluble or poorly soluble biomolecules. A number of approaches has been designed for reconstructing molecular structures from the accurate measurement of internuclear proximities, and for probing motions at atomic resolution over timescales spanning several orders of magnitude. Despite this impressive progress, however, MAS NMR studies are still far from routine. Complete determinations, which are often demonstrated on model microcrystalline preparations, are still rare when it comes to more complex systems such as non-crystalline amyloid fibrils or transmembrane proteins in lipid bilayers. My work aimed at extending the possibilities of MAS NMR for applications on complex biomolecular systems in different aggregation states. For this, I exploited the unique possibilities provided by high magnetic fields (700, 800 and 1000 MHz 1H Larmor frequency) in combination with the newest MAS probes capable of spinning rates exceeding 60 kHz. These experimental conditions al- low to boost the sensitivity of MAS NMR through 1H detection at high resolution and to enrich the palette of probes for protein dynamics. The first part of the thesis reports on my contribution to the development of new strategies for backbone resonance assignment, for structure elucidation, and for investigation of backbone and side-chain dynamics. These methodologies significantly reduce the requirements in terms of experimental time, sample quantities and isotopic labeling, and enlarge the molecular size of systems amenable to NMR analysis. The second part describes the application of 1H detected MAS NMR to evaluate the role of protein dynamics in problems such as amyloid fibril formation and membrane protein function. I first addressed the amyloid fibril formation propensity of human beta-2 microglobulin, the light chain of the major histocompatibility complex I. I performed comparative studies of backbone dynamics of the wild type protein as well as a D76N mutant in crystals, and determined some of the structural features of the fibrillar form. This allowed to identify the presence of pathological folding intermediates and to formulate hypotheses on the mechanism of fibrils formation. Finally, I studied the local and global dynamics of membrane proteins in lipid bilayers. In particular, I investigated the mechanism of action of the alkane trans- porter AlkL from P. putida in lipid bilayers. The measurement of parameters for fast (ps-ns) and slow (μs-ms) backbone dynamics of the protein in presence or in absence of a substrate highlights possible routes for molecular uptake and lays the basis for a more detailed mechanistic understanding of the process.
57

Teorie a aplikace optické aktivity biomolekul / Theory and applications of optical activity of biomolecules

Krupová, Monika January 2021 (has links)
Title: Theory and Applications of Optical Activity of Biomolecules Author: Monika Krupová Supervisor: prof. RNDr. Petr Bouř, DSc. Institutions: Faculty of Mathematics and Physics, Charles University, and Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic Abstract: This thesis describes how we used several chiroptical spectroscopic methods to study chiral molecules: vibrational circular dichroism (VCD), circularly polarized luminescence (CPL) and magnetic circular dichroism (MCD). VCD and induced lanthanide CPL were used to study the structure of amyloid protein fibrils. We found out that VCD is very sensitive to their structure and supramolecular chirality. It could be used to distinguish between various polymorphic fibrils. On the other hand, induced lanthanide CPL provided information on the local structure. VCD was also used to study the hydration polymorphism of nucleoside crystals. Due to the crystal packing, the VCD signal was strong and specific for different types of crystals. Finally, electronic structure of hydrated Ln3+ ions was studied by MCD. Molecular dynamics simulations together with crystal field theory (CFT) and multistate complete active space calculations with second order perturbation correction (MS-CASPT2) were used to interpret the spectra. CFT...
58

DIVERSITY OF TAU PROTEOFORMS IN TAUOPATHIES: RELEVANCE TO BIOMARKER ANALYSIS AND PRECLINICAL MODELING

Sehong Min (14228978) 09 December 2022 (has links)
<p>Tauopathies are neurodegenerative diseases defined by the accumulation of pathological tau protein in neurons and glia. Alzheimer’s disease (AD), the most common tauopathy, is characterized by the presence of neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein aggregates in neurons. Emerging evidence suggests that the NFT burden correlates with neuron death and cognitive decline, contributing to disease progression. Besides AD, a similar deposition of tau inclusions is found to be associated with neurodegeneration in the brains of patients with other tauopathies including progressive supranuclear palsy, corticobasal degeneration, and Pick’s disease. These diseases display clinical, biochemical, and neuropathological heterogeneity. Little is known about how tau aggregation can lead to varied phenotypes in tauopathies, and there is no disease-modifying treatment. Thus, it is necessary to understand the role of diverse tau proteoforms in tauopathies for the development of new therapeutics to treat tauopathies, including AD.</p> <p>In the studies summarized in Chapter 2, we investigated how the molecular diversity of tau proteoforms could impact antibody-based assays of a phospho-tau variant serving as an AD biomarker. A tau variant phosphorylated on threonine 181 (pT181-tau) has been widely investigated as a potential AD biomarker in cerebrospinal fluid (CSF) and blood. pT181-tau is present in NFTs of AD brains, and CSF levels of pT181-tau correlate with overall NFT burden. Various immuno-based analytical methods, including Western blotting and ELISA, have been used to quantify pT181-tau in human biofluids. The reliability of these methods depends on the affinity and binding specificity of the antibodies used to measure pT181-tau levels. Although both of these properties could in principle be affected by phosphorylation within or near the antibody’s cognate antigen, such effects have not been extensively studied. Here, we developed a bio-layer interferometry (BLI)-based analytical assay to assess the degree to which the affinity of pT181-tau antibodies is altered by the phosphorylation of serine or threonine residues near the target epitope. Our results revealed that phosphorylation near T181 negatively affected the binding of pT181-tau antibodies to their cognate antigen to varying degrees. In particular, two of three antibodies tested showed a complete loss of affinity for the pT181 target when S184 or S185 was phosphorylated.</p> <p>In the studies outlined in Chapter 3, we examined the relative abilities of different tau proteoforms to induce seeded tau aggregation and to themselves undergo seeded aggregation in cultured cells. Accumulating evidence suggests that tau aggregates, including NFTs, spread in a stereotypical pattern across neuroanatomically connected brain regions. This spreading phenomenon is thought to occur via a prion-like mechanism involving the release of tau aggregates from a diseased neuron into the extracellular space, aggregate uptake by neighboring healthy neurons, and the formation of new aggregates in the cytosol of the recipient cells via a seeding process. Although research over the past decade has revealed key molecular events involved in the cell-to-cell transmission of tau aggregates, the impact of the protein’s domain structure and phosphorylation profile on the efficiency of prion-like propagation remains poorly defined. Here, we compared three tau variants – K18, 0N4R, and 2N4R – in terms of their aggregation and seeding efficiencies in recombinant protein solutions and in cell culture models. Our results revealed that K18 had the highest fibrillization rate and yield among the three tau variants. Recombinant preformed fibrils (PFFs) derived from all three variants had similar seeding efficiencies. Additionally, we investigated the relationship between tau phosphorylation and aggregation. We found that hyperphosphorylated tau did not undergo self-assembly in the absence of heparin, whereas it formed fibrils at low yield in the presence of the cofactor. Moreover, hyperphosphorylated tau PFFs produced under these conditions induced seeded tau aggregation in cell culture.</p> <p>Taken together, these results point to critical roles of tau proteoforms as both AD biomarkers and drivers of disease progression. Our results indicate that the presence of different combinations of phosphorylated residues near a target phospho-tau antigen can affect the accuracy of antibody-based biomarker assays. In addition, the domain structure and phosphorylation profiles of tau proteoforms associated with AD and other tauopathies likely have a profound influence on the evolution of tau pathology in these disorders. Our findings highlight the importance of accounting for the molecular diversity of tau proteoforms in tauopathies and provide valuable insights into molecular determinants influencing tau aggregation and propagation in the brains of patients.</p>
59

Structure of bio-macromolecular complexes by solid-state Nuclear Magnetic Resonance / Structure de complexes biologiques macromoléculaires par Résonance Magnétique Nucléaire du solide

Barbet-Massin, Emeline 03 May 2013 (has links)
La RMN du solide a récemment émergé en tant que technique très puissante en biologie structurale, permettant de caractériser au niveau atomique des systèmes qui ne peuvent être étudiés par d’autres méthodes. Des protocoles spécifiques à la RMN du solide sont à présent bien établis pour la préparation des échantillons, l’attribution des spectres et l’acquisition de contraintes structurales. Ensemble, ces protocoles ont ouvert la voie aux premières déterminations de structures tridimensionnelles de molécules biologiques à l’état solide avec une résolution atomique, et ce non seulement pour des échantillons protéiques microcristallins, mais également pour des systèmes plus complexes tels que des fibrilles ou des protéines membranaires.La détermination structurale de tels systèmes est cependant encore loin d’être une routine, et des avancées de plus large ampleur sont attendues grâce à des développements aux niveaux méthodologique et matériel. Pour cette raison, une majeure partie du travail présenté dans cette thèse a été consacrée au développement d’expériences à la fois nouvelles et sophistiquées pour améliorer la sensibilité et la résolution des méthodes déjà existantes pour attribuer les spectres et élargir les possibilités offertes par la RMN du solide en vue d’étudier la structure de systèmes protéiques plus larges. Ces développements reposent notamment sur l’utilisation de champs magnétiques très intenses et sur la rotation des échantillons à l’angle magique dans la gamme des très hautes vitesses angulaires. Nous montrons que dans ce cadre, il est possible de concevoir des expériences utilisant uniquement des champs radiofréquences à faible puissance ainsi que d’utiliser des transferts sélectifs, l’acquisition de corrélations à travers les liaisons chimiques et la détection proton.En particulier, nous montrons que des expériences de corrélation homonucléaire reposant sur des transferts scalaires deviennent une alternative compétitive aux expériences basées sur des transferts dipolaires. Deux nouvelles séquences d’impulsion permettant de détecter des corrélations 13C-13C à travers les liaisons chimiques avec une excellente résolution sont présentées; couplées à des transferts 15N-13C, elles permettent l’attribution des résonances de la chaîne principale des protéines avec une grande sensibilité.De plus, nous démontrons qu’il est possible d’obtenir des raies très fines pour les résonances de protons dans des protéines complètement protonées à l’état solide grâce à la rotation à l’angle magique à ultra-haute vitesse, sans avoir recours à la deutération. Dans ce contexte, nous avons développé de nouvelles stratégies permettant d’attribuer rapidement et de façon fiable les résonances des spins 1H, 15N, 13CO, 13CA et 13CB dans différentes classes de protéines, ainsi que pour mesurer des contraintes structurales à partir des distances entre protons. L’approche proposée repose sur la haute sensibilité des protons et accélère donc considérablement les processus d’attribution et de détermination structurale des protéines à l’état solide, comme illustré sur la protéine beta-2-microglobuline.Enfin, nous avons appliqué cette nouvelle approche pour réaliser l’attribution et l’étude structurale et fonctionnelle de trois catégories de complexes protéiques: les fibrilles amyloidogènes formées par beta-2-microglobuline, les nucléocapsides du virus de la rougeole, et les nucléocapsides d’Acinetobacter phage205. Nous avons également utilisé la technique de Polarisation Nucléaire Dynamique pour obtenir des informations sur l’ARN des nucléocapsides du virus de la rougeole.Nous considérons que les résultats présentés dans cette thèse représentent une avancée substantielle dans le domaine de la RMN du solide appliquée à la biologie structurale. Grâce aux progrès actuels dans ce domaine, l’impact de la RMN biomoléculaire à l’état solide promet d’augmenter dans les prochaines années. / Solid-state NMR has recently emerged as a key technique in modern structural biology, by providing information at atomic level for the characterization of a wide range of systems that cannot be investigated by other atomic-scale methods. There are now well established protocols for sample preparation, resonance assignment and collection of structural restraints, that have paved the way to the first three-dimensional structure determinations at atomic resolution of biomolecules in the solid state, from microcrystalline samples to fibrils and membrane-associated systems. These determinations are however still far from being routine, and larger breakthroughs are expected with further methodological and hardware developments. Accordingly, most of the work presented in this thesis consists of the development of new, sophisticated NMR experiments to improve the sensitivity and resolution of the currently existing schemes for resonance assignment and to extend the capabilities of solid-state NMR in terms of structural investigation of proteins for the analysis of large substrates. These developments notably rely on the use of very high magnetic fields and ultra-fast magic-angle spinning (MAS). We show the great potential of this particular regime, which enables the use of low-power experiments and the acquisition of selective cross-polarization transfers, through-bond correlations and 1H-detected correlations.In particular, we show that homonuclear correlation experiments based on through-bond transfers become competitive alternatives to dipolar transfer schemes. Two new pulse sequences that detect sensitive and resolved 13C-13C through-bond correlations are introduced, which coupled to 15N-13C dipolar transfer steps provide sensitive routes for protein backbone resonance assignment.Furthermore, we demonstrate that narrow 1H NMR line widths can be obtained for fully protonated proteins in the solid state under ultra-fast MAS, even without perdeuteration. In this context, we have developed new strategies for extensive, robust and expeditious assignments of the 1H, 15N, 13CO, 13CA and 13CB resonances of proteins in different aggregation states, and new schemes for the measurements of site-specific 1H-1H distance restraints. This approach relying on the very high sensitivity of 1H spins remarkably accelerates the processes of assignment and structure determination of proteins in the solid state, as shown by the assignment and de novo structure determination of native beta-2-microglobulin. Finally, we apply this new approach to perform resonance assignment and to study structural and dynamic features of three complex protein aggregates: amyloid fibrils formed by native and D76N beta-2-microglobulin, Acinetobacter phage 205 nucleocapsids and measles virus (MeV) nucleocapsids. We also used Dynamic Nuclear Polarization to obtain the first information about RNA in MeV nucleocapsids.We believe that the results presented in this thesis represent a substantial step forward for solid-state NMR in structural biology. With all the current advances in the field, the impact of biomolecular solid-state NMR is likely to increase in the next years.
60

Solid-state NMR of (membrane) protein complexes: Novel methods and applications / Festkörper-NMR von (Membran-) Proteinkomplexen: Neue Methoden und Anwendungen

Andronesi, Ovidiu-Cristian 18 April 2006 (has links)
No description available.

Page generated in 0.033 seconds