• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 2
  • 1
  • 1
  • Tagged with
  • 33
  • 33
  • 16
  • 14
  • 13
  • 12
  • 11
  • 10
  • 8
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

En elektrifiering av den interna busstrafiken på Stockholm Arlanda Airport

Zisimopoulos, Dimitrios January 2016 (has links)
Functional and cost effective systems for the full electrification of a bus network are areas of intense research and development. The electrification can be accomplished using different technological solutions, for example using opportunity charging or using an electric road system – ERS. Both opportunity charging and ERS have the potential to be integrated into already existing bus lines. With opportunity charging, the regular dwell time at the end stops is used for the bus to recharge its batteries and with an ERS the bus can charge dynamically along the road. The purpose of this report is to analyze how the existing Alfa- and Beta line at Stockholm Arlanda Airport, in a functional and cost effective way, can be electrified using either opportunity charging or an ERS. The tradeoff between required charging power, battery capacity and the necessity to change the existing running schedule is explained in detail. In addition, the impact on the electrical grid is analyzed based on different load profiles of different charging stations using different power levels. The analysis is based on real data from the Alfa – and Beta line with its existing buses, the electrical grid at Arlanda and data provided by both the leading (electrical) bus manufacturers and the leading charging infrastructure manufacturers.  The outcome of this report suggests that a full electrification of the existing Alfa- and Beta line has the potential to lower CO2-emissions and energy use at a functional and cost effective way.
32

DC-DC Converter for Fast Charging with Mobile BESS in a Weak Grid : Enabling remote charging and increased efficiency with less resource intensity / DC-DC-omvandlare för snabbladdning med mobilt batterienergilagringssystem i svaga elnät : Möjliggör laddning och ökad effektivitet med mindre resursintensitet på avlägsna platser

Medén, Alexander January 2023 (has links)
With the increase of electric vehicles (EVs) on the roads the availability of charging infrastructure becomes more important. Today it is relatively straightforward to install fast chargers in areas with strong power grid connections, such as in urban areas. However, in areas with less available electrical power, the grid is considered to be a weak grid, typically in remote areas, which limits charging speeds. Local peak shaving can be implemented with battery energy storage systems (BESS) to support faster charging at these locations by increasing available power when needed. As the majority of the power is supplied by the BESS there are noticeable conversion losses when converting from the BESS DC voltage to AC in the grid and then back to DC through the fast charger. This thesis investigates DC/DC converters to charge EVs directly from a BESS DC bus by regulating the voltage to the level of the EV, while also supporting safe simultaneous charging capability. It was done through understanding relevant standards’ requirements, converter review, as well as design and simulation of the interesting topologies. The converters selected to simulate were the Buck-Boost and the Dual-Active Bridge (DAB). After analysing the efficiency result in combination with industry requirements, it was concluded that one DAB per output is the preferred option in most use cases. This would potentially also reduce the material usage and carbon footprint of this type of infrastructure compared to the current solution. Furthermore, some suggestions were made for improving the design of DAB converter before making a prototype for real testing. / Denna avhandling har undersökt hur en snabbladdares effektelektronik för en mobil batterienergilagringssystem kan designas för att ladda två elbilar samtidigt. För att göra detta har systemkrav från relevanta standarder sammanställts och olika snabbladdares kapacitet undersökts. Därefter har olika DC/DC-omvandlare identifierats i ändamål att välja ut de mest lämpade för att uppfylla funktionen. De utvalda omvandlarna designades iterativt och simulerades med i verktyget PLECS för att kunna jämföra hur vardera omvandlare presterade under olika scenarior och med olika transistorer. Resultat och slutsatser från detta arbete är att galvanisk isolering krävs mellan de två elbilarna samt att två Dual-Active Bridge (DAB) omvandlare är den mest lämpade utifrån effektivitet, kapacitet och materialanvänding. Det finns även flera områden att fortsätta arbetet på för att förbättra designen och testa med en prototyp.
33

Atomic and electronic structure of complex metal oxides during electrochemical reaction with lithium

Griffith, Kent Joseph January 2018 (has links)
Lithium-ion batteries have transformed energy storage and technological applications. They stand poised to convert transportation from combustion to electric engines. The discharge/charge rate is a key parameter that determines battery power output and recharge time; typically, operation is on the timescale of hours but reducing this would improve existing applications and open up new possibilities. Conventionally, the rate at which a battery can operate has been improved by synthetic strategies to decrease the solid-state diffusion length of lithium ions by decreasing particle sizes down to the nanoscale. In this work, a different approach is taken toward next-generation high-power and fast charging lithium-ion battery electrode materials. The phenomenon of high-rate charge storage without nanostructuring is discovered in niobium oxide and the mechanism is explained in the context of the structure–property relationships of Nb2O5. Three polymorphs, T-Nb2O5, B-Nb2O5, and H-Nb2O5, take bronze-like, rutile-like, and crystallographic shear structures, respectively. The bronze and crystallographic shear compounds, with unique electrochemical properties, can be described as ordered, anion-deficient nonstoichiometric defect structures derived from ReO3. The lessons learned in niobia serve as a platform to identify other compounds with related structural motifs that apparently facilitate high-rate lithium insertion and extraction. This leads to the synthesis, characterisation, and electrochemical evaluation of the even more complicated composition–structure–property relationships in ternary TiO2–Nb2O5 and Nb2O5–WO3 phases. Advanced structural characterisation including multinuclear solid-state nuclear magnetic resonance spectroscopy, density functional theory, X-ray absorption spectroscopy, operando high-rate X-ray diffraction, and neutron diffraction is conducted throughout to understand the evolution of local and long-range atomic structure and changes in electronic states.

Page generated in 0.0506 seconds