211 |
Evaluation and development of reagents and improved protocol for flow cytometry readout using in situ PLAOhlsson, Sandra January 2011 (has links)
The diagnosis of cancer today is obsolete, depending upon pattern recognition and non-quantifiable data. The time consuming diagnosis is often performed on biopsies, fixed using non standardised procedures, and leaves room for dubious results. The diagnosis is also invasive, exposing patients to risk of infections and discomfort due to the need of tissue samples. The knowledge about changes in protein expression levels related to cancer can instead be utilized to generate a new diagnostic tool. By adapting the in situ proximity ligation assay (in situ PLA) to cells in solution, it is possible to detect proteins, or protein interactions, within cells without the need for tissue samples. Since the method is both highly sensitive and specific, it delivers reliable results. In this report, the in situ PLA method for cells in solution is combined with flow cytometry readout. Hence, a new and less invasive diagnostic tool for cancer, delivering highly accurate high throughput single cell analysis, may be on the rise.
|
212 |
Effects of <i>in ovo</i> herbicide exposure in newly hatched domestic chickens (<i>Gallus gallus</i>) and ducks (<i>Anas platyrhynchos</i>)Stoddart, Reagen A 04 January 2007 (has links)
Agriculture is a valuable economic resource in western Canada, but for decades farmers have focused on intensive production practices while ignoring the long-term health and maintenance of the land. In recent years, the use of conservation agricultural techniques has been encouraged in an effort to conserve prairie landscape while sustaining cropland productivity. Sustainable agricultural practices that promote soil and water conservation and benefit wildlife and prairie biodiversity include conservation tillage and planting of winter cereal crops. Many species of wild birds nest in the ground cover provided by minimum tillage and fall seeded cropland in the spring. Although habitat quality in conservation areas is superior for birds, there is potential for eggs of ground nesting birds to be exposed to herbicides during spring weed control operations. Herbicides commonly used on the prairies to control weed growth in conservational systems include 2,4-D and Buctril-M®. Since the subtlethal effects of exposure to these herbicides may include DNA damage and immunomodulation, the overall goal of this study was to assess whether <i>in ovo</i> exposure to the herbicides 2,4-D and Buctril-M® adversely affects genetic material and/or immune system function in newly hatched domestic chickens (<i>Gallus gallus</i>) and ducks (<i>Anas platyrhynchos</i>), as surrogates for wild bird species.<p>Study design attempted to reproduce actual field exposures by use of an agricultural field spray simulator to apply formulated herbicides (as opposed to pure active ingredients) at recommended crop application rates. In three separate experiments, fertile chicken eggs were sprayed with 2,4-D ester formulation or with Buctril-M® formulation, and fertile duck eggs were sprayed with 2,4-D ester formulation, during either an early (embryonic day 6) or late (embryonic day 15 for chickens or embryonic day 21 for ducks) stage of incubation. Genotoxicity and immune system function were evaluated in the hatchlings as the main toxicological endpoints to assess potential subtle effects from herbicide exposure, but additional measures of general health and development were also evaluated. Two endpoints were used to assess subtle changes to genetic integrity. The comet assay was used to detect structural damage (strand breaks) in avian lymphocyte DNA, as an index of acute genotoxic effects. Flow cytometry was used to examine potential clastogenic effects of the herbicides, by determining if chromosomal changes resulted in variability in the DNA content of avian erythrocytes. Several endpoints were examined to evaluate potential exposure-induced effects on the immune system. Immunopathological assessment of chicks and ducklings included differential lymphocyte counts, as well as immune organ weights and histopathology. The cell-mediated and humoral immune responses in hatchlings were assessed using the delayed-type hypersensitivity test and measurement of systemic antibody production in response to immunization, respectively.
Exposure of fertile chicken and duck eggs to Buctril-M® or 2,4-D had no effects on the biomarkers of genetic integrity in this study. Differences in herbicide treatment (high and low concentrations) and times of exposure (early and late incubation stages) did not translate into noticeable factor effects in final model analyses for any of the genotoxicity assay variables evaluated in newly hatched chickens exposed in ovo to 2,4-D. Similarly, comet assay outcomes in chicks exposed to Buctril-M® were not significantly associated with either herbicide treatment or time of exposure as fixed effect factors. Results of the comet assay using peripheral lymphocytes from ducklings provided evidence of potential primary genetic damage associated with the time of spray exposure in ovo. Comet tail DNA content was significantly associated (P = 0.0269) with exposure times, suggesting that ducks may be increasingly sensitive to spray exposure conditions at an early stage of embryological development. Effects of exposure timing were not attributable to herbicide treatment. Although 2,4-D exposure time was associated with DNA strand breakage in ducklings, there was no evidence of chromosomal damage. However, an association between the HPCV values (a measure of DNA content variability) and time of spray exposure was observed in the experiment where 21-day-old chickens were treated in ovo with Buctril-M®. The mean HPCV value for the early exposure group (E6) was significantly greater (P = 0.0210) than that of the group treated later in incubation (E15). However, Buctril-M® the concentration of herbicide did not have any influence on this outcome, and the reason for the difference between exposure times is uncertain, but may be attributed to stress associated with manipulations during spraying. An increase in HPCV, reflecting greater intercellular DNA variability, is indicative of increased incidence of chromosomal damage, which may be an effect of disturbance during early periods of incubation as a result of exposure conditions.<p>Among the panel of immunotoxicity tests conducted to evaluate the effects of <i>in ovo</i> exposure to 2,4-D and Buctril-M® on the developing avian immune system, only heterophil/ lymphocyte (H/L) ratios and relative immune organ weights were significantly associated with either herbicide treatment or time of spray exposure in all three experiments. In 21-day-old chicks exposed in ovo to 2,4-D, relative bursa weight was associated with the different herbicide treatments (P = 0.0006). Relative bursa weights were significantly lower in chicks in the low dose group, while the opposite effect was observed in the high dose chicks, compared with the controls. It is unlikely that the observed decrease in bursa weight in the low dose group is causally related to herbicide exposure because a consistent dose-response effect was not observed, but this outcome may be explained by a compensatory immune response. The relative spleen weights of newly hatched chickens exposed in ovo to Buctril-M® exhibited a significant association with herbicide treatment (P = 0.0137). Relative spleen weights for birds in the low dose treatment groups were significantly different than both the control (P = 0.0179) and high dose groups (P = 0.0125). However, there was no significant difference between high dose and control groups, and this outcome reduces the likelihood of a causal relationship between spleen weight and herbicide exposure. In the parallel experiment involving in ovo exposure to 2,4-D to ducklings, relative bursa weight was associated with time of spray exposure (P = 0.0434). Ducklings that hatched from eggs exposed to spray on day 6 of incubation exhibited greater mean relative bursa weights than the birds exposed to spray at a later incubation stage (E21). This result implies that spray exposure during earlier stages of development may result in conditions which affect the humoral immune response, if increased bursal weight is associated with increased B lymphocyte and antibody production. In the same experiment, mean H/L ratios in peripheral blood samples from 21-day-old ducklings were significantly different between the groups treated with the high concentration of 2,4-D and water (control) (P = 0.0395). Although ratios from the birds in the low dose groups were not significantly different from the control groups, changes in H/L ratio values demonstrate a dose dependent relationship with increasing herbicide exposure.<p>Residue analysis of chicken and duck eggs in this study measured transfer of herbicide through the shell and into the embryo 24 hours and up to 5 days (chickens only) after spraying. Mean 2,4-D residue concentrations were higher in both chicken and duck eggs from the high dose (10X) groups than in eggs exposed to the recommended field rate of herbicide application (1X). Embryo residue concentrations in the chicken eggs increased from the day following exposure to 5 days after spraying, in both low and high dose groups. This observation indicates that the risk of contaminant-induced adverse effects may continue to increase for at least several days after exposure, thereby influencing the concentration of herbicide to which the developing embryo is exposed.<p>On the Canadian prairies, wild bird eggs are potentially to be exposed to 2,4-D and Buctril-M® during various stages of embryonic development. The present study examined effects of herbicide exposure at two distinct times during incubation, and demonstrated the potential for subtle impacts on genetic integrity and the immune system. Results indicate that spray exposure during earlier stages of organogenesis may cause more significant adverse effects. Given the possible harmful consequences of the observed changes on the long-term health of wild birds, further research is needed in order to better characterize the risks of in ovo agrochemical exposure in prairie ecosystems.
|
213 |
Population structure and dynamics of polyphosphate accumulating organisms in a communal wastewater treatment plantGünther, Susanne 10 July 2012 (has links) (PDF)
Polyphosphat-speichernde Bakterien entfernen das im Abwasser enthaltene Phosphat durch Speicherung in Form von Granula, die dann mit einem Teil des Belebtschlammes aus dem Abwasser entfernt werden können. Dies ist wichtig um negative Einflüsse auf Oberflächengewässer wie Flüsse und Seen so gering wie möglich zu halten. Trotz intensiver Forschung ist der Prozess der sogenannten biologischen Phosphatelimination oft uneffektiv und im Jahresverlauf instabil, da über die im Belebtschlamm aktiven Polyphosphat-speichernden Bakterien nur wenig bekannt ist. Hauptproblem ist hierbei die geringe Kultivierbarkeit der Bakterien unter definierten Bedingungen (nur etwa 10-15 % der Mikroorganismen im Belebtschlamm sind kultivierbar). Aus diesem Grund war das Ziel der Arbeit die aktiven, Polyphosphat-speichernden Bakterien durchflusszytometrisch zu bestimmen und deren Dynamiken im Belebtschlamm kultivierungsunabhängig zu messen.
Zunächst wurde ein Fixierungsprotokoll für die durchflusszytometrische Untersuchung der Polyphosphat-speichernden Bakterien erarbeitet, welches die größtmögliche Stabilität der hochdiversen mikrobiellen Gemeinschaft in Belebtschlammproben gewährleistet. Eine Mischung aus den Metallen Barium und Nickel (jeweils 5 mM) in einer 10%igen Natriumazidlösung erwies sich als bestes Fixierungsmittel mit einer Belebtschlamm-Stabilität von mindestens 9 Tagen. Um sowohl den DNA-als auch den Polyphosphat-Gehalt der Zellen messen zu können wurde weiterhin eine neue und sehr spezifische Polyphosphatfärbung auf Basis des fluoreszierenden Antibiotikums Tetrazyklin etabliert. Tetrazyklin bindet divalente Kationen, die auch in großer Menge in Polyphosphatgranula enthalten sind und fluoresziert gelblich grün. Die entwickelten Methoden zur Fixierung und Polyphosphatfärbung wurden an Belebtschlamm einer kommunalen Kläranlage getestet. Neben DNA- und Polyphosphat-Gehalt der Bakterienzellen wurde eine Vielzahl abiotischer Parameter (pH, Temperatur, Leitfähigkeit, …) gemessen. Diese wurden zusammen mit den durchflusszytometrischen Daten mittels Korrelationsanalyse ausgewertet. Hieraus ergaben sich wichtige Hinweise auf die Art der Polyphosphat-speichernden Bakterien, fördernde und störende Einflüsse des in der Kläranalage behandelten Abwassers auf die biologische Phosphatelimination und die Abhängigkeiten der mikrobiellen Gemeinschaft von Faktoren wie Temperatur, pH oder der anfallenden Regenmenge. Diese Erkenntnisse können genutzt werden um die biologische Phosphatelimination aus dem Abwasser zu verbessern und damit den Weg zu einer Ressourcen- und Umweltschonenden Phosphatrückgewinnung zu bereiten. Außerdem ist es, bei Kenntnis des kläranlagenspezifischen Prozesses, möglich anhand der durchflusszytometrischen Daten schnell die aktuelle Situation zu erfassen und gegebenenfalls rechtzeitig auf Änderungen zu reagieren, bevor es zu einer massiven Störung kommt.
Eine Kombination von Durchflusszytometrie und der Erfassung abiotischer Daten ist nicht nur auf die biologische Phosphateliminierung anwendbar, sondern auch auf viele andere wissenschaftliche Fragestellungen.
|
214 |
The cell cycle phase specificity of DNA damage induced by radiation, peroxide and chemotherapeutic drugs targeting topoisomerase II, and CD4 and CD8 receptor expression on apoptotic human lymphocytes /Potter, Alan J. January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (leaves 128-159).
|
215 |
Understanding cell death response to gold nanoparticle-mediated photothermal therapy in 2D and 3D in vitro tumor models for improving cancer therapyPattani, Varun Paresh 10 February 2014 (has links)
Gold nanoparticles, a class of plasmonic nanoparticle, have increasingly been explored as an imaging and therapeutic agent to treat cancer due to their characteristic surface plasmon resonance phenomenon and penchant for tumor accumulation. Photothermal therapy has been shown as a promising cancer treatment by delivering heat specifically to the tumor site via gold nanoparticles. In this study, we demonstrate that gold nanorod (GNR)-mediated photothermal therapy can be more effective through the understanding of cell death mechanisms. By targeting GNRs to various cellular localizations, we explored the association of GNR localization with cell death pathway response to photothermal therapy. Furthermore, we compared the 2D monolayer experiments with 3D in vitro tumor models, multicellular tumor spheroids (MCTS), to mimic the structure of in vivo tumors. With MCTS, we evaluated the cell death response with GNRs distributed only on the periphery, as seen in typical in vivo studies, and distributed evenly throughout the tumor.
We demonstrated that GNR localization influences the cell death response to photothermal therapy by showing the power threshold necessary to induce significant apoptotic and necrotic increases was lower for internalized GNRs than membrane-bound GNRs. Furthermore, apoptosis was found to increase with increasing laser power until the necrotic threshold and decreased above it, as necrosis became the dominant cell death pathway response. A similar trend was revealed with the 3D MCTS; however, the overall cell death percentages were lower, most likely due to the upregulated cell repair response and varied GNR distributions due to the presence of cell-cell and cell-matrix interactions. Furthermore, the uniformly distributed GNRs induced more apoptosis and necrosis than GNRs located in the MCTS periphery. In conclusion, we quantitatively analyzed the cell death pathway response to GNR-mediated photothermal therapy to establish that it has some dependence on GNR localization and distribution to gain a more thorough understanding of this response for photothermal therapy optimization. / text
|
216 |
Nanomaterials characterization and bio-chemical sensing using microfabricated devicesYu, Choongho 28 August 2008 (has links)
Not available / text
|
217 |
7,8-Dihydroneopterin and its effect on the formation of foam cells.Davies, Sian Patricia Mary January 2015 (has links)
Atherosclerosis (Heart Disease) is an inflammatory disease caused by the formation of plaque within the arterial wall. In response to inflammation, monocytes enter the artery wall, differentiate into macrophages and take up altered low-density-lipoprotein (such as oxidised-LDL). This oxLDL is taken up into the phagocytotic macrophages via the action of the scavenger receptors. If more oxLDL is engulfed than the cell can process, they further differentiate into lipid-loaded foam cells. These are the main cell type found in atherosclerotic plaques. The scavenger receptor CD36 is responsible for 70% of oxLDL uptake by macrophages. Previous studies show that CD36 expression can be down regulated by the antioxidant, 7,8-dihydroneopterin. This research focuses on the effect of CD36 down regulation by 7,8-dihydroneopterin on foam cell formation.
Human macrophages prepared from monocytes purified from human blood were incubated with copper oxidised LDL for up to 48 hours. Macrophage accumulation of the sterols was measured using a high performance chromatograph (HPLC) method developed as part of this project. The HPLC analysis measured: cholesterol, cholesteryl-oleate and -palmitate and 7-ketocholesterol accumulation within human macrophages. A flow cytometry procedure was developed where the strongly adherent macrophages could be lifted from the tissue culture plates before immuno staining for CD36. Effect of incubating macrophages with 7,8-dihydroneopterin on the formation of foam cells was studied by measuring the lipid content by HPLC and flow cytometry measurement of CD36.
HPLC analysis showed non-cytotoxic levels of oxLDL produced a large accumulation of cholesterol and cholesteryl esters in the macrophages. Cholesterol, 7-ketocholesterol and cholesteryl-oleate and -palmitate concentrations in the cells rose significantly over the first 24 hours and stayed at a steady level for the following 24 hours. CD36 levels was further analysed on human macrophages. This study shows that foam cell formation can be measured using human macrophages. 7,8-Dihydroneopterin treatment resulted in a reduction of cholesterol and oxysterol uptake back to basal levels. It also reduced CD36 cell surface expression by a third. These results suggest that even a small reduction in CD36 cell surface expression may have a large effect on foam cell formation. This is another mechanism by which 7,8-dihydroneopterin protects against atherosclerosis developing.
|
218 |
Immunological assays relevant to definition of bovine theileria parva-specific cytotoxic CD8+ T cell responsesMusembi, Susan Mbithe January 2012 (has links)
A major objective in Theileria parva subunit vaccine development is to induce a vaccine antigen specific response mediated by cytotoxic CD8+ T cells (CTL). Therefore it is essential to be able to measure the frequency of the responding CD8+ T cells after vaccination and correlate it with a clinical outcome on challenge. Recently concluded immunogenicity and efficacy studies of T. parva specific CTL antigens showed successful induction of CTL responses in some animals, which correlated with reduced disease severity after challenge. To provide correlates of immunity antigen-specific CD8+ T cell mediated IFN-γ responses and CTL lytic responses were measured over the course of the experiments. Several challenges presented in these trials aimed at optimising vaccine efficacy. While the IFN-γ ELISPOT is a sensitive and reliable assay widely used in vaccine research, the use of chromium/indium release assay remains to be the only assay in use that measures T. parva-specific CTL activity. Hence the overall goal of the study was to develop novel reagents and novel assays to identify parasite-specific CD8+ T lymphocytes with lytic potential. To address this objective, bovine perforin, granzymes A and B, as specific effector proteins expressed in activated CTL were cloned and expressed using a baculovirus expression system. Sequence analysis of the cloned cDNAs showed the isolated cDNA belonged to the perforin and granzyme sub-families respectively. Perforin cDNA demonstrated 85% homology to human perforin with presence of conserved regions resembling calcium binding motif, membrane attack complex component as well complement protein. The sequences encoded by the cloned granzyme A and B cDNAs have the features of a trypsin like serine protease and demonstrates over 70% homology to the human cDNA over the active enzyme region as well catalytic residues characteristic of serine proteases. The expressed polypeptides of all three proteins were used to produce specific antibodies for use as reagents in immunoassays including ELISpot and intracellular staining for flow cytometric analysis. While the antibodies showed reactivity to the recombinant proteins, these reagents displayed different functionality in the recognition of the native protein. Peptide-major histocompatibility complexes (MHC) class I tetrameric complexes (tetramers) are proving invaluable as fluorescent reagents for enumeration, characterisation and isolation of peptide-specific CD8+ T cells and have afforded advantages to phenotype antigen-specific T cells with minimal in vitro manipulation. Fluorescent bovine tetramers were shown to specifically stain antigen-specific CTL by directly binding the T cell receptor (TCR). Analyses of CD8 T-cell responses in live-vaccine immunised cattle also showed that this method is robust and demonstrates changes in the kinetics and specificity of the CD8+ T cell response in primary and secondary infections with T. parva. On average, results of functional assays and tetramer staining followed parallel trends, measured roughly the same populations and allowed for surface and intracellular staining for CD8 T cell marker and perforin, respectively, demonstrating a method that reliably quantifies the frequency, phenotype and function of specific CD8+ T cells. The technical simplicity, rapidity and ability of the flow cytometric technique described in this thesis to measure low frequency antigen-specific responses suggests that tetramer staining, combined with functional assays could be broadly applicable to the valuation of vaccination efficacy to determine which protocols are most successful in inducing CTL responses.
|
219 |
Combining environmental chemistry, somatic biomarkers, and population genetics: an innovative approach in wildlife ecotoxicologyMatson, Cole Wesley 30 September 2004 (has links)
The Caspian region and specifically the Apsheron peninsula of Azerbaijan is known to be polluted with a variety of environmental contaminants, making risk assessment difficult. The wetlands of Sumgayit contain particularly complex mixtures of contaminants. Flow cytometry and the micronucleus assay were used to assess chromosomal damage in aquatic turtles and frogs inhabiting contaminated wetlands in Azerbaijan. By evaluating biomarkers that are indicative of somatic effects, elevated chromosomal damage was documented at several sites in Azerbaijan relative to reference sites. Sediment samples were analyzed for polycyclic aromatic hydrocarbons (PAHs), organochlorines (OCs), and mercury to evaluate contaminant associations with genetic damage. Sediment samples revealed heterogeneous patterns of PAH and mercury concentrations throughout Sumgayit. Significant positive correlations were documented between both PAH and mercury sediment concentrations and chromosomal damage. Population genetic methods were employed to study the effects of long-term chronic contaminant exposure in marsh frogs from Sumgayit. The Sumgayit region has reduced levels of genetic diversity, likely due to environmental degradation. One of the most contaminated sites in Sumgayit, WTP, appears to be a source of new mutations as a result of an increased mutation rate. Finally, the Sumgayit region seems to act as an ecological sink, with levels of gene flow into the region exceeding gene flow out of the region. This study provides not only exposure and biomarker data, but also an integrated method for assessing the cumulative population impacts of contaminant exposure by studying both population genetic and evolutionary effects. The results presented here will be used in conjunction with those of ongoing research involving both wildlife and humans to develop comprehensive ecological and human risk assessments.
|
220 |
Biochemical investigation of anti-cancer activity of Tulbaghia violaceaSaibu, Gbemisola Morounke January 2012 (has links)
Natural products have been a source of many pharmaceutical drugs and a number of drugs that are currently used in the treatment of cancer are derivatives of compounds originally isolated from natural products. There is evidence that extracts of Tulbaghia violacea can be used to treat cancer. The activation of apoptosis in cancer cells is a target for the development of novel anti-cancer drugs since one of the characteristics of cancer cells is resistance to apoptosis due to the deregulation of biochemical pathways leading to apoptosis. In fact, many current anti-cancer drugs exert their
effects through the activation of apoptosis. Previous studies showed that extracts of T.violacea induce apoptosis in cancer cells and one study reported on the isolation of a compound (methyl-Ô-D-glucopyranoside), which is responsible for the pro-apoptotic activity of the T.violacea extract. Therefore the aim of this study was to investigate the anti-cancer activity of methyl-Ô-Dglucopyranoside and extracts prepared from T.violacea. In this study the pro-apoptotic activity of
methyl-Ô-D-glucopyranoside and extracts prepared from T.violacea were investigated on a panel of human cancer cell lines, which included HepG2, MCF7, H157, HT29 and the non-cancerous cell line, KMST6. The induction of apoptosis was evaluated by flow cytometry using several bioassays which measures biochemical events (caspase activation, phosphatidylserine externalisation and reactive oxygen species (ROS) production that is associated with the induction of apoptosis. The
results demonstrated that the effects of methyl-ï¡-D-glucopyranoside on cultured cells are transient and that the cells recover from the effects of methyl-ï¡-D-glucopyranoside. This suggested thatmethyl-Ô-D-glucopyranoside is not the compound responsible for the pro-apoptotic bioactivity in the T.violacea extract. This study also showed that cytotoxic and pro-apoptotic bioactivity of the leaf-extract was significantly higher in comparison to the tuber-extract. The bioactivity of the organic solvent extracts (dichloromethane, hexane, methanol and 50% methanol/water) of T.violacea leaves was also significantly higher than water extracts of T.violacea leaves. A comparison of the different organic extracts prepared from the T.violacea leaves showed that the highest activity was observed for the dichloromethane and hexane extracts. In an effort to identify the bioactive compound(s) the dichloromethane extract was subjected to Versaflash® column chromatography. However, due to problems experienced with the solubility of the dichloromethane
sub-fractions, these compounds could not be tested for their bioactivity. Palmitone (16-hentriacontanone) was identified as one of the major compounds present in the dichloromethane sub-fractions. This compound was previously shown to have anticonvulsant bioactivity but there is no evidence in the literature that it has anti-cancer or pro-apoptotic activities. Fingerprinting of the methanol extract showed the presence of long chain fatty acid derivatives, flavonoids and allicin derivatives in the methanol extract. Although, this study failed to isolate the pro-apoptotic bioactive
compound(s) present in the extracts of T.violacea, it confirmed that extracts of this plant induce apoptosis in cultured human cancer cell lines.
|
Page generated in 0.0406 seconds