Spelling suggestions: "subject:"faraday cup"" "subject:"faraday pup""
1 |
The Study of Reactor Wall Fouling in Gas-solid Fluidized Beds Caused by Electrostatic Charge GenerationSowinski, Andrew 25 September 2012 (has links)
Electrostatic charge generation is unavoidable in gas-solid fluidized beds due to the repeated particle-particle and particle reactor wall contacts and separations. In industrial operations such as in polyethylene production this phenomenon results in the significant problem of reactor wall fouling, known as “sheeting”. To better understand the underlying charging mechanisms involved in gas-solid fluidized beds in an attempt to eliminate and/or reduce the effect a novel on-line electrostatic charge measurement technique was developed, which concurrently provided information on both the degree of fluidized bed electrification and reactor wall fouling. A Faraday cup replaced the windbox of the fluidized bed while another cup was placed at the top of the column. The distributor plate was uniquely designed for the systematic removal of bed particles and those adhered to the column wall for their charge measurement with the bottom Faraday cup, and the charge of the entrained particles was measured by the top Faraday cup. This is the first study which allowed the charge measurement of particles in the bulk of the bed, particles adhered to the column wall, and those entrained, simultaneously. In addition, this method uniquely permitted the evaluations of the degree of reactor wall fouling under different operating conditions.
An experimental program was designed to investigate the influence of bed hydrodynamics (fluidizing gas velocity and particle size), fluidization column wall material, and the addition of different solid additives. Fluidizing particles were polyethylene resin from an industrial reactor. Bi-polar charging was observed where the elutriated particles were oppositely charged compared to those in the bulk of the bed and those adhered to the column wall. Particles within the wall coating were also found to be bi-polarly charged. With the resin tested as received, a certain sized particles (350-575 µm) adhered to the column wall. The specific charge of the particles near the column wall was found not to be a definite indication of the amount of wall fouling. Increasing the gas velocity promoted wall fouling and elevated the charge density of the particles within both bubbling and slugging flow regimes. The effect of solid additive injection was examined with two static drivers known to reduce wall fouling in industrial operations, a deactivated catalyst, and the catalyst support. It was found that the catalyst promoted, while one of the static drivers reduced wall fouling.
|
2 |
Entwicklung eines Multi-Leaf Faraday Cups zur Strahldiagnose in der AugentumortherapieKunert, Christoph 11 March 2015 (has links)
Die Protonentherapie von Aderhautmelanomen wird vor allem für die Behandlung von Tumoren nahe kritischer Strukturen (Sehnerv) und bei großen Tumoren angewandt. Dabei ist die begrenzte Reichweite der Protonen vorteilhaft, die scharf begrenzte Dosisfelder im Auge ermöglicht, und das an den Tumor grenzende gesunde Gewebe bestmöglich schont. Daher erfolgt die Positionierung der Patienten und der Strahlenfelder in der Augentumortherapie, wie auch die regelmäßigen Konstanzprüfungen, mit einer Reichweitengenauigkeit in Wasser von 0,1 mm. Mit einem Multi-Leaf Faraday Cup (MLFC) kann die Reichweite der Protonen in kurzer Zeit sehr genau gemessen werden. Dabei misst der MLFC die differentielle Fluenz der Protonenstrahlen, also das Reichweitenprofil. Er besteht aus einem Stapel Folien, abwechselnd leitend und isolierend. Eindringende Protonen deponieren eine zusätzliche Ladung in der Folie in der sie stoppen. Durch eine gleichzeitige Strommessung an allen Folien misst der MLFC relativ schnell die Reichweite der Protonen. Aufgabe dieser Arbeit ist es, einen MLFC entsprechend den Anforderungen der Augentumortherapie zu entwickeln, aufzubauen und mögliche Anwendungspotentiale zu untersuchen. Dafür wurden Monte-Carlo-Rechnungen mit MCNPX 2.6 und SRIM durchgeführt, verschiedene Folienstapel an Luft und im Vakuum untersucht, verschiedene Messelektroniken zur gleichzeitigen Messung von Strömen im pA-Bereich in vielen Kanälen getestet, ein Absorbersystem für einen variablen Messbereich von 30 MeV bis 70 MeV aufgebaut und die entsprechende Mess- und Steuersoftware in LabVIEW 2011 entwickelt. Es wurde die Genauigkeit der Reichweitenmessungen untersucht und gezeigt, dass der MLFC durch seine Mobilität eine schnelle Energiebestimmung an unterschiedlichen Experimentierplätzen erlaubt. In der Therapie ist neben der einfachen Bestimmung der maximalen Reichweite der Protonen auch die regelmäßige Kontrolle der Modulation der ausgedehnten Bragg-Kurven möglich. / Proton therapy of uveal melanomas is primarily used for the treatment of tumors near critical structures (optic nerve) and in large tumors. The great advantage of protons is their sharply limited range in tissue, which leads to sharp defined dose fields in the eye and the dose absorbed by the healthy tissue around the tumor can be reduced. Therefore, the positioning of the patient and the radiation fields, as well as the regular control measurements in the eye tumor therapy requires an accuracy of 0.1 mm in water. A Multi-Leaf Faraday Cup (MLFC) gives the opportunity to measure the proton range relatively fast and accurate. The MLFC measures the differential fluence, which means the range profile of the proton beam. It consists of a stack of sheets, alternating conductive and insulating, and the penetrating protons bring their additional charge into the sheet in which they stop. By measuring the corresponding current in each conducting sheet at the same time, the MLFC can quickly measure the range of the protons. The task of this work is to develop a MLFC with respect to the requirements of the eye tumor therapy and to explore possible application potentials. Therefore, Monte Carlo calculations with MCNPX 2.6 and SRIM were conducted, various foil stacks were studied in air and in vacuum, different measurement electronics for measuring currents in the pA range in many channels simultaneously were tested, a system of degraders for a variable measuring range from 30 MeV to 70 MeV was developed and the corresponding measurement and control software was written in LabVIEW 2011. The accuracy of the range measurements was examined and it was shown that a quick energy measurement at different target stations can be made by the MLFC due to its mobility. In therapy, in addition to the determination of the maximum range of the proton beam, the regular monitoring of the modulation of the extended Bragg-curves is in principle possible.
|
3 |
Advancement and optimization of an electrospray injection based in-vacuum patterning system for macromolecular materialsStark, Andreas 20 May 2008 (has links)
Electrospray ionization is a technique widely used in mass spectrometry. Almost every material, specifically large molecules like proteins or polymers can be ionized directly out of solution. During the ionization process molecules are not fragmented. In this work a prototype apparatus for creating three-dimensional patterns in a ultra high vacuum environment using an electrospray ion source was optimized for higher ion currents hence deposition rate by improving the core component of the apparatus, an electrodynamic ion funnel. The major improvements are a redesigned heated vacuum inlet, modified gas flow inside the ion funnel because of sealing the ion funnel against perpendicular gas flow and a better measurement setup for the transmitted current. The transmission of the ion funnel was improved from 25% to 82% resulting in ion currents of up to 7nA (500pA before advancements) focused through the ion funnel. At this rate an area of 1 cm² can be coated with a molecular monolayer of Cytochrome C in 64 minutes.
|
4 |
Design and Implementation of an Ion Beam Profiling SystemStude, Joan January 2009 (has links)
<p>The work describes the development of a reliable device for profiling anion beam in the intensity cross section. A sensor head consisting of a Faradaycup in combination with a Channel Electron Multiplier was designedand built together with electronics including power supply and front endelectronics. The design was chosen considering financial and long term lifeaspects. Testing, first calibration and error analysis were done using the ionbeam facilities where the unit is supposed to be installed permanently. Theprofiling system performed as designed and the profile of the ion beam couldbe measured reliably with an accuracy down to the femto ampere range.</p>
|
5 |
Design and Implementation of an Ion Beam Profiling SystemStude, Joan January 2009 (has links)
The work describes the development of a reliable device for profiling anion beam in the intensity cross section. A sensor head consisting of a Faradaycup in combination with a Channel Electron Multiplier was designedand built together with electronics including power supply and front endelectronics. The design was chosen considering financial and long term lifeaspects. Testing, first calibration and error analysis were done using the ionbeam facilities where the unit is supposed to be installed permanently. Theprofiling system performed as designed and the profile of the ion beam couldbe measured reliably with an accuracy down to the femto ampere range.
|
6 |
Design, Integration, Simulation, and Testing of a Retarding Potential AnalyzerBlana, Lasse January 2024 (has links)
A retarding potential analyzer (RPA) is being developed at the Swedish Institute of Space Physics to build expertise in designing plasma particle instruments measuring currents. This thesis presents the results of the project. First, a literature survey of RPAs was conducted to support the IRF’s working group in critical design choices. Subsequently, a 3D CAD model was designed by the mechanical engineering department. This model was used to perform ion optical simulations to investigate the behavior of the instrument. The simulations showed that potentials at the walls drastically affect the trajectories of charged particles in the instrument. Consequently, the instrument’s response diverges from simple analytical models. An effort was made to adapt these models to better describe the observed response. The instrument was also manufactured from the computeraided design (CAD) model by the institute’s own workshop. After fit-checking and thorough cleaning, the parts were assembled in a clean environment. Subsequently, the instrument was tested with an ion beam in the IRF’s vacuum chamber. The instrument exhibited an extremely low noise level and was successfully used to measure the ion beam. The measurements confirmed the instrument was performing as expected and allowed for an energy analysis of the ion beam. Furthermore, the high temporal resolution of the instrument enabled a closer inspection of fluctuations in the beam current. Overall, the project showed the IRF’s capability to rapidly design, manufacture, integrate, and test plasma instruments. It serves as the basis for future iterations of the instrument, optimizations, advanced simulations, and the development of an ion drift meter to complement the measurements by enabling directional observations.
|
Page generated in 0.0531 seconds