• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 7
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 37
  • 20
  • 20
  • 17
  • 12
  • 9
  • 8
  • 8
  • 8
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The endocannabinoid system and autistic behavior in the Fmr1- KO mouse

Lenz, Frederike 22 January 2018 (has links) (PDF)
Background: Background of this work was the investigation of the endocannabinoid system (ECS) in the Fmr1 knock- out (KO) mouse. The Fmr1- KO mouse is a mouse model for fragile X syndrome (FXS). FXS is the leading monogenic cause for autism spectrum disorders (ASD) in humans. The Fmr1- KO mouse displays autistic behavior such as an impaired social interaction, repetitive behavior, cognitive deficits, increased anxiety and aggressiveness. Alterations of the ECS have been suggested to play a key role in the etiopathology of a variety of neuropsychiatric disorders. Until today, little has been described about the involvement of the ECS in ASD. Interrogation: 1. Evaluating the manifestation of typical cannabinoid- induced effects in the Fmr1- KO mouse 2. Investigating the influenceability of autistic symptoms with THC treatment in the Fmr1- KO mouse 3. Analyzing the signaling cascade of the stimulated and unstimulated ECS in different brain regions of the Fmr1- KO mouse Material and Methods: Experiments were carried out on adult (12±1 weeks old) male Fmr1- KO and Fmr1- wild- type (WT) mice from the C57BL/6J- (B6)- background. N= 15 mice received THC (10mg/kg bodyweight) and N= 16 received WIN55,212 (3mg/kg bodyweight). 30min after injection, the body temperature was measured and the distance animals moved in an open field during 15min was recorded (locomotion). Then, animals were placed with their forepaws onto a horizontally fixed bar and the time remaining in this position (catalepsy) was measured. Finally animals were placed on a preheated plate and the temperature at which a pain stimulus occurred was determined (testing analgesia). All 4 experiments are called tetrad experiment. Afterwards changes in body temperature, locomotion, catalepsy and analgesia of the animals was evaluated. To explore long-term effects of THC after the tetrad, N= 15 animals were tested in a social interaction test with a female contact mouse, 10 and 20 days after THC treatment. Therefore, the tested mouse and the contact mouse were placed together into a cage and the time mice spent in social interaction (nose, body and anogential sniffing, allogrooming and body contact) was manually quantified during 6min of recorded testing time. Another group of N= 19 received a premedication of rimonabant (Cannabinoid- receptor 1 (CB1) antagonist, 3mg/kg bodyweight) 30min prior to THC treatment. Rimonabant prevents THC from binding to CB1 and therefore allows the assessment of the involvement of CB1 in mediating social behavior. Furthermore the suggestibility of context-dependent fear conditioning with THC treatment has been tested on N= 13 mice. Animals were placed into a conditioning chamber that delivered 6 short electric shocks with a 30sec pause to their paws (conditioning phase). Immediately afterwards mice received THC or placebo. 24h later contextdependent fear was evaluated by quantification of the time mice spent freezing in the conditioning-chamber (fear) without receiving foot shocks. Intraneuronal signaling of the ECS was analyzed with N= 29 animals using western blots. Quantities of phosphorylated (“activated”) protein kinases (ERK, AKT and S6) from different brain homogenates (hippocampus, striatum, cortex and cerebellum) were therefore measured after THC or placebo injection (30 minutes prior to sacrificing). Results: Cannabinoids induced hypothermia, hypolocomotion, analgesia and catalepsy in WTmice. These effects were significantly less detectable in Fmr1- KO mice. Effects of both cannabinoids, THC and WIN55,212, were comparable with a slightly greater but not significant efficiency of THC. THC treated WT- mice exhibited further reduced social interaction 10 days after treatment, an effect that was partially prevented by premedication with rimonabant. THC increased social interaction in Fmr1- KO mice comparable to the level of untreated WT- mice. THC had no effect on behavior of WT- mice in context-dependent fear conditioning. Fmr1- KO mice showed significant less contextdependent fear conditioning compared to WT- mice. THC facilitated the recognition of an anxiety-correlated context in Fmr1- KO mice comparable to untreated WT- mice. In western blots significant changes in the THC- induced signaling cascade were detectable and depending on genotype, brain-region and analyzed protein-kinase. In the hippocampus there were no changes in untreated Fmr1- KO mice compared to WT- mice. THC had no effect on activation of protein-kinases in WT- and Fmr1- KO mice. In the striatum there were no changes in untreated Fmr1- KO mice compared to WTmice. THC significantly increased activity of ERK, AKT and S6 in WT-mice and not in Fmr1- KO mice. In the cortex of untreated Fmr1- KO mice AKT showed a significantly increased activity compared to WT- mice. THC significantly increased AKT activity in WT- mice without having an effect on KO- mice. In the cerebellum there were no changes in untreated Fmr1- KO mice compared to WT- mice. THC significantly increased ERK- activity in Fmr1- KO mice but had no effect on protein kinase activity in WT- mice. Conclusion: We observed physiological cannabinoid effects in WT- mice after treatment with THC and WIN55,212. These effects are significantly attenuated in Fmr1- KO mice. This may be interpreted as a desensitization of the ECS in the Fmr1- KO mouse. At the same time it was demonstrated that THC has the potential to improve context dependent memory consolidation and to increase social interaction in the Fmr1- KO mouse. In particular the influence of THC on impaired social interaction should be a target of further investigations to find possible therapeutic options for this typical symptom of Autism. Underlying molecular mechanisms remain unclear and the analysis of THC stimulated intraneuronal signaling gave no clear indication of possible molecular alterations in the Fmr1- KO mouse.
22

Variabilidade do domínio KH-2 da proteína do retardo mental do X frágil (FMRP) / Variability of the KH-2 domain in fragile X mental retardation protein

Fernando Janczur Velloso 29 October 2013 (has links)
A proteína do retardo mental do X frágil (FMRP), codificada pelo gene do Retardo Mental do X Frágil (do inglês, Fragile Mental Retardation 1, FMR1) tem expressão significativa no encéfalo, gônadas e células proliferativas. A FMRP é uma proteína ligante de RNA, repressora traducional, que transita entre o núcleo celular, grânulos citoplasmáticos e polissomos. Sua associação a RNA pode se dar pelos domínios Tudor N-terminais, dois domínios centrais, com homologia à heteronucleoproteína K (KH) ou motivos RGG, ricos em arginina (R) e glicina (G), C-terminais. A abolição da expressão da FMRP por mutações no gene FMR1 é a causa mais frequente de deficiência intelectual hereditária entre homens. Transcritos desse gene sofrem splicing alternativo de quatro éxons, podendo gerar até 20 isoformas não redundantes da FMRP. A tradução de RNAm do FMR1 contendo o éxon 12 causa uma extensão em fase, em 21 aminoácidos na alça variável do segundo domínio KH (KH-2) da FMRP, cujos padrão de expressão e função ainda são desconhecidos. Embora a FMRP tenha alta similaridade com duas proteínas parálogas, proteínas relacionadas à FMRP, FRX1P e FXR2P, ela apresenta algumas características de expressão e função que lhes são próprias. A longa alça variável do domínio KH-2, por exemplo, não é observada nas parálogas e é característica somente de ortólogas da FMRP em mamíferos. Assim, é possível que o estudo deste segmento da proteína traga informações funcionais específicas para o encéfalo de mamífero. Demonstramos anteriormente, por qRT-PCR, que, em transcritos do Fmr1 de rato, a expressão da sequência do éxon 12 é regulada ao longo do desenvolvimento pós-natal precoce, de forma diferencialmente positiva no córtex cerebral frontal e cerebelo, em relação ao hipocampo. No presente trabalho, aprofundamos esses estudos, tendo como objetivo a análise cuidadosa da expressão desse éxon em isoformas da FMRP (FMRP+12ISO), pelo uso de um anticorpo dirigido ao segmento codificado por ele, em encéfalos do décimo segundo dia pós-natal (P12, controle positivo) ou embrionários. Para tal, foram realizadas análises por imunoistoquímica e, em P12, ensaios de cromatografia de exclusão molecular de partículas ribonucleoproteicas. Análises de níveis de RNAm e proteicos em fase embrionária (E12 a E20) do encéfalo do rato foram também conduzidas in vivo e in vitro, em cultivo primário de neuroesferas em suspensão, a partir da dissociação de vesículas telencefálicas de ratos em E14. Os dados de imunoistoquímica de encéfalo de ratos em P12 indicaram que (i) as camadas granular externa e a camada piramidal externa do córtex cerebral e as células de Purkinje no cerebelo são mais ricas em FMRP+12ISO; (ii) o giro denteado e CA3 foram fontes de FMRP+12ISO no hipocampo, porém em mais baixa intensidade; e (iii) o conjunto das isoformas da FMRP, incluindo as FMRP+12ISO, foram expressas em região periventricular dos ventrículos laterais em período pós-natal, sugestivo de células-tronco neurais do adulto ou recém diferenciadas. No córtex cerebral, as FMRP+12ISO foram expressas em áreas motora (segmento rostrodorsal), sensorial (segmentos dorsolaterais a laterais), auditiva (segmentos dorsolaterais), olfatória (córtex piriforme) e visual (segmentos ventrolaterais), além da área do cingulado (segmentos mediais) de ambos os hemisférios cerebrais. Os dados também confirmaram que, em P12, as FMRP+12ISO têm expressão mais pronunciada no córtex cerebral e cerebelo do que no hipocampo. À cromatografia, as FMRP+12ISO tiveram o mesmo padrão de distribuição que o conjunto das isoformas da FMRP, fracionando em complexos ribonucleoproteicos maiores que 600 kDa. De modo geral, a expressão das FMRP+12ISO foi baixa em E12 e E14. Houve concordância entre as análises por qRT-PCR, Western blotting e imunoistoquímica, corroborando a baixa expressão do éxon 12 do FMR1 na vesículas telencefálicas em E14. Observamos por imunoistoquímica poucas células sugestivas de progenitoras, na base do neuroepitélio, que expressassem FMRP+12ISO ou outras isoformas da FMRP. O córtex cerebral em E20 foi raramente positivo para FMRP+12ISO ou o conjunto das isoformas da FMRP. Por outro lado, células da camada mais superficial da placa cortical, indicativa de ser a camada I, mostraram expressão de isoformas da FMRP sem o segmento codificado pelo éxon 12 do Fmr1, em E18 e da FMRP, incluindo as FMRP+12ISO, em E20, de forma contínua em várias regiões corticais. Em neuroesferas em suspensão, a expressão das FMRP+12ISO foi muito baixa enquanto isoformas da FMRP, supostamente com a alça variável de KH- 2 em sua conformação curta, tiveram alta expressão nessas células. Desde as primeiras 24 horas sob condições de diferenciação neuronal in vitro, células de neuroesferas aumentaram a expressão das FMRP+12ISO, que se mantiveram alta no período analisado (12 dias in vitro), colocalizando-se com outras isoformas da FMRP. Ensaios preliminares in vitro pela interferência do RNA, em células imortalizadas C6, indicaram um RNA em fita dupla, entre dois testados, com capacidade de inibição de mensagens do Fmr1 que especificamente contenham o éxon 12. A expressão do éxon 12 do FMR1 no córtex cerebral frontal, humano, em envelhecimento foi baixa pela análise de RNAm, enquanto o total de transcritos deste gene apresentou-se em níveis significativos. Nossos dados sugerem que a expressão do éxon 12 do Fmr1 é mais significativa para FMRP+12ISO em células neuronais, durante um período crítico de sinaptogênese, no primeiro mês pós-natal do rato. O tecido telencefálico, embrionário não se mostrou uma fonte rica dessas isoformas, principalmente em células indiferenciadas, que foram francamente negativas / Fragile X Mental Retardation Protein (FMRP), codified by Fragile Mental Retardation 1 (FMR1) gene, is significantly expressed in the brain, gonads and proliferative cells. FMRP is an RNA-binding protein and acts as a translation repressor, which transits between cell nucleus, cytoplasmic granules and polysomes. Its association with RNA occurs via several domains, namely: Nterminal Tudor domains; two central domains with K-heteronucleoprotein (KH) homology; and C-terminal RGG motifs, that are rich in arginine (R) and glicine (G). The absence of FMRP expression triggered by mutations in the FMR1 gene is the most frequent cause of hereditary intellectual disability in human men. Four FMR1 exons may undergo alternative splicing, generating up to 20 non-redundant FMRP isoforms. The translation of the FMR1 mRNA containing exon 12 leads to an in-phase extension of 21 amino acids in the variable loop on FMRP the second KH domain (KH-2). The pattern of expression and function of this isoform are unknown. Although FMRP is highly similar to two paralogs proteins, FMRP-related proteins FRX1P and FRX2P, it presents some unique expression and function characteristics. The long variable loop of the KH-2 domain, for example, is not observed in these paralogs and is a hallmark of FMRP mammal orthologs. Therefore, the study of this protein segment can potentially bring information about its function specifically in the mammalian brain. Using qRT-PCR and Western blotting, we previously demonstrated that, for rat Fmr1 transcripts, the expression of sequences containing exon 12 is regulated during early postnatal development. In this period, expression of these segments in the frontal cerebral cortex and in the cerebellum is higher when compared to hippocampus expression. In the present work, we deepened these studies with the objective of carefully analysing the expression of FMRP isoforms containing FMRP exon 12 (FMRP+12ISO). For this purpose, we employed rat postnatal brains at the twelfth postnatal day (P12, used as a positive control) and rat embryo brain in immunohistochemistry assays with antibodies detecting peptides codified by exon 12. In this strategy, we also carried out molecular exclusion chromatography of ribonucleoproteins particles with lysates from rat P12 encephalon. Analysis of mRNA and protein levels in rat brain in the embryonic period [embryonic days 12 to 20 (E12 to E20)] were conducted in vivo and in vitro, in neurosphere suspension primary cultures, obtained by dissociation of telencephalic vesicles from E14 rats. Immunohistochemical data from P12 rat brain indicated that (i) the granular external layers and pyramidal external layer in the brain cortex and Purkinje cells in the cerebellum are richer in FMRP+12ISO; (ii) in the hippocampus, FMRP+12ISO can be found in dentate gyrus and CA3, although in lesser intensities; and (iii) FMRP isoforms, including FMRP+12ISO, are expressed in the periventricular regions from the lateral ventricles, suggesting their expression in adult neural stem cells or in differentiating cells. In the cerebral cortex, FMRP+12ISO are expressed in motor areas (rostrodorsal segment) and in sensorial areas (dorsolateral and lateral segments), specifically in auditory (dorsolateral segments), olfactory (piriform cortex) and visual (ventrolateral segments) areas, besides expression in the cingulate área (medial segment) in both hemispheres. Our data also confirmed that, in P12 brain, cerebral cortex and cerebellum have higher FMRP+12ISO expression when compared to the hippocampus. Chromatography data indicated that FMRP+12ISO have the same pattern of distribution than the FMRP isoform group, fractionating in ribonucleoproteics complexes heavier than 600kDa. Altogether, FMRP+12ISO expression is low in E12 and E14 rat brain. qRT-PCR, Western blotting and immunohistochemistry data were concordant, corroborating the low expression of exon 12 in E14 telencephalic vesicles. In immunohistochemistry images, we observed few cells with progenitor phenotype, at the basal neuroepithelium, expressing FMRP+12ISO or other FMRP isoforms. In E20, cerebral cortex was rarely positive for FMRP+12ISO or other FMRP isoforms. Still, cells in the superficial layer of the cortical plate, possibly layer 1, were positive for FMRP isoforms that do not contain the segment codified by exon 12 in E18, brains and positive for the ensemble of FMRP, isoforms, FMRP+12ISO included, in E20 brains, in continuous portions of several cortical regions. In suspension neurosphere cultures, FMRP+12ISO expression was very low, while the expression of FMRP isoforms, supposedly with the variable loop of KH-2 in its short conformation, was high in. After 24 hours under neuron differentiation conditions in vitro, neurosphere cells showed increasing expression of FMRP+12ISO, which remained high during the period analyzed (12 days in vitro), co-localizing with other FMRP isoforms. Preliminary assays using RNA interference in vitro in an immortalized glioma cell lineage (C6), disclosed a double-stranded RNA, among two tested samples, with the ability to suppress exon 12 containig Fmr1 mRNA. The expression of FMR1 transcripts containing exon 12 in aging human brain frontal cortex was low, while total FMR1 transcripts levels were significant. Our data suggest that the expression of exon 12 from Fmr1 is more significant in rat neuronal cells during a critical period of synaptogenesis in the first postnatal month. The embryonic telencephalic tissue is not rich in FMRP+12ISO, which were notably absent from undifferentiated cells
23

The Impact of Genetic Carrier Testing in Reproductive Decision-Making: FMR1 Testing in Women With Diminished Ovarian Reserve

Walker, Elizabeth R., Clark, Myra L., Stelling, James, Timko, Michael P., Pastore, Lisa M. 01 January 2017 (has links) (PDF)
Background: This study examined how FMR1 genetic testing impacts the reproductive decision-making of women with diminished ovarian reserve (DOR). Methods: 120 women clinically diagnosed with DOR (elevated FSH and/or low AMH and/or low at trial follicle count, with regular menses), and without a family history of fragile X syndrome, received fragile X genetic testing (FMR1) and completed pretest questionnaires. A subset (n=7) were interviewed pretest. Surveys and interviews were analyzed separately and then integrated using sequential explanatory mixed methods. Results: Approximately50% regarded carrying the FMR1 pre mutation as a serious condition, while 37.5% had a neutral position. Women were significantly more likely to be upset about being a carrier if they perceived the FMR1 pre mutation to be a serious condition (p< 0.01).Interviews reflect several inheritance concerns (immediate next generation, future generations, and extended family members) and the impact the test results might have on their future reproductive decisions. Discussion: These qualitative/quantitative responses indicated that FMR1 screening (1) informed DOR patients’ view of an infertility diagnosis (2) prepared them for potential health consequences in future offspring and (3) impacted their future reproductive decisions.
24

Levantamento de proteínas candidatas a ativadoras do splicing do éxon 12 do gene FMR1 / Screening for candidate proteins to activate FMR1 exon 12 splicing

Campos, Marcelo Valpeteris de 20 May 2014 (has links)
O gene do Retardo Mental do X Frágil (FMR1) possui 17 éxons e seu transcrito primário pode sofrer splicing alternativo, havendo, entre outros eventos, possibilidade de exclusão ou inclusão do éxon 12. O produto da expressão do FMR1, a proteína do retardo mental do X frágil (FMRP), possui papéis importantes no sistema nervoso central, atuando como repressora da tradução de RNAm em espinhas dendríticas e controlando a síntese de proteínas envolvidas na função sináptica. Entre dois domínios centrais do tipo KH presentes na FMRP, o segundo (KH-2) é responsável pela interação da proteína aos polissomos. O domínio KH-2 é codificado pelos éxons 9 a 13 do FMR1 e possui a alça variável mais longa já observada entre proteínas humanas, que é codificada pelos éxons 11 e 12. A inclusão do éxon 12 no RNAm do FMR1 causa uma extensão em fase dessa alça variável do KH-2 da FMRP. Estas isoformas apresentam expressão significativa em neurônios cortico-cerebrais e cerebelares do rato, no primeiro mês pós-natal. Este trabalho baseia-se em resultados prévios do grupo de pesquisa, em que se identificaram sequências curtas no íntron 12 do FMR1, com potencial para agir como acentuadores de splicing. Baseando-nos na hipótese de que essas sequências constituem elementos transcritos que se ligam a fatores proteicos do núcleo celular, potencialmente reguladores do splicing do pré-RNAm do FMR1, realizamos ensaios de precipitação por afinidade com extratos nucleares de córtex cerebral de rato e transcritos do loco, biotinilados. Análises por espectrometria de massas revelaram enriquecimento de proteínas nucleares, contendo domínios de ligação a RNA, principalmente aquelas relacionadas à regulação e processamento de pré-RNAm, sobretudo o splicing / Fragile X Mental Retardation 1 gene (FMR1) comprises 17 exons. Its primary transcript is subject to alternative splicing, allowing for the possibility of exon 12 inclusion or skipping, among other events. The product of FMR1 gene expression, fragile X mental retardation protein (FMRP), has important roles in the central nervous system, acting as a translational repressor in dendritic spines, thus controlling the synthesis of proteins involved in synaptic function. FMRP has two central KH domains. One of them (KH-2) is responsible for its interaction with polysomes. The KH-2 domain is encoded by FMR1 exons 9 to 13. It contains the longest variable loop ever observed among human KH-containing proteins, which is encoded by FMR1 exons 11 and 12. Exon-12 inclusion in FMR1 mRNA causes an in-frame extension of FMRP KH-2 domain variable loop. These isoforms appear significantly expressed in cortico-cerebral and cerebellar neurons of the rat in the first month after birth. We have previously identified short sequences within FMR1 intron 12 that may potentially act as splicing enhancers. Our study is based on the hypothesis that those sequences when transcribed should bind to nuclear protein factors that may function as FMR1 exon 12 pre-mRNA splicing regulators. To initiate an experimental approach to test that hypothesis, we conducted affinity precipitation assays with rat cerebral cortex nuclear extracts and biotinylated transcripts. Mass spectrometry analyses disclosed proteins that have been described to be enriched in the cell nucleus, contain RNA-binding domains, and be functionally related to pre-mRNA processing, notably splicing
25

Do topo para a base: aconselhamento genético em famílias a partir da sí­ndrome de tremor/ataxia associada ao X frágil (FXTAS) / From top to bottom: genetic counseling in families ascertained through fragile X-associated tremor/ataxia syndrome (FXTAS)

Ribeiro, Mara Dell\'Ospedale 27 February 2018 (has links)
A Síndrome do X frágil (SXF) é a forma mais comum de deficiência intelectual herdada. É causada por uma mutação no gene FMR1; (Fragile X Mental Retardation 1;), que resulta na deficiência da proteína FMRP (Fragile X Mental Retardation Protein;). O gene FMR1;, localizado no braço longo do cromossomo X, em Xq27.3, possui uma repetição de trinucleotídeos (CGG)n em sua região 5\' não traduzida (região reguladora). Na população geral, o tamanho dessa repetição varia entre 5 a 44 trincas de bases. Uma expansão superior a 200 trinucleotídeos leva à hipermetilação e consequente silenciamento da transcrição do gene. Quando isso ocorre, tem-se uma mutação completa, a causa da SXF. Se a repetição expandida tem de 55 a 200 trincas de bases, chamada de pré-mutação, não ocorre hipermetilação e a proteína FMRP é produzida; portanto, a pré-mutação não está associada à SXF, porém está relacionada a outros quadros clínicos, particularmente à síndrome de tremor/ataxia associada ao X frágil (FXTAS; Fragile-X associated Tremor Ataxia Syndrome;) e à insuficiência ovariana primária associada ao X frágil (FXPOI; Fragile-X associated Primary Ovarian Insufficiency;). O objetivo deste trabalho foi investigar duas famílias cujos casos-índice foram encaminhados para o Centro de Pesquisa sobre o Genoma Humano e Células-Tronco para investigar ataxia espinocerebelar e nos quais a avaliação clínica e a história familial sugeriram a possibilidade de FXTAS; em ambos os pacientes, pré-mutação do gene FMR1; foi detectada. Na Família 1, foi feito o diagnóstico de SXF em um neto da propósita e foi identificada a mutação completa em várias filhas e netas, todas com dificuldade de aprendizado. Na Família 2 não foram identificadas mutações completas e em um dos netos do propósito detectou-se mosaicismo de alelo intermediário e pré-mutação. Assim, diante da variada apresentação fenotípica, a possibilidade de condição associada ao gene FMR1; deve ser considerada frente aos fenótipos de deficiência intelectual, dificuldade de aprendizado, falência ovariana prematura e síndrome de tremor-ataxia. O diagnóstico de FXTAS em famílias em que não há registro de SXF não é frequente, provavelmente diante do desconhecimento dessa possibilidade, mas tem importância fundamental para o aconselhamento genético, particularmente quanto à ocorrência de deficiência intelectual / RIBEIRO, M. D. O. From top to bottom: genetic counseling in families ascertained through fragile X-associated tremor/ataxia syndrome (FXTAS) 2017. 64 f. Dissertação (Mestrado em Aconselhamento Genético e Genômica Humana) - Instituto de Biociências, Universidade de São Paulo, São Paulo, 2017. Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. It is caused by a mutation in the Fragile X Mental Retardation 1 (FMR1;) gene located on the long arm of the X chromosome at Xq27.3 that results in FMRP (Fragile X Mental Retardation Protein) deficiency. The FMR1; gene has a trinucleotide repeat (CGG)n at the 5\' untranslated region (regulatory region); in the general population, this repeat varies in size from 5 to 44 CGG triplets. An expanded repeat of more than 200 trinucleotides leads to hypermethylation and consequent silencing of the gene transcription - the full mutation that causes FXS. The repeat containing 55 to 200 triplets characterizes a premutation; there is no hypermethylation, the gene is transcribed, and the FMRP is produced; then premutations are not associated with FXS, but are related to other clinical conditions: Fragile X-associated Tremor/Ataxia Syndrome (FXTAS) and Fragile X-associated Primary Ovarian Insufficiency (FXPOI). The objective of this study was to investigate two families whose index cases were referred to the Centro de Pesquisa sobre o Genoma Humano e Células-Tronco to investigate spinocerebellar ataxia, whose clinical evaluation and family history suggested the possibility of FXTAS. Both probands were found to carry FMR1; premutations. In Family 1, the diagnosis of FXS was established in a grandson of the proband, and the full mutation was also identified in several of her daughters and granddaughters, all presenting with learning difficulties. In Family 2, no full mutations were detected; a proband\'s grandson had size mosaicism for FMR1; ; alleles, carrying an intermediate allele and a premutation. Although uncommon, possibly due to lack of knowledge about the syndrome, the diagnosis of FXTAS in families without FXS is important for genetic counseling, particularly regarding the occurrence of intellectual disability
26

Do topo para a base: aconselhamento genético em famílias a partir da sí­ndrome de tremor/ataxia associada ao X frágil (FXTAS) / From top to bottom: genetic counseling in families ascertained through fragile X-associated tremor/ataxia syndrome (FXTAS)

Mara Dell\'Ospedale Ribeiro 27 February 2018 (has links)
A Síndrome do X frágil (SXF) é a forma mais comum de deficiência intelectual herdada. É causada por uma mutação no gene FMR1; (Fragile X Mental Retardation 1;), que resulta na deficiência da proteína FMRP (Fragile X Mental Retardation Protein;). O gene FMR1;, localizado no braço longo do cromossomo X, em Xq27.3, possui uma repetição de trinucleotídeos (CGG)n em sua região 5\' não traduzida (região reguladora). Na população geral, o tamanho dessa repetição varia entre 5 a 44 trincas de bases. Uma expansão superior a 200 trinucleotídeos leva à hipermetilação e consequente silenciamento da transcrição do gene. Quando isso ocorre, tem-se uma mutação completa, a causa da SXF. Se a repetição expandida tem de 55 a 200 trincas de bases, chamada de pré-mutação, não ocorre hipermetilação e a proteína FMRP é produzida; portanto, a pré-mutação não está associada à SXF, porém está relacionada a outros quadros clínicos, particularmente à síndrome de tremor/ataxia associada ao X frágil (FXTAS; Fragile-X associated Tremor Ataxia Syndrome;) e à insuficiência ovariana primária associada ao X frágil (FXPOI; Fragile-X associated Primary Ovarian Insufficiency;). O objetivo deste trabalho foi investigar duas famílias cujos casos-índice foram encaminhados para o Centro de Pesquisa sobre o Genoma Humano e Células-Tronco para investigar ataxia espinocerebelar e nos quais a avaliação clínica e a história familial sugeriram a possibilidade de FXTAS; em ambos os pacientes, pré-mutação do gene FMR1; foi detectada. Na Família 1, foi feito o diagnóstico de SXF em um neto da propósita e foi identificada a mutação completa em várias filhas e netas, todas com dificuldade de aprendizado. Na Família 2 não foram identificadas mutações completas e em um dos netos do propósito detectou-se mosaicismo de alelo intermediário e pré-mutação. Assim, diante da variada apresentação fenotípica, a possibilidade de condição associada ao gene FMR1; deve ser considerada frente aos fenótipos de deficiência intelectual, dificuldade de aprendizado, falência ovariana prematura e síndrome de tremor-ataxia. O diagnóstico de FXTAS em famílias em que não há registro de SXF não é frequente, provavelmente diante do desconhecimento dessa possibilidade, mas tem importância fundamental para o aconselhamento genético, particularmente quanto à ocorrência de deficiência intelectual / RIBEIRO, M. D. O. From top to bottom: genetic counseling in families ascertained through fragile X-associated tremor/ataxia syndrome (FXTAS) 2017. 64 f. Dissertação (Mestrado em Aconselhamento Genético e Genômica Humana) - Instituto de Biociências, Universidade de São Paulo, São Paulo, 2017. Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. It is caused by a mutation in the Fragile X Mental Retardation 1 (FMR1;) gene located on the long arm of the X chromosome at Xq27.3 that results in FMRP (Fragile X Mental Retardation Protein) deficiency. The FMR1; gene has a trinucleotide repeat (CGG)n at the 5\' untranslated region (regulatory region); in the general population, this repeat varies in size from 5 to 44 CGG triplets. An expanded repeat of more than 200 trinucleotides leads to hypermethylation and consequent silencing of the gene transcription - the full mutation that causes FXS. The repeat containing 55 to 200 triplets characterizes a premutation; there is no hypermethylation, the gene is transcribed, and the FMRP is produced; then premutations are not associated with FXS, but are related to other clinical conditions: Fragile X-associated Tremor/Ataxia Syndrome (FXTAS) and Fragile X-associated Primary Ovarian Insufficiency (FXPOI). The objective of this study was to investigate two families whose index cases were referred to the Centro de Pesquisa sobre o Genoma Humano e Células-Tronco to investigate spinocerebellar ataxia, whose clinical evaluation and family history suggested the possibility of FXTAS. Both probands were found to carry FMR1; premutations. In Family 1, the diagnosis of FXS was established in a grandson of the proband, and the full mutation was also identified in several of her daughters and granddaughters, all presenting with learning difficulties. In Family 2, no full mutations were detected; a proband\'s grandson had size mosaicism for FMR1; ; alleles, carrying an intermediate allele and a premutation. Although uncommon, possibly due to lack of knowledge about the syndrome, the diagnosis of FXTAS in families without FXS is important for genetic counseling, particularly regarding the occurrence of intellectual disability
27

Levantamento de proteínas candidatas a ativadoras do splicing do éxon 12 do gene FMR1 / Screening for candidate proteins to activate FMR1 exon 12 splicing

Marcelo Valpeteris de Campos 20 May 2014 (has links)
O gene do Retardo Mental do X Frágil (FMR1) possui 17 éxons e seu transcrito primário pode sofrer splicing alternativo, havendo, entre outros eventos, possibilidade de exclusão ou inclusão do éxon 12. O produto da expressão do FMR1, a proteína do retardo mental do X frágil (FMRP), possui papéis importantes no sistema nervoso central, atuando como repressora da tradução de RNAm em espinhas dendríticas e controlando a síntese de proteínas envolvidas na função sináptica. Entre dois domínios centrais do tipo KH presentes na FMRP, o segundo (KH-2) é responsável pela interação da proteína aos polissomos. O domínio KH-2 é codificado pelos éxons 9 a 13 do FMR1 e possui a alça variável mais longa já observada entre proteínas humanas, que é codificada pelos éxons 11 e 12. A inclusão do éxon 12 no RNAm do FMR1 causa uma extensão em fase dessa alça variável do KH-2 da FMRP. Estas isoformas apresentam expressão significativa em neurônios cortico-cerebrais e cerebelares do rato, no primeiro mês pós-natal. Este trabalho baseia-se em resultados prévios do grupo de pesquisa, em que se identificaram sequências curtas no íntron 12 do FMR1, com potencial para agir como acentuadores de splicing. Baseando-nos na hipótese de que essas sequências constituem elementos transcritos que se ligam a fatores proteicos do núcleo celular, potencialmente reguladores do splicing do pré-RNAm do FMR1, realizamos ensaios de precipitação por afinidade com extratos nucleares de córtex cerebral de rato e transcritos do loco, biotinilados. Análises por espectrometria de massas revelaram enriquecimento de proteínas nucleares, contendo domínios de ligação a RNA, principalmente aquelas relacionadas à regulação e processamento de pré-RNAm, sobretudo o splicing / Fragile X Mental Retardation 1 gene (FMR1) comprises 17 exons. Its primary transcript is subject to alternative splicing, allowing for the possibility of exon 12 inclusion or skipping, among other events. The product of FMR1 gene expression, fragile X mental retardation protein (FMRP), has important roles in the central nervous system, acting as a translational repressor in dendritic spines, thus controlling the synthesis of proteins involved in synaptic function. FMRP has two central KH domains. One of them (KH-2) is responsible for its interaction with polysomes. The KH-2 domain is encoded by FMR1 exons 9 to 13. It contains the longest variable loop ever observed among human KH-containing proteins, which is encoded by FMR1 exons 11 and 12. Exon-12 inclusion in FMR1 mRNA causes an in-frame extension of FMRP KH-2 domain variable loop. These isoforms appear significantly expressed in cortico-cerebral and cerebellar neurons of the rat in the first month after birth. We have previously identified short sequences within FMR1 intron 12 that may potentially act as splicing enhancers. Our study is based on the hypothesis that those sequences when transcribed should bind to nuclear protein factors that may function as FMR1 exon 12 pre-mRNA splicing regulators. To initiate an experimental approach to test that hypothesis, we conducted affinity precipitation assays with rat cerebral cortex nuclear extracts and biotinylated transcripts. Mass spectrometry analyses disclosed proteins that have been described to be enriched in the cell nucleus, contain RNA-binding domains, and be functionally related to pre-mRNA processing, notably splicing
28

The endocannabinoid system and autistic behavior in the Fmr1- KO mouse

Lenz, Frederike 11 July 2017 (has links)
Background: Background of this work was the investigation of the endocannabinoid system (ECS) in the Fmr1 knock- out (KO) mouse. The Fmr1- KO mouse is a mouse model for fragile X syndrome (FXS). FXS is the leading monogenic cause for autism spectrum disorders (ASD) in humans. The Fmr1- KO mouse displays autistic behavior such as an impaired social interaction, repetitive behavior, cognitive deficits, increased anxiety and aggressiveness. Alterations of the ECS have been suggested to play a key role in the etiopathology of a variety of neuropsychiatric disorders. Until today, little has been described about the involvement of the ECS in ASD. Interrogation: 1. Evaluating the manifestation of typical cannabinoid- induced effects in the Fmr1- KO mouse 2. Investigating the influenceability of autistic symptoms with THC treatment in the Fmr1- KO mouse 3. Analyzing the signaling cascade of the stimulated and unstimulated ECS in different brain regions of the Fmr1- KO mouse Material and Methods: Experiments were carried out on adult (12±1 weeks old) male Fmr1- KO and Fmr1- wild- type (WT) mice from the C57BL/6J- (B6)- background. N= 15 mice received THC (10mg/kg bodyweight) and N= 16 received WIN55,212 (3mg/kg bodyweight). 30min after injection, the body temperature was measured and the distance animals moved in an open field during 15min was recorded (locomotion). Then, animals were placed with their forepaws onto a horizontally fixed bar and the time remaining in this position (catalepsy) was measured. Finally animals were placed on a preheated plate and the temperature at which a pain stimulus occurred was determined (testing analgesia). All 4 experiments are called tetrad experiment. Afterwards changes in body temperature, locomotion, catalepsy and analgesia of the animals was evaluated. To explore long-term effects of THC after the tetrad, N= 15 animals were tested in a social interaction test with a female contact mouse, 10 and 20 days after THC treatment. Therefore, the tested mouse and the contact mouse were placed together into a cage and the time mice spent in social interaction (nose, body and anogential sniffing, allogrooming and body contact) was manually quantified during 6min of recorded testing time. Another group of N= 19 received a premedication of rimonabant (Cannabinoid- receptor 1 (CB1) antagonist, 3mg/kg bodyweight) 30min prior to THC treatment. Rimonabant prevents THC from binding to CB1 and therefore allows the assessment of the involvement of CB1 in mediating social behavior. Furthermore the suggestibility of context-dependent fear conditioning with THC treatment has been tested on N= 13 mice. Animals were placed into a conditioning chamber that delivered 6 short electric shocks with a 30sec pause to their paws (conditioning phase). Immediately afterwards mice received THC or placebo. 24h later contextdependent fear was evaluated by quantification of the time mice spent freezing in the conditioning-chamber (fear) without receiving foot shocks. Intraneuronal signaling of the ECS was analyzed with N= 29 animals using western blots. Quantities of phosphorylated (“activated”) protein kinases (ERK, AKT and S6) from different brain homogenates (hippocampus, striatum, cortex and cerebellum) were therefore measured after THC or placebo injection (30 minutes prior to sacrificing). Results: Cannabinoids induced hypothermia, hypolocomotion, analgesia and catalepsy in WTmice. These effects were significantly less detectable in Fmr1- KO mice. Effects of both cannabinoids, THC and WIN55,212, were comparable with a slightly greater but not significant efficiency of THC. THC treated WT- mice exhibited further reduced social interaction 10 days after treatment, an effect that was partially prevented by premedication with rimonabant. THC increased social interaction in Fmr1- KO mice comparable to the level of untreated WT- mice. THC had no effect on behavior of WT- mice in context-dependent fear conditioning. Fmr1- KO mice showed significant less contextdependent fear conditioning compared to WT- mice. THC facilitated the recognition of an anxiety-correlated context in Fmr1- KO mice comparable to untreated WT- mice. In western blots significant changes in the THC- induced signaling cascade were detectable and depending on genotype, brain-region and analyzed protein-kinase. In the hippocampus there were no changes in untreated Fmr1- KO mice compared to WT- mice. THC had no effect on activation of protein-kinases in WT- and Fmr1- KO mice. In the striatum there were no changes in untreated Fmr1- KO mice compared to WTmice. THC significantly increased activity of ERK, AKT and S6 in WT-mice and not in Fmr1- KO mice. In the cortex of untreated Fmr1- KO mice AKT showed a significantly increased activity compared to WT- mice. THC significantly increased AKT activity in WT- mice without having an effect on KO- mice. In the cerebellum there were no changes in untreated Fmr1- KO mice compared to WT- mice. THC significantly increased ERK- activity in Fmr1- KO mice but had no effect on protein kinase activity in WT- mice. Conclusion: We observed physiological cannabinoid effects in WT- mice after treatment with THC and WIN55,212. These effects are significantly attenuated in Fmr1- KO mice. This may be interpreted as a desensitization of the ECS in the Fmr1- KO mouse. At the same time it was demonstrated that THC has the potential to improve context dependent memory consolidation and to increase social interaction in the Fmr1- KO mouse. In particular the influence of THC on impaired social interaction should be a target of further investigations to find possible therapeutic options for this typical symptom of Autism. Underlying molecular mechanisms remain unclear and the analysis of THC stimulated intraneuronal signaling gave no clear indication of possible molecular alterations in the Fmr1- KO mouse.
29

Fonctions globales de FMRP dans la différenciation cellulaire dans un modèle non-neuronal: le MEG-01 / Global functions of FMRP in the cellular differentiation of a non-neuronal model: the MEG-01

Mc Coy, Marie January 2015 (has links)
Résumé: Mémoire présenté à la Faculté de médecine et des sciences de la santé en vue de l’obtention du diplôme de maître sciences (M.Sc.) en biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada, J1H 5N4. Le document présent est un mémoire par article, lequel explorera la fonction d'une protéine liant l'ARN, FMRP, dans la différenciation cellulaire. Cette protéine joue un rôle de premier plan puisque son absence conduit à des anomalies développementales durant la neurogenèse et à une plasticité synaptique déficiente. Ces anomalies sont observées chez la souris KO pour le gène FMR1, mais également dans le cerveau des individus avec le syndrome du X fragile (SXF). Ces derniers dont le gène FMR1 est muté présentent une déficience intellectuelle (DI). Puisque la DI est la principale manifestation du SXF, et que les neurones « normaux » expriment FMRP à des niveaux supérieures à ceux des autres tissus corporels, son rôle a presqu'exclusivement été étudié dans les cellules neuronales. Pourtant, FMRP est une protéine hautement conservée et est exprimée dans presque toutes les cellules du corps. Logiquement, FMRP devrait jouer un rôle important dans tous les tissus l’exprimant à des niveaux de base, bien que son absence dans les tissus ne se manifeste pas cliniquement. Cette polyvalence fonctionnelle est encore plus probable de par le fait que plusieurs ARNm différents ont la possibilité d’interagir avec FMRP puisqu’elle identifie ses cibles par reconnaissance de motifs. L'étude présentée se fonde sur l'hypothèse que FMRP effectue des fonctions de base critiques au développement de tous types de tissus humains, et non seulement dans les neurones. L’hypothèse sera davantage développée. Puis, un modèle innovateur de la différenciation cellulaire non-neuronal sera présenté pour l'étude de FMRP. L'enquête sur la distribution subcellulaire et les interactions dynamiques de cette protéine sera détaillée durant les différents changements morphologiques de la spécialisation et de la maturation cellulaire. Les résultats des expériences seront analysés en profondeur. Puis, un retour sur l'hypothèse en guise des résultats expérimentaux permettra de constater que FMRP semble bien jouer un rôle durant la différenciation cellulaire non-neuronale. Ce rôle est intimement lié à la réorganisation du cytosquelette et à la synthèse protéique locale, régulée dans les complexes mRNPs composés de FMRP et ses cibles d'ARNm qui sont régulés, stabilisés et transportés vers les régions en maturation. Ultimement, plusieurs éléments indiquent que FMRP doit interagir correctement avec de nombreuses molécules, décrites dans ce mémoire, afin de permettre aux cellules de se spécialiser et d'acquérir les caractéristiques désirées au cours d’une différenciation normale. / Abstract: The present article-based memoire will explore the involvement of an important RNA-binding protein, FMRP, in cellular differentiation. This protein is well-known for the developmental anomalies during neurogenesis as well as the loss of synaptic plasticity which occur when its gene, FMR1, is mutated. Since FMRP expression is most pronounced in neurons and because the absence of its expression results in the intellectual deficiency known as the Fragile X Syndrome, FMRP has nearly always been studied in neurons alone. However, FM RP is a highly conserved protein, expressed ubiquitously across the body. Additionally, its influence in cells can be vast since its motif - based RNA recognition renders it capable of binding a variety of transcripts. Logically speaking, FMRP should play a role of first rate importance in the other tissues where it is present. The clinical manifestation of its impact in those tissues is likely to be lessened only by the lower levels of FMRP expressed in the average human cell. The main hypothesis of the current study is that FMRP performs critical but basic functions involved in the development of all human tissues where it is present at basal levels, rather than exerting an impact limited to the nervous system alone. The hypothesis will be further elaborated. An innovative non-neuronal model will be presented for the study of FMRP throughout the differentiation process. The behaviour and dynamic interactions of FMRP during cell specialization and morphological maturation will be investigated. An in-depth analysis of the experimental results will follow. Returning to the hypothesis of the study with these results at hand, it will be concluded that FMRP does indeed appear to play a major role in the differentiation of non-neuronal cells. In fact, FMRP's function seems to be closely linked to cytoskeletal reorganization, as well as local protein synthesis through the formation of mRNP complexes with its target mRNAs, which are stabilized, regulated and transported towards the active areas of the cell in differentiation. Ultimately, it is clear that proper interaction between FMRP and certain types of molecules, described in this memoire, is required for cells to specialize and acquire the characteristics of mature cells through normal differentiation.
30

A Role for the NMDA receptor in synaptic plasticity in the hippocampus of the Fmr1 transgenic mouse model of Fragile X Syndrome

Bostrom, Crystal A. 23 July 2012 (has links)
Fragile-X syndrome (FXS) is the most common form of inherited intellectual impairment. Caused by the transcriptional repression of the Fmr1 gene on the X chromosome, FXS results in the loss of the Fragile-X Mental Retardation Protein (FMRP). Human female patients with FXS are heterozygous for the Fmr1 mutation whereas males are hemizygous. FXS has been studied far less in females than in males due to a generally less severe clinical phenotype. Previous research has implicated the metabotropic glutamate receptor (mGluR) in synaptic plasticity alterations in the cornu ammonis area 1 (CA1) region of the juvenile male Fmr1 knock-out (KO) hippocampus. In contrast, our investigations into the young adult dentate gyrus (DG) subfield of the hippocampus have revealed N-methyl-D-aspartate receptor (NMDAR)-associated impairments in synaptic plasticity. The current study sought to extend these investigations to the young adult female Fmr1 heterozygous (Het) and Fmr1 KO mouse as well as investigate NMDAR- and mGluR-mediated long-term depression (LTD) in the DG and CA1 of the young adult male Fmr1 KO mouse. Input-output curves and paired pulse measures of short-term plasticity were also evaluated in all genotypes. Field electrophysiology revealed a significant impairment in long-term potentiation (LTP) and LTD in male Fmr1 KO and female Fmr1 Het mice that was associated with NMDAR alteration. A more robust synaptic protocol was not able to rescue LTP in the male Fmr1 KO DG. Paired-pulse low-frequency stimulation and (RS)-3,5-dihydroxyphenylglycine (DHPG)-induced mGluR-LTD was intact in all genotypes and brain regions examined. Although further investigation will be required to expand our understanding of FXS and to fully elucidate the mechanisms behind intact synaptic plasticity in the female Fmr1 KO mouse, our results suggest that NMDARs may be poised as important contributors to hippocampal pathophysiology in FXS. / Graduate

Page generated in 0.0438 seconds