11 |
Growth hormone in the brain : Focus on cognitive functionBrolin, Erika January 2017 (has links)
Cognitive impairments are an increasing health problem worldwide. In the developed countries, the average life expectancy has dramatically increased over the last decades, and with an elderly population more cases of cognitive impairments appear. Age, genetics, and different medical conditions such as diabetes mellitus, and substance use disorders may all contribute to declined cognitive ability. Physiological functions also decrease with increasing age, as does the activity of the growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis. Interestingly, both GH and IGF-1 are recognized for their neuroprotective effects and cognitive enhancement. The overall aim of this thesis was to investigate the impact of the somatotrophic axis (i.e. GH/IGF-1 axis) in rodents with cognitive deficiencies induced by diabetes or long-term drug exposure. For the first time cognitive impairments were characterized in diabetic mice using a spatial learning and memory task called the Barnes maze (BM). In diabetic mice, impaired learning in the BM was associated with decreased expression of the GH receptor (GHR) in the frontal cortex, a region important for e.g. working memory. Treatment with GH reversed certain cognitive impairments seen in diabetic animals. In rats treated with gamma-hydroxybutyrate (GHB), a significant decrease of Igf1 mRNA expression in the frontal cortex was observed. This observation may explain the impaired cognitive function previously seen following GHB administration. Furthermore, rats exposed to chronic morphine delivered in mini-osmotic pumps displayed memory impairments in the Morris water maze (MWM), an effect that seems to be associated with the composition of the N-methyl-d-aspartate (NMDA) receptor complex in the frontal cortex. In conclusion, the result strengthens the evidence for GH being a cognitive enhancer. Moreover, the result within this thesis identifies the frontal cortex as an important brain region, where gene expression related to the somatotrophic system is affected in rodents with cognitive impairments. The thesis especially emphasizes the importance of the local somatotrophic system in the brain with regard to cognitive function.
|
12 |
Modelling and Simulation to Improve Antimalarial TherapyLohy Das, Jesmin Permala January 2017 (has links)
The introduction of artemisinin-based combination therapy (ACT) substantially reduced malaria-related mortality and morbidity during the past decade. Despite the widespread use of ACT, there is still a considerable knowledge gap with regards to safety, efficacy and pharmacokinetic properties of these drugs, particularly in vulnerable populations like children and pregnant women. In addition, there is growing evidence of widespread artemisinin-resistance across the Greater Mekong Subregion. Expedited delivery of novel antimalarial drugs with different mechanisms of action to the clinical setting is still far off; therefore, it is crucial to improve the use of existing antimalarial drugs for optimal outcome in order to prolong their therapeutic life span. This thesis focuses on utilizing pharmacometric tools to support this effort for malaria prevention and treatment. An extensive simulation framework was used to explore alternative malaria chemopreventive dosing regimens of a commonly used ACT, dihydroartemisinin-piperaquine. Different monthly and weekly dosing regimens were evaluated and this allowed an understanding of the interplay between adherence, loading dose and malaria incidence. A weekly dosing regimen substantially improved the prevention effect and was less impacted by poor adherence. This is also expected to reduce selection pressure for development of resistance to piperaquine. Population pharmacokinetics-pharmacodynamic models were developed for artesunate and the active metabolite dihydroartemisinin, effect on parasite clearance, in patients with artemisinin-resistant and -sensitive malaria infections in Southeast Asia. The modeling identified an association between parasite density and drug bioavailability. It predicted the presence of high levels of artemisinin resistant infection among patients in Cambodia and its spread into Myanmar. A nomogram to identify patients with artemisinin resistant infections was developed. Furthermore, the model was used to demonstrate the need for extended treatment duration to treat patients with artemisinin resistant infections. A population pharmacokinetic model developed from data on pregnant women in East Africa allowed further understanding of artemether-lumefantrine exposure in pregnant populations. It also suggested that the lumefantrine exposure in this population is not compromised. In summary, the results presented in this thesis demonstrate the value of pharmacometric approaches for improving antimalarial drug treatment and prevention. This ultimately contributes to overcoming the prevailing challenges to malaria control.
|
13 |
Preclinical PET imaging of Alzheimer's disease progressionFang, Xiaotian T. January 2017 (has links)
Amyloid PET imaging with [11C]PIB enabled detection of Aβ for the first time in vivo. However, [11C]PIB is a small molecule that binds only the insoluble Aβ plaque. Rather, the soluble Aβ aggregates are considered the cause of Alzheimer’s disease (AD). As such, a more sensitive and specific PET tracer is needed for tracking longitudinal AD pathology. Soluble Aβ aggregates likely interact with the metabotropic glutamate receptor 5 (mGluR5) to cause neurotoxic effects. However, with [11C]ABP688 PET we were unable to detect aberrant mGluR5 binding in AD mouse models, although we find elevated mGluR5 protein levels with immunoblotting. Antibodies are highly specific large molecules that can bind specifically to soluble Aβ aggregates, thus they can be a good marker for AD pathology. Unfortunately, due to their large size they cannot cross the blood-brain barrier (BBB). However, it is possible to shuttle antibodies into the brain by taking advantage of endogenous transporter systems on the BBB. By creating bispecific antibodies binding both to soluble Aβ aggregates and to the transferrin receptor (BBB target), we successfully transported the antibody into the brain and could visually detect soluble Aβ aggregates with PET. Recombinant expression further improved and optimized antibody design, creating smaller bispecific antibody-based constructs that had better pharmacokinetic properties allowing for earlier PET scanning (1 day instead of 3), and more sensitive signal. Lastly, using TCO-tetrazine click chemistry, we indirectly labeled our antibodies with fluorine-18, and could successfully perform PET already 11 h post-injection with a fluorine-18 labeled antibody.
|
14 |
Sperm Membrane Channels, Receptors and Kinematics : Using boar spermatozoa for drug toxicity screeningVicente Carrillo, Alejandro January 2016 (has links)
Internal fertilization usually implies that a spermatozoon, with intact attributes for zygote formation, passes all hurdles during its transport through the female genitalia and reaches the oocyte. During this journey, millions to billions of other spermatozoa perish. Spermatozoa are highly differentiated motile cells without synthetic capabilities. They generate energy via glycolysis and oxidative phosphorylation to sustain motility and to maintain the stability and functionality of their plasma membrane. In vivo, they spend their short lifespan bathing in female genital tract fluids of different origins, or are in vitro exposed to defined media during diverse sperm handling i.e. extension, cryopreservation, in vitro fertilization, etc. Being excitable cells, spermatozoa respond in vivo to various stimuli during pre-fertilization (capacitation, hyperactivation, oocyte location) and fertilization (acrosome reaction, interaction with the oocyte) events, mediated via diverse membrane ion-conducting channels and ligand-gated receptors. The present Thesis has mapped the presence and reactivity (sperm intactness and kinematics) of selected receptors, water and ion channels in ejaculated boar spermatozoa. The final aim was to find a relevant alternative cell type for in vitro bioassays that could ease the early scrutiny of candidate drugs as well as decreasing our needs for experimental animals according to the 3R principles. Spermatozoa are often extended, cooled and thawed to warrant their availability as fertile gametes for breeding or in vitro testing. Such manipulations stress the cells via osmotic variations and hence spermatozoa need to maintain membrane intactness by controlling the exchange of water and the common cryoprotectant glycerol, via aquaporins (AQPs). Both AQPs-7 and -9 were studied for membrane domain changes in cauda- and ejaculated spermatozoa (un-processed, extended, chilled or frozen-thawed). While AQP-9 maintained location through source and handling, thawing of ejaculated spermatozoa clearly relocated the labelling of AQP-7, thus appearing as a relevant marker for non-empirical studies of sperm cryopreservation. Alongside water, spermatozoa interact with calcium (Ca2+) via the main Ca2+ sperm channel CatSper. Increments in intracellular Ca2+ initiate motility hyperactivation and the acrosome reaction. The four subunits of the CatSper channel were present in boar spermatozoa, mediating changes in sperm motility under in vitro capacitation-inducing conditions (increased extracellular Ca2+ availability and bicarbonate) or challenge by the CatSper antagonists mibefradil and NNC 55-0396. Uterine and oviduct fluids are richest in endogenous opioids as β-endorphins during mating and ovulation. Both μ- and δ- opioid receptors were present in boar spermatozoa modulating sperm motility, as in vitro challenge with known agonists (μ: morphine; δ: DPDPE and κ: U 50488) and antagonists (μ: naloxone; δ: naltrindole and κ: nor-binaltrorphimine) showed that the μ-opioid receptor maintained or increased motility while the δ-opioid receptor mediated decreased motility over time. Finally, boar spermatozoa depicted dose-response effects on sperm kinematics and mitochondrial potential following in vitro challenge with 130 pharmacological drugs and toxic compounds as well as with eight known mito-toxic compounds. In conclusion, boar spermatozoa expressing functional water (AQPs-7 and -9) and ion (CatSper 1-4) channels as well as μ- and δ-opioid receptors are able to adapt to stressful environmental variations, capacitation and pharmacological compounds and drug components. Ejaculated sperm suspensions are easily and painlessly obtained from breeding boars, and are suitable biosensors for in vitro drug-induced testing, complying with the 3R principles of reduction and replacement of experimental animals, during early toxicology screening.
|
15 |
Longitudinal Models for Quantifying Disease and Therapeutic Response in Multiple SclerosisNovakovic, Ana M. January 2017 (has links)
Treatment of patients with multiple sclerosis (MS) and development of new therapies have been challenging due to the disease complexity and slow progression, and the limited sensitivity of available clinical outcomes. Modeling and simulation has become an increasingly important component in drug development and in post-marketing optimization of use of medication. This thesis focuses on development of pharmacometric models for characterization and quantification of the relationships between drug exposure, biomarkers and clinical endpoints in relapse-remitting MS (RRMS) following cladribine treatment. A population pharmacokinetic model of cladribine and its main metabolite, 2-chloroadenine, was developed using plasma and urine data. The renal clearance of cladribine was close to half of total elimination, and was found to be a linear function of creatinine clearance (CRCL). Exposure-response models could quantify a clear effect of cladribine tablets on absolute lymphocyte count (ALC), burden of disease (BoD), expanded disability status scale (EDSS) and relapse rate (RR) endpoints. Moreover, they gave insight into disease progression of RRMS. This thesis further demonstrates how integrated modeling framework allows an understanding of the interplay between ALC and clinical efficacy endpoints. ALC was found to be a promising predictor of RR. Moreover, ALC and BoD were identified as predictors of EDSS time-course. This enables the understanding of the behavior of the key outcomes necessary for the successful development of long-awaited MS therapies, as well as how these outcomes correlate with each other. The item response theory (IRT) methodology, an alternative approach for analysing composite scores, enabled to quantify the information content of the individual EDSS components, which could help improve this scale. In addition, IRT also proved capable of increasing the detection power of potential drug effects in clinical trials, which may enhance drug development efficiency. The developed nonlinear mixed-effects models offer a platform for the quantitative understanding of the biomarker(s)/clinical endpoint relationship, disease progression and therapeutic response in RRMS by integrating a significant amount of knowledge and data.
|
16 |
Psychoactive prescription drug use disorders, misuse and abuse : Pharmacoepidemiological aspectsTjäderborn, Micaela January 2016 (has links)
Background: There is a widespread and increasing use of psychoactive prescription drugs, such as opioid analgesics, anxiolytics, hypnotics and anti-epileptics, but their use is associated with a risk of drug use disorder, misuse and abuse. Today, these are globally recognized and emerging public health concerns. Aim: The aim of this thesis is to estimate the prevalence of psychoactive prescription drug (PPD) use disorders, misuse and abuse, and to investigate the association with some potential risk factors. Methods: A study using register data from forensic cause of death investigations investigated and described cases of fatal unintentional intoxication with tramadol (Study I). Based on register data on spontaneously reported adverse drug reactions (ADRs) reported cases of tramadol dependence were investigated and summarised (Study II). In a study in suspected drug-impaired drivers with a toxicology analysis confirming the intake of one out of five pre-specified PPDs, the prevalence of non-prescribed use was assessed and associated factors were investigated (Study III). From a cohort of patients initiating prescribed treatment with pregabalin, using data on prescription fills, a study investigated longitudinal utilisation patterns during five years with regards to use of the drug above the maximum approved daily dose (MAD), and factors associated with the utilisation patterns (Study IV). Results: In the first study, 17 cases of unintentional intoxications were identified, of which more concerned men, the median age was 44 years and the majority used multiple psychoactive substances (alcohol, illicit drugs and prescription drugs). The second study identified 104 spontaneously reported cases of tramadol dependence, in which more concerned women, the median age was 45 years, and a third reported a history of substance abuse and 40% of past psychoactive medication use. In the third study, more than half of the individuals suspected of drug-impaired driving used the drug without a recent prescription. Non prescribed use was most frequent in users of benzodiazepines and tramadol, and was more likely in younger individuals and in multiple-substance users. In the last paper five longitudinal utilisation patterns were found in pregabalin users, with two patterns associated with a particularly high risk of doses above the maximum approved dosing recommendation. This pattern of use was associated with male sex, younger age, non-urban residency and a recent prescribed treatment with an antiepileptic or opioid analgesic drug. Conclusions: This thesis shows that psychoactive prescription drug use disorders, misuse and abuse occur and may have serious and even fatal consequences. The prevalence varies between different drugs and populations. Abuse and misuse seem to be more common in young people. Fatal intoxications and misuse of prescribed drugs may be more common in men, while drug use disorders following prescribed treatment may be more common in women and non-prescribed use equally distributed between women and men. Individuals with a history of mental illness, substance use disorder or abuse, or of past use of psychoactive medications are likely important risk groups. In summary, the findings suggest a potential for improvements in the utilisation of psychoactive prescription drugs. The results may be useful in the planning of clinical and regulatory preventive interventions to promote the rational, individualised and safe use of such drugs.
|
17 |
En utvärdering av 5-HT1A-receptoragonisten vilazodone för en utökad antidepressiv effekt i behandlingen av egentlig depression / Evaluation of the antidepressant effect of vilazodone for the treatment of major depressionKhalifa, Aseel January 2017 (has links)
Major depressive disorder (MDD) is a mood disorder majorly responsible for disability and mortality worldwide. With a lifetime prevalence of 15-20%, it is the main cause of functional impairment in Western societies as well as the fourth most debilitating illness in the world. Although the pathophysiology of MDD is not yet fully understood, some evidence that suggest the presence of a neuroanatomical deficiency have given rise to the theory of a specific imbalance in the monoamine neurotransmitters noradrenaline (NA) and/or serotonin (5-HT) levels in the brain. Overall, the various classes of antidepressant agents that have been developed to increase monoamine levels on the basis of this proposal have been successful. However, facts relating to prevalent escalation in the illness and recurring episodes of depression point towards a need to enhance clinical treatment. Most conventional antidepressants such as selective serotonin reuptake inhibitors (SSRI) and selective serotonin and noradrenaline inhibitors (SNRI) pose problems in symptomatic improvement. These include therapeutic lag, safety and tolerability issues, making more than 30% patients with MDD unable to reach adequate relief. In this respect, the action mechanism has moved beyond conventional SSRI and lead to the introduction of vilazodone, a novel antidepressant with an additional 5-HT1A partial agonist profile argued to be of potential benefit for a greater efficacy, faster onset of action and better tolerability. Using secondary data, this project aimed to evaluate the role of vilazodone as a SPARI-drug in the overall clinical treatment of MDD as well as its potential in addressing some of the most common obstacles in antidepressant treatment. Study results proved vilazodone’s efficacy to be superior to placebo. Patients across all studies showed significant improvement in depressive symptoms measured in MADRS and HAMD17. Vilazodone was also shown to be generally safe and tolerable but was not positively distinguished from placebo with regards to adverse effects. An overall, meaningful improvement in depressive symptoms was demonstrated in vilazodone, which reinforces its merit as an important treatment option for patients with MDD.
|
18 |
Pharmacometrics Modelling in Type 2 Diabetes Mellitus : Implications on Study Design and Diabetes Disease ProgressionGhadzi, Siti Maisharah Sheikh January 2017 (has links)
Pharmacometric modelling is widely used in many aspects related to type 2 diabetes mellitus (T2DM), for instance in the anti-diabetes drug development, and in quantifying the disease progression of T2DM. The aim of this thesis were to improve the design of early phase anti-diabetes drug development studies with the focus on the power to identify mechanism of drug action (MoA), and to characterize and quantify the progression from prediabetes to overt diabetes, both the natural progression and the progression with diet and exercise interventions, using pharmacometrics modelling. The appropriateness of a study design depends on the MoAs of the anti-hyperglycaemic drug. Depending on if the focus is power to identify drug effect or accuracy and precision of drug effect, the best design will be different. Using insulin measurements on top of glucose has increase the power to identify a correct drug effect, distinguish a correct MoA from the incorrect, and to identify a secondary MoA in most cases. The accuracy and precision of drug parameter estimates, however, was not affected by insulin. A natural diabetes disease progression model was successfully added in a previously developed model to describe parameter changes of glucose and insulin regulation among impaired glucose tolerance (IGT) subjects, with the quantification of the lifestyle intervention. In this model, the assessment of multiple short-term provocations was combined to predict the long-term disease progression, and offers apart from the assessment of the onset of T2DM also the framework for how to perform similar analysis. Another previously published model was further developed to characterize the weight change in driving the changes in glucose homeostasis in subjects with IGT. This model includes the complex relationship between dropout from study and weight and glucose changes. This thesis has provided a first written guidance in designing a study for pharmacometrics analysis when characterizing drug effects, for early phase anti-diabetes drug development. The characterisation of the progression from prediabetes to overt diabetes using pharmacometrics modelling was successfully performed. Both the natural progression and the progression with diet and exercise interventions were quantified in this thesis.
|
19 |
High-throughput screening using multicellular tumor spheroids to reveal and exploit tumor-specific vulnerabilitiesSenkowski, Wojciech January 2017 (has links)
High-throughput drug screening (HTS) in live cells is often a vital part of the preclinical anticancer drug discovery process. So far, two-dimensional (2D) monolayer cell cultures have been the most prevalent model in HTS endeavors. However, 2D cell cultures often fail to recapitulate the complex microenvironments of in vivo tumors. Monolayer cultures are highly proliferative and generally do not contain quiescent cells, thought to be one of the main reasons for the anticancer therapy failure in clinic. Thus, there is a need for in vitro cellular models that would increase predictive value of preclinical research results. The utilization of more complex three-dimensional (3D) cell cultures, such as multicellular tumor spheroids (MCTS), which contain both proliferating and quiescent cells, has therefore been proposed. However, difficult handling and high costs still pose significant hurdles for application of MCTS for HTS. In this work, we aimed to develop novel assays to apply MCTS for HTS and drug evaluation. We also set out to identify cellular processes that could be targeted to selectively eradicate quiescent cancer cells. In Paper I, we developed a novel MCTS-based HTS assay and found that nutrient-deprived and hypoxic cancer cells are selectively vulnerable to treatment with inhibitors of mitochondrial oxidative phosphorylation (OXPHOS). We also identified nitazoxanide, an FDA-approved anthelmintic agent, to act as an OXPHOS inhibitor and to potentiate the effects of standard chemotherapy in vivo. Subsequently, in Paper II we applied the high-throughput gene-expression profiling method for MCTS-based drug screening. This led to discovery that quiescent cells up-regulate the mevalonate pathway upon OXPHOS inhibition and that the combination of OXPHOS inhibitors and mevalonate pathway inhibitors (statins) results in synergistic toxicity in this cell population. In Paper III, we developed a novel spheroid-based drug combination-screening platform and identified a set of molecules that synergize with nitazoxanide to eradicate quiescent cancer cells. Finally, in Paper IV, we applied our MCTS-based methods to evaluate the effects of phosphodiesterase (PDE) inhibitors in PDE3A-expressing cell lines. In summary, this work illustrates how MCTS-based HTS yields potential to reveal and exploit previously unrecognized tumor-specific vulnerabilities. It also underscores the importance of cell culture conditions in preclinical drug discovery endeavors.
|
Page generated in 0.0177 seconds