Spelling suggestions: "subject:"ferroelectric domains"" "subject:"ferrroelectric domains""
1 |
Domain engineering in KTiOPO4Canalias, Carlota January 2005 (has links)
Ferroelectric crystals are commonly used in nonlinear optics for frequency conversion of laser radiation. The quasi-phase matching (QPM) approach uses a periodically modulated nonlinearity that can be achieved by periodically inverting domains in ferroelectric crystals and allows versatile and efficient frequency conversion in the whole transparency region of the material. KTiOPO4 (KTP) is one of the most attractive ferroelectric non-linear optical material for periodic domain-inversion engineering due to its excellent non-linearity, high resistance for photorefractive damage, and its relatively low coercive field. A periodic structure of reversed domains can be created in the crystal by lithographic patterning with subsequent electric field poling. The performance of the periodically poled KTP crystals (PPKTP) as frequency converters rely directly upon the poling quality. Therefore, characterization methods that lead to a deeper understanding of the polarization switching process are of utmost importance. In this work, several techniques have been used and developed to study domain structure in KTP, both in-situ and ex-situ. The results obtained have been utilized to characterize different aspects of the polarization switching processes in KTP, both for patterned and unpatterned samples. It has also been demonstrated that it is possible to fabricate sub-micrometer (sub-μm) PPKTP for novel optical devices. Lithographic processes based on e-beam lithography and deep UV-laser lithography have been developed and proven useful to pattern sub- μm pitches, where the later has been the most convenient method. A poling method based on a periodical modulation of the K-stoichiometry has been developed, and it has resulted in a sub-μm domain grating with a period of 720 nm for a 1 mm thick KTP crystal. To the best of our knowledge, this is the largest domain aspect-ratio achieved for a bulk ferroelectric crystal. The sub-micrometer PPKTP samples have been used for demonstration of 6:th and 7:th QPM order backward second-harmonic generation with continuous wave laser excitation, as well as a demonstration of narrow wavelength electrically-adjustable Bragg reflectivity. / QC 20100930
|
2 |
Ferroelectric domain engineering and characterization for photonic applicationsGrilli, Simonetta January 2006 (has links)
Lithium niobate (LiNbO3) and KTiOPO4 (KTP) are ferroelectric crystals of considerable interest in different fields of optics and optoelectronics. Due to its large values of the nonlinear optical, electro-optic (EO), piezoelectric and acousto-optical coefficients, LiNbO3 is widely used for laser frequency conversion using the quasiphase matching (QPM) approach where the sign of nonlinearity has been periodically modulated by electric field poling (EFP). In the microwave and telecommunication field LiNbO3 is used for surface acoustic devices and integrated optical modulators. KTP and its isomorphs, on the other hand, exhibit slightly lower nonlinear coefficients but have much higher photorefractive damage thresholds, so that it is mainly used in the fabrication of QPM devices for both UV, IR and visible light generation and in high power applications. This thesis focus on different key issues: (1) accurate characterization of specific optical properties of LiNbO3, which are of interest in nonlinear and EO applications; (2) in-situ visualization and characterization of domain reversal by EFP in LiNbO3 and KTP crystals for a through understanding of the ferroelectric domain switching; (3) fabrication of periodic surface structures at sub-micron scale in LiNbO for photonic applications. An interferometric method is used for accurate measurement of ordinary and extraordinary refractive indices in uniaxial crystals, which is of great interest in the proper design of QPM crystals. A digital holography (DH) based method is presented here for 2D characterization of the EO properties of LiNbO , which is considerably interesting in the applications where the proper design of the EO device requires a spatially resolved information about the EO behaviour and the existing pointwise techniques are not sufficient. A DH method for novel in-situ monitoring of domain reversal by EFP in both LiNbO3 and KTP, is also presented here. The technqiue could be used as a tool for high fidelity periodic domain engineering but also provides information about domain kinetics, internal field and crystals defects. 3 3 3 Finally this thesis presents novel results concerning nanoscale periodic surface structuring of congruent LiNbO3. Holographic lithography (HL) is used for sub-micron period resist patterning and electric overpoling for surface domain reversal. Surface structures are obtained by selective etching. Moiré effect is also used in the HL to fabricate complicated structures with multiple periods. The depth compatibility with waveguide implementation allows foreseeing possible applications of these structures for Bragg gratings or innovative photonic crystal devices, exploiting the additional nonlinear and EO properties typical of LiNbO3. / QC 20100824
|
3 |
Characterization of domain switching and optical damage properties in ferroelectricsHirohashi, Junji January 2006 (has links)
Nonlinear optical frequency conversion is one of the most important key techniques in order to obtain lasers with wavelengths targeted for specific applications. In order to realize efficient and tailored lasers, the quasi-phase-matching (QPM) approach using periodically-poled ferroelectric crystals is getting increasingly important. Also understanding of damage mechanisms in nonlinear materials is necessary to be able to design reliable and well working lasers. This is especially true for high power application lasers, which is a rapidly growing field, where the damage problem normally is the ultimate limiting factor. In this thesis work, several promising novel ferroelectric materials have been investigated for nonlinear optical applications and the emphasis has been put on QPM devices consisting of periodically-poled structures. The materials were selected from three different types of ferroelectric materials: 1) MgO-doped stoichiometric LiNbO3 (MgO:SLN) and LiTaO3 (MgO:SLT), and non-doped stoichiometric LiTaO3 (SLT), 2) KTiOPO4 (KTP) and its isomorphs RbTiOPO4 (RTP), and 3) KNbO3 (KN). The focus in our investigations have been put on the spontaneous polarization switching phenomena, optimization of the periodic poling conditions, and the photochromic optical damage properties which were characterized by the help of blue light-induced infrared absorption (BLIIRA) measurements. With electrical studies of the spontaneous polarization switching, we were able to determine quantitatively, and compare, the coercive field values of different materials by applying triangularly shaped electric fields. We found that the values of the coercive fields depended on the increase rate of the applied electric field. The coercive field of KN was the lowest (less than 0.5 kV/mm) followed by the ones of KTP, SLT, and MgO:SLT (1.5 to 2.5 kV/mm). MgO:SLN, and RTP had relatively high coercive fields, approximately 5.0 to 6.0 kV/mm, respectively. Based on the domain switching characteristics we found, we successfully fabricated periodically-poled devices in all of the investigated materials with 30 μm periodicities and sample thickness of 1 mm. Blue light-induced infrared absorption (BLIIRA) has been characterized for unpoled bulk and periodically-poled samples using a high-sensitivity, thermal-lens spectroscopy technique. SLT showed a large photorefraction effect and the BLIIRA signal could not be properly measured because of the large distortion of the probe beam. The rise and relaxation time of BLIIRA, after switching the blue light on and off was in a time span of 10 to 30 sec except for KTP and its isomorphs, which needed minutes to hours in order to saturate at a fixed value. KN and MgO:SLN showed the lowest susceptibility to the induced absorption. Periodic poling slightly increased the susceptibility of KTP, MgO:SLT, and KN. Relatively high thresholds were observed in MgO:SLT and KN. By increasing the peak-power intensity of the blue light, the induced absorption for MgO:SLN, KTP and KN saturated at a constant value while that of MgO:SLT increase in a constant fashion. This trend is critical issue for the device reliability at high-power applications. / QC 20100830
|
4 |
Topology of ferroelectric polarization at the BaTiO3(001) surface from ab initio calculations and electron microscopy-spectroscopy / Topologie de la polarisation ferroélectrique à la surface (001) de BaTiO3 par calculs ab initio et microscopie-spectroscopie d'électronsDionot, Jelle 15 September 2015 (has links)
À la surface ou à l’interface d’un matériau ferroélectrique, la polarisation peut être déstabilisée voire même annulée par le champ dépolarisation qui résulte de charges de polarisation non compensées. En l’absence de mécanismes d’écrantage extrinsèques (adsorbats, électrodes) ou intrinsèques (défauts, dopants), l’ordonnancement en domaines est le moyen le plus naturel dont un système a recourt pour rester ferroélectrique et minimiser son énergie électrostatique. Cette thèse se concentre sur l’étude de la stabilité de multiples configurations en domaines, ainsi que de la façon dont elle dépend de facteurs géométriques, chimiques et élastiques, à la surface du BaTiO3(001).Des calculs ab initio, fondés sur la théorie de la fonctionnelle de la densité, ont été menés pour éclaircir l’influence de la terminaison de surface, de la contrainte parallèle à la surface, de l’épaisseur du système et de la taille des domaines sur la polarisation de différentes phases ferroélectriques dans des couches ultraminces. L’effet de lacunes d’oxygène en surface sur la polarisation et sur la structure électronique a aussi été étudié. La microscopie d’électrons lents (LEEM) et la microscopie d’électrons photoémis (PEEM) ont été utilisées pour étudier les propriétés de la polarisation à la surface de monocristaux de BaTiO3 réduit, afin d’examiner l’influence des lacunes d’oxygène sur la polarisation ferroélectrique par une approche expérimentale, renforçant ainsi les résultats de calculs. / At a surface or interface of a ferroelectric material, the polarization can be destabilized and even suppressed by the depolarizing field which arises from uncompensated polarization charge. In the absence of external (adsorbates, electrodes) or internal (defects, dopants) screening mechanisms, domain ordering is the most natural way for a system to remain ferroelectric and minimize its electrostatic energy. This thesis focuses on the study of the stability of various possible domain configurations, and on how it depends and interplays on size, chemical and elastic factors, at the (001) surface of BaTiO3.First-principles calculations, based on density functional theory, have been performed to enlighten the influence of surface terminations, in-plane strain, system thickness and domain size in ultrathin films on the polarization in different ferroelectric phases. The effect of surface oxygen vacancies on the polarization and electronic structure has also been investigated. Low Energy electron microscopy (LEEM) and photoemission electron microscopy (PEEM) have been used to study the surface properties of ferroelectric polarization in reduced BaTiO3 single crystals, allowing to address the influence of oxygen vacancies on the ferroelectric polarization from experimental approaches, supporting the calculations results.
|
5 |
Spektroskopické studium mřížkové dynamiky feroelektrických látek s hustou doménovou strukturou / Spectroscopic Investigation of Lattice Dynamics in Multidomain FerroelectricsJohn Vakkechalil, Elizabeth January 2012 (has links)
Title: Spectroscopic investigations of lattice dynamics in multidomain ferroelectrics Author: Elizabeth Vakkechalil John Department: Department of Condensed Matter Physics Institution: Department of Dielectrics, Institute of Physics, AVČR, Na Slovance 2, Praha 8, 182 21, Czech Republic. Supervisor: Ing. Jiří Hlinka, PhD., Department of Dielectrics, Institute of Physics, AVČR., Na Slovance 2, Praha 8, 182 21, Czech Republic. Consultants: RNDr. Stanislav Kamba CSc., Ing. Ivan Gregora CSc. Fyzikální ústav AVČR, Na Slovance 2, Praha 8, 182 21, Czech Republic. Abstract: Lead based ferroelectric perovskites exhibit attractive physical and structural properties. Ferroelectric domains are known to have a very essential impact on dielectric and piezoelectric properties of ferroelectrics. Tailoring of domain structures allows to change the macroscopic symmetry of the material and to purposely modify its average tensor properties. Ferroelastic domains play also a key role in physics of epitaxial ferroelectric films. Here we studied signature of domain structure in PbTiO3 thin film grown by metalorganic chemical vapor deposition technique on different substrates, namely LaAlO3, MgO, NdGaO3, SrTiO3 (100), SrTiO3 (110), SrTiO3 (111) doped with 0.5% Nb and LSAT. Certain aspects of domain structure can be...
|
6 |
Physical Approach to Ferroelectric Impedance Spectroscopy: The Rayleigh ElementSchenk, T., Hoffman, M., Pešić, M., Park, M. H., Richter, C., Schroeder, U., Mikolajick, T. 05 October 2022 (has links)
The Rayleigh law describes the linear dependence of the permittivity of a ferroelectric on the applied ac electric field amplitude due to irreversible motions of domain walls. We show that this gives rise to a new equivalent-circuit element predestined to fit the impedance spectra of ferroelectrics based on an accepted physical model. Such impedance spectroscopy is a powerful tool to obtain a dielectric and resistive representation of the entire sample structure. The superiority of the Rayleigh analysis based on impedance spectroscopy compared to the common single-frequency approach is demonstrated for a ferroelectric Si : HfO₂ thin film
|
7 |
Ferroelectric Phase Transitions in Strained (K,Na)NbO3 Thin Films Investigated by Three-Dimensional in Situ X-Ray DiffractionBogula, Laura 20 January 2022 (has links)
In dieser Arbeit werden ferroelektrische Phasenübergänge in verspannten (K,Na)NbO3-Schichten erstmals mit Hilfe temperaturabhängiger dreidimensionaler Röntgenbeugung untersucht. Der Fokus liegt auf stark anisotrop verspannten Dünnschichten, die bei Raumtemperatur ein geordnetes Fischgräten-Domänenmuster mit einer periodischen Anordnung von monoklinen a1a2/MC-Phasen aufweisen. Bei Erhöhung der Temperatur durchlaufen die (K,Na)NbO3-Dünnschichten einen ferroelektrischen Phasenübergang in die orthorhombische Hochtemperaturphase, die sich durch regelmäßige, alternierenden a1/a2-Streifendomänen mit ausschließlich lateraler Polarisation auszeichnet. In-plane Röntgenmessungen zeigen, dass die Filmeinheitszellen eine kleine Verzerrung in der Ebene erfahren, was zur Bildung von vier verschiedenen Einheitszellvarianten und damit vier verschiedenen (Super-)Domänenvarianten führt. Durch den Vergleich von Röntgenbeugungsmessungen verschiedener Bragg-Reflexe an Filmen mit unterschiedlicher Schichtdicke ist es möglich, die spezifischen Beugungsmerkmale zu unterscheiden und sie den einzelnen Phasen zuzuordnen. Mit Hilfe von in situ temperaturabhängiger Röntgenbeugung ist es daher möglich, die Details des Phasenübergangs vom Fischgräten in das Streifen-Domänenmuster aufzudecken. Es zeigt sich, dass dieser sich über einen großen Temperaturbereich erstreckt und in mehreren Schritten vollzieht. Die Beobachtung von Phasenkoexistenz innerhalb des Übergangs und einer thermischen Hysterese in der Phasenübergangstemperatur lassen auf einen Phasenübergang erster Art schließen. Zudem hängt die Phasenübergangstemperatur stark von der Kaliumkonzentration x in der KxNa1-xNbO3-Dünnschicht ab und kann durch eine Änderung von x=0,95 (stärker kompressiv verspannt) auf x=0,8 (stärker tensil verspannt) um etwa 60 K erhöht werden. Darüber hinaus ist dies die erste Studie, die experimentell beobachtete dreidimensionale Domänenanordnungen direkt mit Berechnungen aus Phasenfeldsimulationen vergleicht. / In this work, ferroelectric phase transitions in strained (K,Na)NbO3 films are studied for the first time using in situ temperature-dependent three-dimensional X-ray diffraction. The focus lies on strongly anisotropically strained thin films, which exhibit a well-ordered herringbone domain pattern with a periodic arrangement of monoclinic a1a2/MC phases at room temperature. Upon increasing temperatures, the (K,Na)NbO3 thin films undergo a ferroelectric phase transition to the orthorhombic high-temperature phase, which is characterized by a regular pattern of alternating a1/a2 stripe domains with pure lateral polarization. In-plane X-ray measurements show that the film unit cells undergo a small in-plane distortion, leading to the formation of four different unit cell variants and thus four different (super)domain variants. By comparing X-ray diffraction measurements of different Bragg reflections of films with different film thicknesses, it is possible to distinguish the specific diffraction features and assign them to the individual phases observed at the different temperatures. Using in situ temperature-dependent X-ray diffraction, it is therefore possible to reveal the details of the phase transition from the a1a2/MC herringbone to the a1/a2 stripe domain pattern. It is shown to extend over a wide temperature range and to occur in several steps. The observation of phase coexistence within the transition and a thermal hysteresis in the phase transition temperature suggests a first-order type phase transition. Moreover, the phase transition temperature strongly depends on the molar concentration of potassium x in the KxNa1-xNbO3 thin film and can be increased by about 60 K by changing x=0.95 (more compressively strained) to x=0.8 (more tensile strained). Furthermore, this is the first study to directly compare experimentally observed three-dimensional domain arrangements with calculations from phase field simulations.
|
8 |
Investigations into the Microstructure Dependent Dielectric, Piezoelectric, Ferroelectric and Non-linear Optical Properties of Sr2Bi4Ti5O18 CeramicsShet, Tukaram January 2017 (has links) (PDF)
Ferroelectric materials are very promising for a variety of applications such as high-permittivity capacitors, ferroelectric memories, pyroelctric sensors, piezoelectric and electrostrictive transducers and electro-optic devices, etc. In the area of ferroelectric ceramics, lead-based compounds, which include lead zirconatetitanate (PZT) solid solutions, occupy an important place because of their superior physical properties. However, due to the toxicity of lead, there is an increasing concern over recycling and disposing of the devices made out of these compounds, which has compelled the researchers around the globe to search for lead-free compounds with promising piezo and ferroelectric properties.
Ferroelectric materials that belong to Aurivillius family of oxides have become increasingly important from the perspective of industrial applications because of their high Curie-temperatures, high resistivity, superior polarization fatigue resistanceand stable piezoelectric properties at high temperatures. These bismuth layer-structured ferroelectrics (BLSF) comprise an intergrowth of [Bi2O2]2+ layers and [An+1Bn O3n+1]2- pseudo-perovskite units, where ‘n’ represents the number of perovskite-like layers stacked along the c-axis. ‘A’ stands for a mono-, di- or trivalent ions or a combination of them, ‘B’ represents a small ion with high valencysuch as Ti4+, Nb5+, Ta5+or a combination of them.Ferroelectricity in the orthorhombic phase of these compounds was generally attributed to the cationic displacement along the polar a-axis and the tilting of octahedra around the a- and c-axes.
Sr2Bi4Ti5O18(SBT) is ann = 5 member of the Aurivillius family and possess promising ferroelectric and piezoelectric properties that could be exploited for a wide range of applications, including ferroelectric random access memories (FeRAM), piezoelectric actuators, transducers and transformers. Reports in the literaturereveal that the ferroelectricand piezoelectric properties of these oxides can be tuned depending on synthesis routes vis-a-vis micro-structural aspects (texture, grain size) and site specific dopant substitutions.In the present study, textured SBT ceramics were fabricated using pre-reacted precursors and their anisotropic dielectric, piezoelectric and ferroelectric properties were demonstrated. Grain size tunability with regard to their physical properties was accomplished in the ceramics, fabricated using fine powders obtained from citrate assisted sol-gel synthesis. The grain size dependent second harmonic generation activity of SBT ceramics was investigated. Enhancement in the piezoelectric and ferroelectric properties of SBT ceramics was achieved by substituting A site ions (Sr2+) with a combination of Na+ and Bi3+. From the perspective of non-linear optical device applications, physical properties associated with the SBT crystallized in a transparent lithium borate glass matrix were studied.
The results obtained in the present investigations are organized as follows,
Chapter 1 gives a brief exposure to the field of ferroelectrics. The emphasis has been on the ferroelectric oxides belonging to the Aurivillius family. Structural aspects and the underlying phenomena associated with ferroelectricity in these compounds are discussed. A brief introduction to the glasses, thermodynamic aspects of glass formation and fabrication of glass-
ceramics are included. Basic principles involved in the non-linear optical activities are highlighted.
Chapter 2 describes the various experimental techniques that were employed to synthesize and characterize the materials under investigation. The experimental details pertaining to the measurement of various physical properties are included.
Chapter 3 deals with the fabrication of Sr2Bi4Ti5O18 ceramics using the pre-reacted Bi4Ti3O12 and SrTiO3 powders viasolid-state reaction route. These in stoichiometric ratio were uniaxially pressed and sintered at 1130oC for 3 h resulting in textured Sr2Bi4Ti5O18 ceramics. The obtained dense ceramics exhibited crystallographic anisotropy with prominent c-axis oriented grains (Lotgering factor of 0.62) parallel to the uniaxially pressed direction. The resultant anisotropy in the ceramics was attributed to the reactive template-like behavior of Bi4Ti3O12 that was used as a precursor to fabricate Sr2Bi4Ti5O18 ceramics. Dielectric, ferro and piezoelectric properties measured on the ceramics in the direction perpendicular to the uniaxially pressed axis were found to be superior to that measured in the parallel direction.
Chapter 4 reports the details pertaining to the synthesis of strontium bismuth titanate (Sr2Bi4Ti5O18) powders comprising crystallites of average sizes in the range of 94–1400 nm via citrate-assisted sol-gel route. X-ray powder diffraction, Transmission Electron Microscopy (TEM) and Raman spectroscopy were employed for the structural studies. A crystallite size-dependent variation in the lattice parameters and the shift in the Raman vibration modes were observed. Second harmonic signal (532 nm) intensity of the Sr2Bi4Ti5O18 powders increased with the increase in the average crystallite size and the maximum intensity obtained in the reflection mode was 1.4 times as high as that of the powdered KH2PO4. Piezo force microscopic analyses carried out on an isolated crystallite of size 74 nm, established its single domain nature with the coercive field as high as 347 kV/cm. There was a systematic increase in the d33 value with an increase in the size of the crystallite and a high piezoelectric coefficient of ~27 pm/V was obtained from an isolated crystallite of size 480 nm.
Chapter 5 illustrates the details concerning the fabrication of Sr2Bi4Ti5O18(SBT) ceramics with different grain sizes (93 nm–1.42 μm) using nano-crystalline powders synthesized via citrate assisted sol-gel method. The grain growth in these powder compacts was found to be controlled via the grain boundary curvature mechanism, associated with anactivation energy of 181.9 kJ/mol. Interestingly with a decrease in grain size there was an increase in the structural distortion which resulted in a shift of Curie-temperature (phase transition) towards higher temperatures than that of conventional bulk ceramics. Extended Landau phenomenological theory for the ferroelectric particles was invoked to explain experimentally observed size dependent phase transition temperature and the critical size for SBT is predicted to be 11.3 nm. Grain size dependent dielectric, ferroelectric and piezoelectric properties of the SBT ceramics were studied and the samples comprising average grain size of 645 nm exhibited superior physical properties that include remnant polarization (2Pr) = 16.4 μC cm-2, coercive field (Ec) = 38 kV cm-1, piezoelectric coefficient (d33) = 22 pC N-1 and planar electromechanical coupling coefficient (kp) = 14.8 %.
In Chapter 6, the studies pertaining to the fabrication of Sr(2-x)(Na0.5Bi0.5)xBi4Ti5O18 (SNBT) ceramics for various x values (0, 0.1, 0.25, 0.3, 0.4 and 0.5), using fine powders synthesized via sol-gel route are dealt with. X-ray powder diffraction, transmission electron microscopy and Raman spectroscopic studies were carried out to confirm composition dependent structural changes taking place in the SNBT ceramics. Scanning electron microscopic studies carried out on ceramics revealed that dopants played an important role in inhibiting the grain growth. Dielectric constants of the ceramics were found to decrease with an increase in ‘x’. The increase in Curie temperature with increase in ‘x’ is attributed to the decrease in the tolerance factor. Particularly,x = 0.3 composition of the SNBT ceramics exhibited better piezo and ferroelectric properties with a higher Curie-temperature (569 K). The piezoelectric coefficient (d33) and the planar electromechanical coupling coefficient (kp) of SNBT(x = 0.3) were enhanced by 25% and 42% respectively as compared to that of the undoped ceramics.
Chapter 7 deals with the glasses in the system (100 –x) {Li2O + 2B2O3} ─x {2SrO + 2Bi2O3 +5TiO2} (where, x = 10, 25 and 35) fabricated via conventional melt-quenching technique. The amorphous and glassy characteristics of the samples were confirmed respectively using X-ray diffraction (XRD) and differential scanning calorimetric (DSC) methods. All the compositions under investigation exhibited two distinct crystallization peaks (exothermic peaks in the DSC traces): the first peak at ~ 545 °C and the second at ~610 °C that were found to be associated with the crystallization of the phases (as confirmed from the XRD studies) Sr2Bi4Ti5O18
(SBT)and Li2B4O7 (LBO) respectively. Non-isothermal crystallization kinetics (using modified Ozawa-type plots) for SBT crystallization in the LBO glass matrix for the compositions x = 10 and 35, indicated three dimensional growth of the crystallites from pre-existing nuclei present in the as-quenched samples and their effective activation energies for crystallization were found to be around 686 ± 85 kJ/mol and 365 ± 53 kJ/mol, respectively. The optical band gap of the as-quenched glasses for the composition x = 35 was 2.52 eV, is less than that of the composition x = 10 (2.91 eV). The Urbach energies for the as-quenched glasses of compositions x = 10, 25 and 35 were found to be 118 ± 2 meV, 119 ± 2 meV and 192 ± 1 meV respectively.The glasses associated with the composition x = 35, on controlled heat-treatment at 515 °C for various durations (1―20 h), yielded glass-ceramics comprising SBT nano-crystals (18―28 nm) embedded in the LBO glass matrix. Compressive strain in the nano-crystallites of SBT, analyzed using Williamson-Hall method was found to decrease with an increase in the crystallite size. The second harmonic generation signal (532 nm) intensity emanating from glass-nanocrystal composites comprising 22.1 nm SBT crystallites was nearly 0.3 times that of a KDP single crystal.
Although each chapter is provided with conclusions and a list of references, thesis ends with a separate summary and conclusions.
|
Page generated in 0.2782 seconds