• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 177
  • 65
  • 61
  • 14
  • 9
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 415
  • 415
  • 415
  • 106
  • 98
  • 88
  • 85
  • 83
  • 65
  • 64
  • 62
  • 58
  • 56
  • 55
  • 52
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
361

Simula??o computacional da intera??o fluido-estrutura em bombas de cavidades progressivas

Almeida, Rairam Francelino Cunha de 26 March 2010 (has links)
Made available in DSpace on 2014-12-17T14:58:00Z (GMT). No. of bitstreams: 1 RairamFCA_DISSERT2.pdf: 4758176 bytes, checksum: bfb1653549a50848b4721bda9a78bd6e (MD5) Previous issue date: 2010-03-26 / The pumping through progressing cavities system has been more and more employed in the petroleum industry. This occurs because of its capacity of elevation of highly viscous oils or fluids with great concentration of sand or other solid particles. A Progressing Cavity Pump (PCP) consists, basically, of a rotor - a metallic device similar to an eccentric screw, and a stator - a steel tube internally covered by a double helix, which may be rigid or deformable/elastomeric. In general, it is submitted to a combination of well pressure with the pressure generated by the pumping process itself. In elastomeric PCPs, this combined effort compresses the stator and generates, or enlarges, the clearance existing between the rotor and the stator, thus reducing the closing effect between their cavities. Such opening of the sealing region produces what is known as fluid slip or slippage, reducing the efficiency of the PCP pumping system. Therefore, this research aims to develop a transient three-dimensional computational model that, based on single-lobe PCP kinematics, is able to simulate the fluid-structure interaction that occurs in the interior of metallic and elastomeric PCPs. The main goal is to evaluate the dynamic characteristics of PCP s efficiency based on detailed and instantaneous information of velocity, pressure and deformation fields in their interior. To reach these goals (development and use of the model), it was also necessary the development of a methodology for generation of dynamic, mobile and deformable, computational meshes representing fluid and structural regions of a PCP. This additional intermediary step has been characterized as the biggest challenge for the elaboration and running of the computational model due to the complex kinematic and critical geometry of this type of pump (different helix angles between rotor and stator as well as large length scale aspect ratios). The processes of dynamic generation of meshes and of simultaneous evaluation of the deformations suffered by the elastomer are fulfilled through subroutines written in Fortan 90 language that dynamically interact with the CFX/ANSYS fluid dynamic software. Since a structural elastic linear model is employed to evaluate elastomer deformations, it is not necessary to use any CAE package for structural analysis. However, an initial proposal for dynamic simulation using hyperelastic models through ANSYS software is also presented in this research. Validation of the results produced with the present methodology (mesh generation, flow simulation in metallic PCPs and simulation of fluid-structure interaction in elastomeric PCPs) is obtained through comparison with experimental results reported by the literature. It is expected that the development and application of such a computational model may provide better details of the dynamics of the flow within metallic and elastomeric PCPs, so that better control systems may be implemented in the artificial elevation area by PCP / O sistema de bombeamento por cavidades progressivas est? sendo cada vez mais empregado na ind?stria do petr?leo, devido ? sua capacidade de eleva??o de ?leos altamente viscosos ou de fluidos com grandes concentra??es de areia ou outras part?culas s?lidas. Uma Bomba de Cavidades Progressivas (BCP) ? composta, basicamente, por um rotor - uma pe?a met?lica de forma semelhante a um parafuso exc?ntrico, e um estator - um tubo de a?o revestido internamente por uma h?lice dupla, a qual pode ser r?gida ou deform?vel/elastom?rica. Em geral, uma BCP ? submetida a uma combina??o de press?o do po?o com press?o gerada pelo pr?prio processo de bombeio. Em BCPs elastom?ricas, essa combina??o de esfor?os comprime o estator, gerando ou aumentando a folga existente entre o rotor e o estator, reduzindo, portanto, o efeito de veda??o entre suas cavidades. Tal abertura da regi?o de selagem produz o que ? conhecido como escorregamento do fluido, diminuindo, com isso, a efici?ncia de sistema de bombeio por BCP. Dessa maneira, este trabalho se prop?e a desenvolver um modelo computacional tridimensional transiente do processo din?mico da intera??o fluido-estrutural (FSI) que ocorre no interior de BCPs met?licas e elastom?ricas. O objetivo principal ? avaliar, a partir do uso do modelo desenvolvido, as caracter?sticas din?micas de efici?ncia de bombeio por BCPs, em fun??o de informa??es locais e instant?neas detalhadas dos campos de velocidade, press?o e deforma??o no seu interior. Para o alcance de tais metas (desenvolvimento e uso do modelo), fez-se necess?rio o desenvolvimento de uma metodologia pr?pria para gera??o de malhas computacionais din?micas, m?veis e deform?veis, representando as regi?es fluida e estrutural de uma BCP. Tal procedimento caracterizou-se como o maior desafio para a elabora??o do modelo computacional, devido ? cinem?tica complexa e ? geometria cr?tica desse tipo de bomba (?ngulos de h?lice diferentes entre rotor e estator e grandes diferen?as de escala de comprimento). Os processos de gera??o din?mica das malhas e de avalia??o simult?nea das deforma??es sofridas pelo elast?mero s?o realizados atrav?s de sub-rotinas em linguagem Fortran 90, as quais interagem dinamicamente com o software de din?mica dos fluidos computacional CFX/ANSYS. Desde que o modelo linear el?stico ? empregado para avaliar as deforma??es elastom?ricas, n?o ? necess?rio usar nenhum software para an?lise estrutural. Entretanto, uma proposta inicial para simula??o din?mica no ANSYS empregando-se modelos constitutivos hiper-el?sticos para o elast?mero ? tamb?m apresentada no presente trabalho. A valida??o dos resultados produzidos com a presente metodologia (gera??o de malha, simula??o do escoamento em BCPs met?licas e simula??o da intera??o fluido-estrutural em BCPs elastom?ricas) ? obtida atrav?s da compara??o com resultados experimentais reportados pela literatura. Vislumbra-se que o desenvolvimento e aplica??o de tal ferramenta computacional poder?o fornecer maiores detalhes da din?mica do escoamento no interior de BCPs met?licas e elastom?ricas, de maneira que melhores sistemas de controle possam ser implementados na ?rea de eleva??o artificial por BCPs
362

Investigação sobre procedimentos de identificação de cargas axiais em dutos submersos a partir de respostas vibratórias / Investigation of a procedure for the identification of axial loads applied to a submerged beam by using vibration response

Kitatani Júnior, Sigeo 31 July 2014 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In the present thesis it is proposed and evaluated, both numerically and experimentally, an inverse procedure for the indirect determination of axial loads applied to submersed pipe-like structures, based on their dynamic responses. The investigation is motivated by the existence of practical problems encountered in the oil industry. An experimental bench has been designed and built, consisting in a reservoir inside which a tubular stainless steel beam has been mounted and tested. Special fixtures have been designed in such a way to enable to apply controlled axial loads and represent different types of boundary conditions. In parallel, computational routines have been developed for the two-dimensional modeling of the structure accounting for the effects of axial loads, flexible supports and fluid-structure interaction, based on the finite element approach. Having in mind the difficulties which are expected to be encountered when the methodology be applied in real conditions, some special dynamic test procedures have been considered, including Operational Modal Analysis (OMA), which enables to identify modal parameters from output-only measurements. Numerous scenarios have been considered using either numerically simulated or experimentally measured responses. As for the resolution of the inverse problem, two strategies have been investigated: the first consists in the deterministic resolution of a constrained optimization problem based on evolutionary algorithms, and the second, which enables to account for the presence of uncertainties in the experimental data, is a stochastic approach based on Bayesian inference, combined with Markov chains and Metropolis-Hastings algorithm. The results obtained confirm the operational feasibility and satisfactory accuracy provided by the suggested identification approaches. / Na presente tese de doutorado é proposto e avaliado numérica e experimentalmente um procedimento inverso para determinação indireta de carregamentos axiais aplicados a estruturas tubulares submersas a partir de suas respostas dinâmicas. A investigação é motivada pela existência de problemas práticos evidenciados pelo setor de tecnologia submarina da indústria petrolífera. Nesta proposta, as cargas axiais, que na prática não podem ser medidas diretamente, são identificadas através da resolução de um problema inverso, formulado como um problema de otimização, a partir das respostas dinâmicas da estrutura. Uma bancada experimental foi projetada e construída, composta de um reservatório dentro do qual foi ensaiado um tubo metálico de seção circular. Mecanismos de fixação e aplicação de carga à estrutura foram especialmente projetados de modo a permitir consideração de dois tipos diferentes de condição de contorno. Paralelamente, rotinas computacionais foram desenvolvidas para a modelagem numérica bidimensional da estrutura incluindo os efeitos de interação fluido-estrutura e das cargas axiais, com base no Método de Elementos Finitos. Tendo em vista o objetivo da aplicação da metodologia proposta em situações práticas, as quais envolvem dificuldades de execução de ensaios em ambientes submarinos, foram investigados procedimentos de ensaios dinâmicos especialmente adaptados a estas condições. Com este intuito, foi analisado o emprego da técnica de análise modal experimental denominada OMA (Operational Modal Analysis), que permite obter os parâmetros modais sem conhecimento das forças de excitação da estrutura. Numerosos cenários de identificação foram estudados utilizando tanto respostas dinâmicas simuladas numericamente, quanto respostas medidas experimentalmente. Visando considerar a influência de incertezas nos dados experimentais, o problema de identificação da carga axial também foi tratado utilizando uma abordagem estocástica, com base em inferência bayesiana, a partir da simulação de cadeias de Markov, associada ao algoritmo Metropolis-Hastings. Os resultados obtidos atestam a viabilidade operacional e a precisão satisfatória do procedimento de identificação proposto. / Doutor em Engenharia Mecânica
363

Modelagem matemática e simulação numérica para solução de problemas de interação fluido-estrutura utilizando metodologia de fronteira imersa

Kitatani Júnior, Sigeo 28 September 2009 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this work, the combined multi-direct forcing and immersed boundary method (IBM) were presented to simulate uid-structure interaction problems. The multi-direct forcing is used aim at satisfying the no-slip condition in the immersed boundary. For the numerical simulations was used a multi-purpose computer code that is being developed in the MFlab - Fluid Mechanics Laboratory of Federal University of Uberl^andia. Tests are made to validate the numerical schemes and routines were implemented to simulate uid-structures interaction problems. Furthermore, computational tools are developed to construct and manage and optimize the use of a Beowulf cluster where all the parallel simulations presented in this work were done. The Method of Manufactured Solutions has been used for order-of-accuracy verication in the computational uid dynamics code. Two uid-structure interaction problems were studied using this methodology. The rst is a ow over a sphere for some Reynolds numbers. The results were compared to empirical results, obtaining satisfactory approximations. The second one is a immersed simple pendulum. For this problem the results are in agreement with physics. Indeed, these are preliminar results. New tests must be done to make progress in the methodology. Improvements are proposed in the IBM, in the uid-structure model, in the turbulence model, in the method used to discretize the uid domain. It is also proposed to apply the methodology to real problems as risers and valves. / O presente trabalho tem como principal objetivo a aplicação do método multifoçagem (MMF) para solução numérica tridimensional de problemas de interação uidoestrutura, buscando-se garantir a condição de não-escorregamento na região da fronteira imersa. Para as simulações numéricas foi utilizado um código computacional multipropósito em desenvolvimento no MFlab - Laboratório de Mecânica dos Fluidos da Universidade Federal de Uberlândia. Foram feitas modificações nesse código para que se pudesse validá-lo para solução de problemas com fronteira imersa e foi implementada uma rotina para solução de um problema de interação uido-estrutura total. Além disso, foi desenvolvido um pacote de ferramentas computacionais que possibilitou instalar e melhorar o desempenho de um cluster do tipo Beowulf utilizado para o desenvolvimento das simulações num eriças em paralelo do presente trabalho. Utilizando o Método das Soluções Manufaturadas foram obtidas soluções sintetizadas para as equações de Navier-Stokes, o que possibilitou obter a ordem de convergência numérica do código computacional para problemas contínuos e a validação deste código para problemas envolvendo corpos imersos ao combinar a o método das soluções manufaturadas com a metodologia de fronteira imersa. Na sequência foi solucionado o problema de escoamento ao redor de uma esfera parada, cujos resultados foram comparados com referencias empíricas, obtendo-se boa aproximação. Ainda para esse caso foi feita a avalição da norma L2 para as soluções num eriças obtidas nos pontos lagrangianos verificando a garantia da condição de não-escorregamento e feita uma análise da inuência dos número de ciclos utilizados no método multi-forçagem. Foi vericado que a solução numérica obtida depende do número de ciclos o que faz com que seja necessário se estabelecer um critério de convergência para este método. Um segundo problema de interação uido-estrutura total foi estudado. Consiste em um pêndulo simples imerso em um uido que parte de uma dada posição angular inicial e oscila em torno da sua posição de equilíbrio, até parar. Para esse caso foram feitas análises quantitativas. Os resultados são preliminares mas coerentes com a física do problema, indicando que a metodologia é adequada para solução deste tipo de problema. / Mestre em Engenharia Mecânica
364

Études expérimentales de l'interaction fluide-structure sur surface souple : application aux voiles de bateaux / Experimental studies of the Fluid Structure Interaction on a soft surface : application to yacht sails

Augier, Benoît 04 July 2012 (has links)
Cette thèse vise à une meilleure compréhension de la dynamique du voilier et à la validation des outils numériques de prédiction de performances et d’optimisation par l'étude expérimentale in situ du problème aéro-élastique d'un gréement. Une instrumentation est développée sur un voilier de 8m de type J80 pour la mesure dynamique des efforts dans le gréement, de la forme des voiles en navigation, du vent et des attitudes du bateau. Un effort particulier est apporté à la mesure des caractéristiques géométriques et mécaniques des éléments du gréement, la calibration des capteurs et au système d'acquisition des données. Les principaux résultats montrent que le voilier instrumenté est un outil adapté pour les mesures instationnaires et soulignent l'amplitude de variation d'effort rencontrée en mer (20 à 50% de l'effort moyen dans une houle modérée). En outre, les variations du signal d'effort sont déphasées avec l'angle d'assiette, créant un phénomène d'hystérésis. Le comportement dynamique d'un voilier en mouvement diffère ainsi de l'approche quasi-statique. Les simulations numériques proviennent du code ARAVANTI, couplage implicite d’un code structure éléments finis ARA et d’un code fluide parfait, limitant son domaine de validité aux allures de près Les résultats de simulation sont très proches des cas stationnaires et concordent bien avec les mesures en instationnaire dans une houle de face. L'expérimentation numérique d'un gréement soumis à des oscillations harmoniques en tangage souligne l'importance de l'approche Interaction Fluide Structure (IFS) et montre que l’énergie échangée par le système avec la houle est reliée à la fréquence réduite et l'amplitude du mouvement. Certaines informations n'étant pas disponibles sur le voilier instrumenté, une expérience contrôlée en laboratoire est développée. Elle consiste en un carré de tissu tenu par deux lattes en oscillation forcée. Les mesures sur cette « voile oscillante » permettent d'étudier les phénomènes IFS avec décollement et sont utilisées pour la validation du couplage ARA-ISIS entre un code fluide Navier-Stokes (RANS) et le même code structure. / This work presents a full scale experimental study on the aero-elastic wind/sails/rig interaction in real navigation condition with the aim to give a reliable database of unsteady measurement. This database is used for the investigation of the dynamic behavior and loads in the rigging and for an experimental validation of an unsteady Fluid Structure Interaction (FSI) model. An inboard instrumentation system has been developed on a 8 meter yacht (J80 class) to simultaneously and dynamically measure the navigation parameters, yacht's motion, sails flying shape, wind and loads in the rigging. A special effort is made on mechanical and geometrical characteristics measurement, sensors calibration and data acquisition system synchronization. Results show that the instrumented boat is a reliable tool to measure the unsteady phenomena in navigation. Dynamic measurements at sea underline the load variation encountered, which represent 20 to 50% of the mean value in a moderate sea state. Oscillations of loads exhibit phase shift with the trim angle, reason for an hysteresis phenomenon, which shows that the dynamic behavior of a sail plan subject to yacht motion clearly deviates from the quasi-steady theory. Simulations are made with ARAVANTI, an implicit coupling of a Finite Element Method structural model ARA and an inviscid fluid model which restricts the simulation domain to upwind conditions. The simulation results compare very well with the experimental data for steady sailing conditions and show a good agreement in unsteady conditions (head swell). Numerical investigation of a sail plan submitted to harmonic pitching motion underlines the importance of FSI modeling and shows that the energy exchanged by the system with the swell increases with the motion reduced frequency and amplitude. Some information is not accessible on the instrumented boat and requires developing a controlled test case in laboratory. The experiment consists of a spinnaker fabric square mounted on two carbon battens moved in forced oscillation. This test case is used to study FSI phenomena with a separated flow and gives experimental results for the validation of the coupling ARA-ISIS of a RANS fluid model with the same structure model.
365

Sobre o acoplamento fluido-casca utilizando o método dos elementos finitos / On fluid-shell coupling using the finite element method

Rodolfo André Kuche Sanches 30 March 2011 (has links)
Este trabalho consiste no desenvolvimento de ferramentas computacionais para análise não linear geométrica de interação fluido-casca utilizando o Método dos Elementos Finitos (MEF). O algoritmo para dinâmica dos fluidos é explícito e a integração temporal é baseada em linhas características. O código computacional é capaz de simular as equações de Navier-Stokes para escoamentos compressíveis tanto na descrição Euleriana como na descrição Lagrangeana-Euleriana arbitrária (ALE), na qual é possível prescrever movimentos para a malha do fluido. A estrutura é modelada em descrição Lagrangeana total através de uma formulação de MEF para análise dinâmica não linear geométrica de cascas baseada no teorema da mínima energia potencial total escrito em função das posições nodais e vetores generalizados e não em deslocamentos e rotações. Essa característica evita o uso de aproximações de grandes rotações. Dois modelos de acoplamentos são desenvolvidos. O primeiro modelo, ideal para problemas onde a escala de deslocamentos não é muito grande comparada com as dimensões do domínio do fluido, é baseado na descrição ALE e o acoplamento entre as duas diferentes malhas é feito através do mapeamento das posições locais dos nós do contorno do fluido sobre os elementos de casca e vice-versa, evitando a necessidade de coincidência entre os nós da casca e do fluido. A malha do fluido é adaptada dinamicamente usando um procedimento simples baseado nas posições e velocidades nodais da casca. O segundo modelo de acoplamento, ideal para problemas com grande escala de deslocamentos tais como estruturas infláveis, considera a casca imersa na malha do fluido e consiste em um procedimento robusto baseado em curvas de nível da função distância assinalada do contorno, o qual integra o algoritmo Lagrangeano de casca com o Fluido em descrição Euleriana, sem necessidade de movimentação da malha do fluido, onde a representação computacional do fluido se resume a uma malha não estruturada maior ou igual ao domínio inicial do fluido e a interface fluido-casca dentro da malha do fluido é identificada por meio de curvas de nível da função distância assinalada do contorno. Ambos os modelos são testados através de exemplos numéricos mostrando robustez e eficiência. Finalmente, como uma sugestão para o futuro desenvolvimento desta pesquisa, iniciaram-se estudos relativos a funções B-splines. O uso desse tipo de funções deverá resolver problemas de estabilidade relativos a oscilações espúrias devidas ao uso de polinômios de Lagrange para a representação de descontinuidades. / This work consists of the development of computational tools for nonlinear geometric fluid-shell interaction analysis using the Finite Element Method (FEM). The fluid solver is explicit and its time integration based on characteristics. The computational code is able to simulate the Navier-Stokes equations for compressible flows written in the Eulerian description as well as in the arbitrary Lagrangian-Eulerian (ALE) description, enabling movements prescription for the fluid mesh. The structure is modeled in a total Lagrangian description, using a FEM formulation to deal with geometrical nonlinear dynamics of shells based on the minimum potential energy theorem written regarding nodal positions and generalized unconstrained vectors, not displacements and rotations, avoiding the use of large rotation approximations. Two partitioned coupling models are developed. The first model, ideal for simulations where the displacements scale is not very large compared to the fluid domain, is based on the ALE description and the coupling between the two different meshes is done by mapping the fluid boundary nodes local positions over the shell elements and vice-versa, avoiding the need for matching fluid and shell nodes. The fluid mesh is adapted using a simple approach based on shell nodal positions and velocities. The second model, ideal for problems with large scales of displacements such as inflatable structures, is based on immersed boundary and consists of a robust level-set based approach that integrates the Lagrangian shell finite and the Eulerian finite element high speed fluid flow solver, with no need for mesh adaptation, where the fluid representation relies on a fixed unstructured mesh larger or equal to the initial fluid domain and the fluid-shell interface inside the fluid mesh is tracked with level sets of a boundary signed distance function. Both models are tested with numerical examples, showing efficiency and robustness. Finally, as a suggestion for future development of this research, we started studies relatives to B-Spline functions. The use of this kind of functions should solve stability problems related to spurious oscillations due to the use of Lagrange polynomials for representing discontinuities.
366

Interação fluido-estrutura com escoamentos incompressíveis utilizando o método dos elementos finitos / Incompressible fluid-structure interaction using the finite element method

Jeferson Wilian Dossa Fernandes 01 March 2016 (has links)
A interação entre fluidos e estruturas caracteriza um problema multi-físico não linear e está presente numa grande variedade de áreas da engenharia. Este trabalho apresenta o desenvolvi mento de ferramentas computacionais com base no Método dos Elementos Finitos (MEF) para a análise de interação fluido-estrutura (IFE) considerando escoamentos com baixas velocidades. Dada a interdisciplinaridade do tema, se faz necessário o estudo em três diferentes assuntos: a dinâmica das estruturas computacional, a dinâmica dos fluidos computacional, e o problema de acoplamento. No caso da dinâmica das estruturas empregar-se um elemento finito que seja adequado para a simulação de problemas de IFE, que claramente demandam uma análise não linear geométrica, optando-se pelo emprego de uma formulação descrita em posições, a qual evita problemas relativos à aproximação de rotações finitas. Quanto à dinâmica dos fluidos computacional, é empregado um método estável e ao mesmo tempo sensível à movimentação da estrutura, utilizando a descrição Lagrangeana-Euleriana Arbitrária (ALE). Os casos considerados neste trabalho, assim como muitos dos problemas de engenharia, ocorrem com escoamentos em baixas velocidades, implicando na incompressibilidade do fluido, o que demanda, para um método estável, a utilização de elementos que atendam à condição de Ladyzhenskaya-Babuska-Brezzi (LBB). Além disso, é necessário também o emprego de métodos que consigam neutralizar as variações espúrias decorrentes da não-linearidade de possíveis escoamentos com convecção dominante e que surgem com a aplicação do processo clássico de Galerkin. Para superar esse problema, é aplicado o método Streamline-Upwind/Petrov-Galerkin (SUPG), que adiciona difusividade artificial na direção do escoamento, controlando a amplitude dos termos convectivos. No que se refere ao acoplamento fluido-casca, buscam-se modularidade e versatilidade adotando-se o modelo particionado. O modelo de acoplamento implementado garante ainda a utilização de malhas do fluido e da estrutura sem a necessidade de coincidência de nós. / Interaction between fluids and structures characterizes a nonlinear multi-physics problem presente in a wide range of engineering fields. This works presets the development of computational tools based on finite element method (FEM) for fluid-structure interaction (FSI) analysis considering low speed flows (incompressible), as a great part of the engineering problems. Given the topic multidisciplinary nature, it is necessary to study three different subjects: the computational structural dynamics, the computational fluid mechanics and the coupling problem. Regarding structural mechanics, we seek to employ a finite element adequate to FSI simulation, what clearly demands a geometric nonlinear analysis. We chose to employ shell elements with formulation in terms of positions, which avoids problems related to finite rotations approximations. Concerning computational fluid dynamics, we employ a stable method, at same time sensible o structural movements, which is written in the arbitrary Lagrangian-Eulerian (ALE) description. The flow incompressibility demands, for a stable method, the use of elements according to the Ladyzhenskaya-Bbuska-Brezzi (LBB) condition. It is also necessary to employ methods able to neutralize the spurious variations that appears from convection dominated flows when applying the standard Galerking method. In order to overcome this problem, we apply the Streamline-Upwind/Petrov-Galerkin (SUPG) method, which adds artificial diffusivity to the streamline direction, controlling spurious variations. Considering the fluid-shell coupling, we seek modularity and versatility, adopting the partitioned model. The developed coupling model ensure the use of fluid and structure meshes with no need for matching nodes.
367

On lattice Boltzmann method for solving fluid-structure interaction problems

Valdez, Andrés Ricardo 18 September 2017 (has links)
Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-01-11T14:54:52Z No. of bitstreams: 1 andresricardovaldez.pdf: 6592036 bytes, checksum: 23a86a3d84f13bffa421f219e7e4501d (MD5) / Rejected by Fabíola Rubim (fabiola.rubim@ufjf.edu.br), reason: on 2018-01-12T11:05:10Z (GMT) / Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-01-12T11:46:32Z No. of bitstreams: 1 andresricardovaldez.pdf: 6592036 bytes, checksum: 23a86a3d84f13bffa421f219e7e4501d (MD5) / Rejected by Adriana Oliveira (adriana.oliveira@ufjf.edu.br), reason: Favor corrigir: Membro da banca: Filho, José Karam on 2018-01-23T14:01:35Z (GMT) / Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-01-23T14:06:58Z No. of bitstreams: 1 andresricardovaldez.pdf: 6592036 bytes, checksum: 23a86a3d84f13bffa421f219e7e4501d (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-01-23T14:22:22Z (GMT) No. of bitstreams: 1 andresricardovaldez.pdf: 6592036 bytes, checksum: 23a86a3d84f13bffa421f219e7e4501d (MD5) / Made available in DSpace on 2018-01-23T14:22:22Z (GMT). No. of bitstreams: 1 andresricardovaldez.pdf: 6592036 bytes, checksum: 23a86a3d84f13bffa421f219e7e4501d (MD5) Previous issue date: 2017-09-18 / Neste trabalho são apresentados aspectos de modelagem computacional para o estudo de Interação Fluido-Estrutura (FSI). Numericamente, o Método de Lattice Boltzmann (LBM) é usado para resolver a mecânica dos fluidos, em particular as equações de Navier-Stokes incompressíveis. Neste contexto, são abordados problemas de escoamentos complexos, caracterizado pela presença de obstáculos. A imposição das restrições na interface fluido-sólido é feita utilizando princípios variacionais, empregando o Princípio de Balanço de Potências Virtuais (PVPB) para obter as equações de Euler-Lagrange. Esta metodologia permite determinar as dependências entre carregamentos cinematicamente compatíveis e o estado mecânico adotado. Neste sentido, as condições de interface fluido-sólido são abordadas pelo Método de Fronteira Imersa (IBM) visando técnicas computacionais de baixo custo. A metodologia IBM trata o equilíbrio das equações na interface fluido-sólido através da interpolação entre os nós Lagrangianos (sólidos) e os nós Eulerianos (fluidos). Neste contexto, uma modificação desta estratégia que fornece soluções mais precisas é estudada. Para mostrar as capacidades do acoplamento LBM-IBM são apresentados vários experimentos computacionais que demonstram grande fidelidade entre as soluções obtidas e as soluções disponíveis na literatura. / This work presents computational modeling aspects for studying Fluid-Structure Interaction (FSI). The Lattice Boltzmann Method (LBM) is employed to solve the fluid mechanics considering the incompressible Navier-Stokes equations. The flows studied are complex due to the presence of arbitrary shaped obstacles. The obstacles alters the bulk flow adding complexity to the analysis. In this work the Euler-Lagrange equations are obtained employing the Principle of Virtual Power Balance (PVPB). Consequently, the functional dependencies between the mechanical state and every kinematic compatible loadings are established employing variational arguments. This modeling technique allows to study the fluid-solid boundary constraint. In this context the fluid-solid interface is handled employing the Immersed Boundary Method (IBM). The IBM deals with the fluid-solid interface equilibrium equations performing an interpolation of forces between Lagrangian nodes (solid domain) and Eulerian Lattice grid (fluid domain). In this work a different version of this methodology is studied that allows to obtain more accurate solutions. To show the capabilities of the implemented LBM-IBM solver several experiments are done showing the agreement with the benchmarks results available in literature.
368

Instabilidade dinâmica de cascas cilíndricas laminadas submetidas a fluido e temperatura / Dynamic instability of cylindrical shells with fluid and temperature dependences

Martins, Vitor Escher 24 June 2014 (has links)
Submitted by Cássia Santos (cassia.bcufg@gmail.com) on 2015-03-27T12:06:51Z No. of bitstreams: 2 Dissertação - Vitor Escher Martins - 2014.pdf: 13588446 bytes, checksum: 9cceb42b5d24095bc392dc37f17c9386 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-03-27T15:28:00Z (GMT) No. of bitstreams: 2 Dissertação - Vitor Escher Martins - 2014.pdf: 13588446 bytes, checksum: 9cceb42b5d24095bc392dc37f17c9386 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2015-03-27T15:28:00Z (GMT). No. of bitstreams: 2 Dissertação - Vitor Escher Martins - 2014.pdf: 13588446 bytes, checksum: 9cceb42b5d24095bc392dc37f17c9386 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2014-06-24 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Over the years, fiber-reinforced composite laminated shells have been widely used as structural components in several engineering areas and industrial applications. These structures can been subjected to extreme working conditions, either by a fluid structure interaction or even by both dynamic external load and thermal load that provides additional compressive stresses acting along the shell. In the present work, the nonlinear dynamic behavior and stability of fluid-filled laminated cylindrical shells under both thermal and lateral loads is investigated. To model the shell the nonlinear Amabili-Reddy Higher-Order Shear Deformation Theory is applied, the hydrodynamic pressure of the fluid is model by the potential flow theory and a linear temperature distribution is proposed along the thickness of the shells. Classical shells theories, which neglect shear deformation and rotary inertia, give inaccurate analysis results for moderately thick laminated shells. Due to this limitation, higher-order shear deformation theories can represent better the kinematics behavior and can yield more accurate interlaminar stress.To discretize the shell a 23 d.o.f. displacement field is used containing the axial, circumferential, lateral displacements, rotations as well as the coefficients to consider the shear effect. The Ritz method is applied in order to obtain a set of nonlinear ordinary differential equations of motions, which are in turn solved by the Runge-Kutta method. The obtained resonance curves and bifurcation diagrams show the great influence of both laminated material and the temperature on the nonlinear behavior of the shells. / Ao longo dos anos cascas cilíndricas laminadas reforçadas com fibras têm sido amplamente utilizadas como componentes estruturais em diversas áreas da engenharia e aplicações industriais. Durante sua vida operacional, essas estruturas são constantemente submetidas às extremas condições de trabalho, seja em função da interação fluido- estrutura, cargas externas dinâmicas ou mesmo por cargas térmicas que produzem tensões adicionais de compressão sobre a superfície da casca. Neste trabalho será investigado o comportamento dinâmico não linear de cascas cilíndricas laminadas com a presença de um meio fluido em repouso no interior da casca, além de se estudar a influência de esforços laterais dinâmicos solicitantes, juntamente com a variações de temperatura. A teoria de Amabili-Reddy de deformação por cisalhamento de ordem superior é utilizada para modelar o comportamento mecânico dos esforços e deformações da casca, garantindo assim, uma melhor distribuição das tensões interlaminares, ou seja, ao longo de sua direção radial. A análise é realizada para cascas simplesmente apoiadas, em que são consideradas três expansões de deslocamento, respectivamente nas direções longitudinal, circunferencial e radial, além de duas expansões para as rotações da linha neutra nos planos xz z, discretizando o problema em 23 graus de liberdade. O método de Ritz é aplicado para a obtenção do sistema de equações de movimento não linear (EDO), além do método de Runge-Kutta de 4º Ordem e o método de Força Bruta que são utilizados para se investigar o comportamento dinâmico das análises em questão.
369

Développement d'une méthode de simulation de couplage fluide-structure à l'aide de la méthode SPH

Li, Zhe 14 November 2013 (has links)
L’Interaction Fluide-Structure (IFS) est un sujet d’intérêt dans beaucoup de problèmes pratiques aussi bien pour les recherches académiques ainsi que pour les applications industrielles. Différents types d’approches de simulation numérique peuvent être utilisés pour étudier les problèmes d’IFS afin d’obtenir de meilleurs conceptions et d’éviter des incidents indésirables. Dans ce travail, le domaine du fluide est simulé par une méthode hybride sans maillage (SPH-ALE), et la structure est discrétisée par la méthode d’ ´ Eléments Finis (EF). Considérant le fluide comme un ensemble de particules, on peut suivre l’interface entre le fluide et la structure d’une manière naturelle. Une stratégie de couplage conservant l’énergie est proposée pour les problèmes d’IFS transitoires où différents intégrateurs temporels sont utilisés pour chaque sous-domaine: 2nd ordre schéma de Runge-Kutta pour le fluide et schéma de Newmark pour le solide. En imposant la continuité de la vitesse normale à l’interface, la méthode proposée peut assurer qu’il n’y a ni injection d’énergie ni dissipation d’énergie à l’interface. L’énergie de l’interface est donc nulle (aux erreurs de troncature près) durant toute la période de simulation numérique. Cette méthode de couplage assure donc que la simulation de couplage est numériquement stable en temps. Les expérimentations numériques montrent que le calcul converge en temps avec l’ordre de convergence minimal des schémas utilisés dans chaque sous-domaine. Cette méthode proposée est d’abord appliquée `a un problème de piston mono-dimensionnel. On vérifie sur ce cas qu’elle ne dégrade pas l’ordre de précision en temps des schémas utilisés. On effectue ensuite les études des phénomènes de propagation d’ondes de choc au travers de l’interface fluide-structure. Un excellent accord avec la solution analytique est observé dans les cas de teste de propagation d’onde en 1-D. Finalement, les exemples multi-dimensionnels sont présentés. Ses résultats sont comparés avec ceux obtenus par d’autres méthodes de couplage. / The Fluid-Structure Interaction (FSI) effects are of great importance for many multi-physical problems in academic researches as well as in engineering sciences. Various types of numerical simulation approaches may be used to investigate the FSI problems in order to get more reliable conception and to avoid unexpected disasters. In this work, the fluid sub-domain is simulated by a hybrid mesh-less method (SPH-ALE), and the structure is discretized by the Finite Element (FE) method. As the fluid is considered as a set of particles, one can easily track the fluid structure interface. An energy-conserving coupling strategy is proposed for transient fluid-structure interaction problems where different time integrators are used for each sub-domain: 2nd order Runge-Kutta scheme for the fluid and Newmark time integrator for the solid. By imposing a normal velocity constraint condition at the interface, this proposed coupling method ensures that neither energy injection nor energy dissipation will occur at the interface so that the interface energy is rigorously zero during the whole period of numerical simulation. This coupling method thus ensures that the coupling simulation shall be stable in time, and secondly, the numerical simulation will converge in time with the minimal convergence rate of all the time integrators chosen for each sub-domain. The proposed method is first applied to a mono-dimensional piston problem in which we verify that this method does not degrade the order of accuracy in time of the used time integrators. Then we use this coupling method to investigate the phenomena of propagation of shock waves across the fluidstructure interface. A good agreement is observed between the numerical results and the analytical solutions in the 1-D shock wave propagation test cases. Finally, some multi-dimensional examples are presented. The results are compared with the ones obtained by other coupling approaches.
370

Optimisation de la qualité vibro-acoustique des structures d'automobiles pour les basses fréquences

Bourmich, Sophie 21 September 2012 (has links)
Les modèles d'éléments finis des automobiles donnent des grandes tailles de problèmes matriciels, ce qui demeure coûteux en ressources numériques pour une procédure d'optimisation. La multiplicité des phénomènes couplés du problème d'interaction de l'air de l'habitacle et de la superstructure rend plus sensible, à des variations mineures des paramètres, une optimisation directe du véhicule. Pour réduire les temps de calculs et l'espace mémoire liés à la simulation numérique en éléments finis, une méthode de double synthèse modale est appliquée sur la structure et le fluide. Ceci permet de diminuer le nombre de degrés de liberté de frontière. Egalement, un algorithme a été développé pour minimiser le nombre d'évaluations de fonction au cours des itérations d'optimisation. L'approche modale permet également de décomposer le problème d'optimisation de la réponse vibro-acoustique par des sous-problèmes couplés d'optimisation de critères modaux. Ces critères modaux explicitent les couplages fréquentiels par des termes d'amplification et les couplages spatiaux par des paramètres effectifs modaux. Ils favorisent ainsi le développement d'une stratégie d'optimisation robuste par le contrôle modal des effets prépondérants sur la qualité vibro-acoustique des véhicules. / Finite element models and the complexity of vehicle passenger compartments make it harder the optimization, mainly because of expensive computing resources and multiple coupled phenomena of fluid-structure problems. Strategies to improve time and memory performance consist in the use of reduction methods, and combined with efficient optimization techniques, vibro-acoustic solutions of better quality can be performed. The complexity of the system is taken into account thanks to a hierarchical optimization process. Both reduction method and gradient-based optimization algorithm are investigated. Based on modal synthesis, special criteria help to determine critical vibration propagation paths. A modified SQP (Sequential Quadratic Programming) algorithm is also developed in order to provide a faster convergence speed. Such process is to be applied on an academic example and hollow parts and panels of a whole passenger compartments. It allows to find relevant and non obvious solutions by minimizing noise and vibration transfer functions in a relatively wide range of frequencies.

Page generated in 0.0265 seconds