• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 19
  • 15
  • 9
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 145
  • 44
  • 34
  • 32
  • 22
  • 21
  • 21
  • 19
  • 19
  • 19
  • 16
  • 16
  • 15
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

FGF2 de 18kDa e de 22,5kDa: sinalização molecular parácrina e funções biológias / FGF2 species of 18 and 22.5 kDa: paracrine molecular signaling and biological functions

Gilson Masahiro Murata 05 May 2010 (has links)
FGF2 (Fibroblast Growth Factor 2), o fundador da família FGF, tem funções regulatórias na mitogênese, diferenciação, morfogênese e reparo tecidual. Diversas espécies moleculares de FGF2 compartilham uma seqüência C-terminal comum de 155 aminoácidos, pois se originam de diferentes sítios de iniciação de leitura de um único mRNA. O menor, o FGF2-18kDa, é liberado extracelularmente para se ligar a receptores específicos (FGFRs) para disparar as funções parácrinas e autócrinas pelas quais este fator é conhecido. Por outro lado, as espécies maiores (FGF2-21, 22, 22,5 e 34kDa) são intracelulares se ligam a parceiros moleculares desconhecidos para exercer funções intrácrinas ainda indefinidas. O objetivo desta tese foi produzir espécies recombinantes do FGF2-18 e FGF2-22,5, na forma de proteínas de fusão, para analisar funções biológicas e mecanismos de sinalização. Nas células malignas Y1 de camundongo, os recombinantes de FGF2-18kDa (FGF2-18, His-FGF2-18 e His-FGF2-18-ProA) dispararam uma resposta antagônica estimulando as vias de sinalização mitogênica, mas bloqueando o ciclo celular. Nos fibroblastos não tumorigênicos Balb3T3, estes mesmos recombinantes de FGF2-18kDa dispararam apenas a resposta mitogênica clássica. Todos os efeitos biológicos destes recombinantes de FGF2-18kDa foram bloqueados pelo inibidor específico da proteína quinase de tirosina dos FGFRs, PD173074, demonstrando que são respostas intermediadas pelos FGFRs. Portanto, os domínios estruturais adicionados aos recombinantes de FGF2-18kDa não impediram que estas proteínas se ligassem e ativassem os FGFRs. Por outro lado, o recombinante His-FGF2-22,5 dispara apenas as vias de sinalização mitogênica em ambas as células Y1 e 3T3, mas este efeito biológico não é inibido por PD173074. Estes resultados sugerem que a seqüência N-terminal de 55 resíduos, rica em aminoácidos básicos, impede que o FGF2-22,5kDa se ligue e/ou ative os FGFRs. Entretanto, o recombinante His-FGF2-22,5ProA dispara a resposta antagônica característica do FGF2-18kDa. As implicações destes últimos resultados é que o domínio de ProA adicionado ao C-terminal torna o FGF2-22,5kDa um bom ligante dos FGFRs. A interação física entre ligante e receptor das formas recombinantes His-FGF2-18kDa (ou His-FGF2-18ProA) e FGF2-22,5kDa com os putativos FGFRs foi analisada através da técnica de SPR e os resultados mostram KDs aproximados (Kd18=21, 488.10-9 e Kd22,5=20,70393.10-9), enquanto que o número de sítios ligantes em vesículas microssomais das células é significantemente inferior para o FGF2-22,5kDa. Estes resultados são compatíveis com a existência de receptores diferentes para FGF2-18kDa e FGF2-22,5kDa, uma hipótese ainda a ser definitivamente corroborada. Em conclusão, o FGF2-18kDa, mesmo em formas recombinantes como proteína de fusão, dispara todos os efeitos biológicos descritos para FGF2, através dos FGFRs. Diferentemente, o FGF2-22,5kDa, como fator parácrino, só desencadeou a resposta mitogênica clássica de FGF2, provavelmente através de receptores diferentes dos FGFRs. Os resultados e conclusões desta tese têm um potencial indiscutivelmente relevante para a biologia molecular do câncer, com implicações possíveis em terapia oncológica / FGF2 (Fibroblast Growth Factor 2), the founder of the FGF family, has regulatory functions in mitogenesis, differentiation, morphogenesis and tissue repair. Multiple FGF2 molecular species, sharing a C-terminal sequence of 155 amino acids, are translated from different iniciation sites of the same mRNA. The smaller, the FGF2-18kD, is extracellularly released to bind to specific membrane receptors (FGFRs), performing paracrine and autocrine functions. On the other hand, the larger FGF2s (21, 22, 22.5 and 34kDa) are intracellular species that bind to unknown partners to play still undefined intracrine roles. The aim of this thesis was to produce recombinant species of FGF2-18kDa and FGF2-22,5kDa, in the form of fusion proteins, to analyze functions and signaling mechanisms. In mouse Y1 malignant cells, FGF2-18kD recombinants (FGF2-18kDa and His-FGF2-18kDaProA) triggered an antagonistic response activating mitogenic signaling pathways, but blocking the cell cycle. However, in non tumorigenic Balb3T3 fibroblasts, these same FGF2-18kD recombinants only elicited the classical mitogenic response. All biological effects of these FGF2-18kD recombinants were blocked by the specific inhibitor of FGFR-protein-tyrosine-kinases, PD173074, demonstrating that these responses are mediated by FGFRs. Therefore, the new peptide domains added to FGF2-18kD did not prevent these recombinant fusion proteins to bind and activate FGFRs. Conversely, the recombinant His-FGF2-22,5kDa triggered only mitogenic signaling pathways in both Y1 and Balb3T3 cells, a biological effect not inhibited by PD173074. These results suggested that the additional basic-rich N-terminal sequence of 55 amino acid residues, found in FGF2-22,5kDa, prevents this FGF2 species from binding and / or activate FGFRs. However, surprisingly, the recombinant His-FGF2-22kDaProA triggered the antagonistic response characteristic of FGF2-18kDa. These results imply that the ProA-domain added to the C-terminal end rendered the FGF2-22,5kDaProA a good ligand of FGFRs. The physical interaction between recombinants of both His-FGF2-18kD and His-FGF2-22kDa with putative FGFRs, analyzed by SPR, yielded close KD values (KD18=21, 5.10-9 e K D22,5=20,7.10-9), while the number of binding sites in cell microsomal vesicles were significantly lower for the His-FGF2-22,5kDa. These results are consistent with the existence of different receptors for FGF2 and FGF2-18kD-22,5kDa, a hypothesis that has yet to be definitively confirmed. In conclusion, FGF2-18kD, even as recombinant fusion proteins, triggered all biological effects of FGF2, through FGFRs. Conversely, the FGF2-22, 5kDa only triggered the classical mitogenic response, probably via receptors other than FGFRs. The results and conclusions of this thesis are potentially of great interest in cancer molecular biology, with implications in oncologic therapy.
12

Effects of FGF-2 on E11-mediated osteocytogenesis in skeletal health and disease

Ikpegbu, Ekele January 2018 (has links)
Fibroblast growth factor 2 (FGF-2) is known to be released from cartilage upon injury and is able to influence chondrocyte gene expression in vitro. In cartilage, FGF-2 regulates E11/podoplanin expression in murine joints following surgical destabilisation (DMM model of osteoarthritis (OA)), and in cartilage explant injury models. In bone, E11 is critical for the early stages of osteocytogenesis and is responsible for the acquisition of the osteocyte dendritic phenotype. This dendritic phenotype is dysregulated in OA and given the known role of the osteocyte in controlling bone remodelling, this may contribute to the subchondral bone thickening observed in OA. Hence, the aim of this study was to elucidate the nature of FGF-2- mediated E11 expression and osteocytogenesis in skeletal health and disease. This thesis has shown that FGF-2 dose-dependently increased E11 mRNA expression in MC3T3 cells, primary osteoblasts and in primary calvaria organ cultures, which was confirmed by E11 protein western blotting data. The FGF-2 induced changes in E11 expression were accompanied by significant increases in the mRNA expression of the osteocyte markers Phex and Dmp1, and significant decreases in the mRNA expression of the osteoblast markers Col1a1, Postn, Bglap and Alpl expression. This thus supports the hypothesis that FGF-2 drives osteocytogenesis. The acquisition of osteocyte phenotype involves the re-organisation of the cytoskeleton, such as F-actin. This step is important for the transition of cuboidal-shaped osteoblasts to the stellate-shaped osteocyte phenotype. FGF-2 stimulation of MC3T3 cells and primary osteoblasts revealed more numerous and longer dendrites, as visualised by phalloidin staining for F-actin and indicative of the acquisition of the osteocyte phenotype. In contrast, control cells had a typical rounded morphology with fewer and shorter dendrites. Furthermore, immunofluorescence labelling for E11 in control cells revealed uniform distribution throughout the cytoplasm, especially in the perinuclear region. In contrast, FGF-2 treated cells showed a modified distribution where E11 was negligible in the cytoplasm, but concentrated in the dendrites. The use of siRNA knockdown of E11 achieved a 70% reduction of basal E11 mRNA expression. This knockdown also effectively abrogated FGF-2-related changes in E11 expression and dendrite formation as disclosed by mRNA and protein expression, immunofluorescence and F-actin staining with phalloidin. Despite these FGF-2 driven increases in E11 and osteocyte dendrite formation in vitro, immunohistochemical labelling revealed no differences in E11 expression in subchondral, trabecular and cortical osteocytes from naïve Fgf-2 deficient mice in comparison to wild-type mice. Similar results were observed upon sclerostin immunolabelling. FGF-2 stimulation of MC3T3 cells elicited activation of ERK1/2, Akt and p38 MAPK. However, inhibition of the aforementioned pathways failed to reduce FGF-2- mediated E11 expression and as such, the specific signalling pathway responsible remains unclear. Upstream, the expression of Fgfr1 was increased (>10-fold) over 24 h time point, while a reduction was seen in Fgfr2/3 expression over same time point especially in the FGF-2 treated cultures. This suggests that increased E11 expression and the acquisition of the osteocyte phenotype may be speculatively though upregulation of Fgfr1. The expression of E11 and sclerostin in OA pathology in mice, human and dogs were investigated. Initially sequence homology using the Clustal Omega alignment program showed both proteins to be homologous in the domestic animals under study. A comparative study using canine subchondral bone osteocytes revealed increased E11 expression in the OA samples relative to the control. This feature may be related to newly embedded osteocytes during sclerosis. However, E11 and sclerostin were unchanged in both murine (DMM) and human OA subchondral bone osteocytes in comparison to controls. In mice, this may be due to limited OA development; whilst in humans the sample size, age, stage of the disease and sourcing from same diseased joint may be important in the interpretation of the results. The expression of E11 and sclerostin during OA pathology was also investigated in Fgf-2 deficient mice in which OA was induced using the DMM model. There was no difference in E11 expression between the OA and control (sham-operated) samples, suggesting that compensation of E11 expression may be mediated by growth factors from the FGF family. Surprisingly, increased E11 expression was observed in the control Fgf-2 deficient mice, in comparison to the wild-type control mice. This suggests a potential adjustment to loading by the contralateral knee, as this was not observed in naïve mice from both groups. Together, these data show that FGF-2 promotes the osteocyte phenotype, and that this is mediated by increased E11 expression. These results may help explain (1) the altered osteocyte phenotype and (2) increased subchondral bone thickening observed in OA. This knowledge will be of interest in the search for disease modifying therapeutics for skeletal health, including OA and osteoporosis.
13

The Function and Genetic Interactions of Zebrafish atoh1 and sox2: Genes Involved in Hair Cell Development and Regeneration

Millimaki, Bonny Butler 2010 August 1900 (has links)
The sensory cells of the inner ear, hair cells, provide vertebrates with the ability to detect auditory stimuli and balance. In mammals, cochlear hair cells, those responsible for hearing, do not regenerate. Zebrafish hair cells do regenerate. Gaining an understanding of the role and regulation of the genes involved in the formation and regeneration of these cells may provide information important for the development of genetic therapies. We show that zebrafish atoh1 acts as the proneural gene responsible for defining the equivalence group from which hair cells form. Expression of atoh1 is dependent upon Fgf and Pax. Atoh1 induces expression of delta, resulting in activation of Notch and subsequent lateral inhibition. Another factor known to be important for hair cell formation in mice is Sox2. In zebrafish, sox2 expression is downstream of Atoh1, Notch and Fgf. Zebrafish Sox2 is not required for hair cell formation, but rather Sox2 is important for hair cell maintenance. In zebrafish, otic hair cell regeneration has not yet been characterized. We show that, following laser ablation, hair cells regenerate by way of transdifferentiation. We further show that this regeneration requires Sox2 activity. These data suggest that Sox2 acts to maintain support cell plasticity. This role is likely conserved because Sox2 is also important for stem cell plasticity in mammals. This new understanding of the role and regulation of both Atoh1 and Sox2 provides essential information that can be used to further efforts to provide genetic therapies for hair cell regeneration in mammals.
14

Molecular regulation of myelination by Oligodendrocyte Progenitor cells

Vora, Parvez Firoz 10 1900 (has links)
Oligodendrocytes (OL) are the myelinating cells of the central nervous system (CNS). A series of complex cell signaling events in the CNS ensures successful myelination. Various molecular cues including growth factors, transcription factors and cytokines regulate myelination by inducing OL migration, proliferation and differentiation. Plateletderived growth factor A (PDGF-A) and fibroblast growth factor 2 (FGF2) are two of the most well characterized regulators of OP migration. The current study hypothesizes that PDGF-A and FGF2 regulate the migration of OP through transient activation of the extracellular signal-regulated protein kinase (ERK) signaling pathway. The results show that activation of ERK is required for OP migration. It also demonstrates the significance of threshold levels of growth factors and temporal regulation for OP migration. Furthermore, the chemokine CXCL1 has been shown to play a critical role in regulating the dispersal of OP during development, although the mechanisms underlying this regulation are unknown. Previous studies have shown that calcium flux is required for OP migration. CXCL1 induces calcium flux in cells; therefore we hypothesized that CXCL1 inhibition of OP migration was regulated via changes in intracellular calcium flux. However, our results show that CXCL1 inhibition of OP migration is independent of calcium signaling. In addition, we show that CXCL1 inhibition of OP migration is specific to PDGF-A induced migration. Lastly, the current study identifies a transcriptional regulator, methyl-CpG-binding protein 2 (MeCP2) as regulating the expression of myelin specific genes in a transgenic mouse. Interestingly, gene expression of myelin associated proteins myelin basic protein (MBP), myelin associated glycoprotein (MAG)and proteolipid protein (PLP), which play an important role in regulation of OL differentiation and subsequent formation of myelin of the myelin sheath, where found to be dysregulated. Overall, these findings reveal previously unknown roles of various intrinsic factors in successive phases of OL development. It aims to provide a better understanding of complexity to myelin development, function and disease.
15

Studies on high molecular weight fibroblast growth factor-2 isoforms produced by rat and human cardiac myofibroblasts

Santiago, Jon-Jon 14 May 2014 (has links)
Fibroblast growth factor-2 (FGF-2) is expressed as high molecular weight (> 20 kDa, Hi-FGF-2), or low molecular weight, (18 kDa, Lo-FGF-2) isoforms with distinct functions in the heart and other tissues. Studies to-date have focused on Lo-FGF-2, while the biology of Hi-FGF-2 is less well understood. This work investigated potential autocrine and paracrine effects of rat and human Hi-FGF-2 on cardiac myocytes and non-myocytes (myofibroblasts). Using rat ventricular myofibroblast cultures stimulated with angiotensin II (Ang II), in the absence or presence of YVAD, a peptide inhibitor of caspase-1, it was shown that caspase-1 activity was required for the Ang II-stimulated Hi-FGF-2 secretion. Secreted rat Hi-FGF-2 was shown to be biologically active and capable of stimulating neonatal as well as adult cardiomyocyte hypertrophy in vitro. The effect of extracellular-acting Hi- versus Lo-FGF-2 on the secretome profile of rat cardiac myofibroblasts was compared. Conditioned media collected after stimulation with rat Hi- or Lo-FGF-2 were analyzed by mass spectroscopy (LC-MS/MS). Secretome profiles suggested that Hi-FGF-2 was more potent than Lo-FGF-2 in upregulating several matricellular and fibrosis-associated proteins, most prominently periostin, follistatin-like protein 1, plasminogen activator inhibitor-1, and tenascin. Human heart (atrial) tissue, pericardial fluid, and human heart-derived myofibroblasts were shown to accumulate predominantly Hi-FGF-2. Ang II up-regulated Hi-FGF-2 in human cells, via activation of: type 1 or type 2 Ang II receptors (AT-1R, AT-2R); the ERK pathway; and matrix metalloprotease-2. Neutralizing antibodies specific for Hi-FGF-2 (neu-AbHi-FGF-2) reduced expression of proteins associated with fibroblast-to-myofibroblast conversion and fibrosis. Blocking the autocrine action of Hi-FGF-2 on human cells with neu-AbHi-FGF-2 resulted in down-regulation of periostin, as well as α-smooth muscle actin, pro-collagen, embryonic smooth muscle myosin, and extra domain A fibronectin, consistent with a reversal from activated myofibroblast to fibroblast phenotype. Stimulation of human myofibroblasts with human Hi-FGF-2 was significantly more potent than Lo-FGF-2 in upregulating pro-interleukin-1β and plasminogen activator inhibitor-1, considered to be pro-inflammatory proteins. It is concluded that exported, extracellular-acting Hi-FGF-2 has pro-fibrotic, pro-inflammatory, and pro-hypertrophic properties, contributes to the ‘activated fibroblast’ phenotype, and represents a therapeutic target for prevention of maladaptive cardiac remodeling in humans.
16

Molecular regulation of myelination by Oligodendrocyte Progenitor cells

Vora, Parvez Firoz 10 1900 (has links)
Oligodendrocytes (OL) are the myelinating cells of the central nervous system (CNS). A series of complex cell signaling events in the CNS ensures successful myelination. Various molecular cues including growth factors, transcription factors and cytokines regulate myelination by inducing OL migration, proliferation and differentiation. Plateletderived growth factor A (PDGF-A) and fibroblast growth factor 2 (FGF2) are two of the most well characterized regulators of OP migration. The current study hypothesizes that PDGF-A and FGF2 regulate the migration of OP through transient activation of the extracellular signal-regulated protein kinase (ERK) signaling pathway. The results show that activation of ERK is required for OP migration. It also demonstrates the significance of threshold levels of growth factors and temporal regulation for OP migration. Furthermore, the chemokine CXCL1 has been shown to play a critical role in regulating the dispersal of OP during development, although the mechanisms underlying this regulation are unknown. Previous studies have shown that calcium flux is required for OP migration. CXCL1 induces calcium flux in cells; therefore we hypothesized that CXCL1 inhibition of OP migration was regulated via changes in intracellular calcium flux. However, our results show that CXCL1 inhibition of OP migration is independent of calcium signaling. In addition, we show that CXCL1 inhibition of OP migration is specific to PDGF-A induced migration. Lastly, the current study identifies a transcriptional regulator, methyl-CpG-binding protein 2 (MeCP2) as regulating the expression of myelin specific genes in a transgenic mouse. Interestingly, gene expression of myelin associated proteins myelin basic protein (MBP), myelin associated glycoprotein (MAG)and proteolipid protein (PLP), which play an important role in regulation of OL differentiation and subsequent formation of myelin of the myelin sheath, where found to be dysregulated. Overall, these findings reveal previously unknown roles of various intrinsic factors in successive phases of OL development. It aims to provide a better understanding of complexity to myelin development, function and disease.
17

Fibroblast growth factor-21 mediates the effects of chronic consumption of refined sugars

Chan, Leland 11 July 2018 (has links)
Increased sugar consumption is considered to be a contributor to the worldwide epidemics of obesity and diabetes and the consequent cardio metabolic risks. These include a significant increase for Type II diabetes and associated multiple comorbidities such as non-alcoholic fatty liver disease (NAFLD). The accumulation of excess triglycerides characterizes NAFL with a prevalence of up to 53% in morbidly obese populations. While in itself benign, fatty liver can progress to non-alcoholic steatohepatitis (NASH), which is characterized by apoptosis, inflammation and fibrosis in 10-20% of individuals. Progression to NASH increases the risk of further deterioration to cirrhosis and hepatocellular carcinoma (HCC). However, progression is unpredictable in any given individual and no risk factors predisposing to progression have been identified. Variation in a limited number of genes, such as patatin-like phospholipase (PNPLA3) and transmembrane 6 superfamily member 2 (TM6SF2), have been linked to an increased susceptibility to NAFLD. Recently, fibroblast growth factor 21 (FGF21) was reported to be a potential predictor for NAFLD as it significantly increases in patients with obesity and NAFL. Multiple lines of evidence indicate that FGF21 plays an important role in liver metabolism in mice and humans, playing a key role in carbohydrate and lipid metabolism. FGF21 was originally identified as an endocrine member of the fibroblast growth factor family as it can be released into the circulation. FGF21 was initially assigned a purely metabolic role as infusions led to weight loss and increased glucose clearance through induced expression of the GLUT1 transporter. However, FGF21 biology is now understood to be extremely complex, as it is expressed in many metabolically active tissues including, liver, white (WAT) and brown adipose tissue (BAT), muscle and pancreas. Functions of FGF21 are distinct in all these tissues. In the previous studies from our lab, we have seen fructose consumption, but not glucose, leads to an increase in serum FGF21 levels both in humans and mice. In general, sugar is typically consumed by humans in the form of sucrose or high fructose corn syrup (HFCS), both of which consist of nearly equal amounts of the simple sugars, glucose and fructose. Although attention has been focused on sucrose and fructose in many studies, no direct comparison was found to study fructose, glucose and sucrose. The current study aims to expand on the role of FGF21 in mediating the effects of chronic consumption of these refined sugars in mice. Wildtype (WT) and FGF21 knockout (KO) mice were fed with one of these diets for 20 weeks and in general, mice eating diets with high refined sugars gained less weight than mice eating chow, although calorie consumption was the same. In terms of body composition, sucrose fed FGF21 KO mice had less fat mass compared to chow fed animals. Dextrose fed and fructose fed mice had comparable fat mass reduction in WT and KO mice. Interestingly, glucose tolerance tests (GTT) showed increased glucose sensitivity in dextrose fed WT and KO mice after four weeks, however glucose tolerance decayed after 12 weeks on the diet. At 16 weeks fructose fed KO mice had significant increased glucose sensitivity compared to controls. Insulin tolerance tests showed similar results between all cohorts and a larger sample size would be needed to elicit any differences. Pyruvate tolerance tests (PTT) showed significantly increased hepatic gluconeogenesis in fructose fed KO mice compared to controls but not in dextrose or sucrose fed mice. Energy expenditure was measured by indirect calorimetry. No significance changes were observed in dextrose fed mice compared to chow controls in terms of VO2 or heat production. Both WT and KO dextrose fed mice had a higher RER, consistent with utilization of carbohydrates over fat for baseline energy expenditure. Sucrose fed mice showed marked increases in VO2 over an averaged 24-hour period and similarly fructose fed mice FGF21 KO mice had increased energy expenditure. Significant increases in RER were observed in both WT and KO sucrose fed mice controls and a similar trend was observed in WT and KO fructose fed mice. Overall, we see differential metabolic effects of all the high carbohydrate diets on the mice. Chronic consumption of dextrose only affected glucose sensitivity. Whereas chronic consumption of sucrose influences glucose and insulin sensitivity and energy expenditure suggesting internal metabolic changes while fructose consumption additionally showed increased hepatic gluconeogenesis without the marked increase in insulin sensitivity. However, detailed tissue analysis is required to determine specific physiological and molecular changes between refined sugar cohorts and the role of FGF21 in this context.
18

FGF-2: estudo de estrutura e função / FGF-2: Study of structure and function

Alexandre Dermargos Oliveira 01 October 2007 (has links)
FGFs compreendem um grande família de 24 proteínas, participando de processos chaves nos mais variados tecidos, tendo funções parácrina, autócrina e intrácrina, regulando mitogênese, diferenciação celular, morfogênese e cicatrização. Mas, a relação estrutura-função dos FGFs é pobremente entendida. O membro protótipo desta família é o FGF-2, que apresenta quatro isoformas moleculares incluindo a forma de 18 kDa que é secretada e se liga aos receptores específicos (FGFRs) e dispara uma complexa sinalização. As outras isoformas, de alto peso molecular (21, 22 e 22,5 kDa) são expressas por códons alternativos (CUG) e permanecem no interior da célula interagindo com parceiros moleculares desconhecidos. Para antecipar mecanismos e parceiros do FGF-2 HMW foi realizada modelagem molecular desta isoforma que mostrou: uma estrutura do N-terminal da proteína com motivo β→α&#8594β e manutenção do barril β. A busca por parceiros intracelulares, foi realizada através da técnica do duplo hibrido de levedura, usando um biblioteca de cDNA de cérebro de rato. Foram encontrados 4 possíveis parceiros: BRD2, UBE2I, BRPF1, PC4. Todas essas interações foram confirmadas através do crescimento da levedura em meio sem histidina, produção de β-galactosidase e ensaios de \"pull-down\" com GST. Analises por FACS confirmam que FGF2 não causa apoptose em células adrenais tumorais Y1 de camundongo, mas promovem um acumulo de células na fase S com bloqueio do ciclo celular e da proliferação, configurando uma forma de senescência. Resultados com as células humanas HEK-ER:Ras permitem fazer a seguinte generalização: FGF2 induz senescência em células malignas transformadas pelos oncogenes raso A superexpressão da proteína de fusão FGF-2(18kDa):protA, mas não a da FGF-2(22,5 kDa):protA, protege a célula Y1 da senescência induzida por FGF-2. Por outro lado, a superexpressão destas mesmas isoformas de FGF-2 fusionadas à proteína A em células imortalizadas Balb3T3 não causou transformação celular e nem alterou a resposta mitogênica destas células ao FGF-2 recombinante adicionado ao meio de cultura. Células Y1 quando tratadas com FGF-2 recombinante produz ROS intracelular e libera anions superóxido no meio extracelular. Além disso, o anti-oxidante NAC protege estas células da indução de senescência induzida por FGF-2, sugerindo que ROS pode ser intermediário no disparo de senescência por FGF-2. / FGFs comprise a large fami1y of 24 proteins that play key roles in a number of tissues as local paracrine, autocrine and intracrine regulators of mitogenesis, cellular differentiation, organ morphogenesis and tissue repair. Structure-function relationship among FGFs is still poorly understood. FGF-2, the fami1y prototype member, exists as four molecular species. The 18 kDa form is released to the extracellular milieu and binds to specific receptors (FGFR), initiating a complex array of signals. Other isoforms of higher molecular weights (21, 22 and 22,5 kDa) are translated from alternative codons (CUG) and remain inside of the cell interacting with unknown partners. Aiming to anticipate mechanisms and partners, we modeled the FGF2-HMW molecule, showing that the protein displays β→α&#8594β motif in the N-terminal region and maintains the β-barrel structure common to ali FGFs. By the yeast two-hybrid method, using a cDNA rat brain library, we found four possible partners for FGF2-HMW: BRD2, UBE2I, BRP1 and PC4. Ali partners were confirmed by yeast growth without histidine, production of β-galactosidase and \"pull-down\" assays with GST. FACS analyses confirmed that FGF2 does not cause apoptosis in mouse Y1 adrenal tumor cells. But, FGF2 inhibited S phase progression blocking cell cycle and proliferation, characterizing a form of senescence. In addition, results obtained with the human HEK-ER:Ras cells support the following general statement: FGF2 triggers senescence in malignant cells transformed by ras oncogenes. Ectopic expression of the fusion protein FGF-2(18 kDa):protA, but not of FGF-2(22,s kDa):protA, protected Y1 cells senescence induced by FGF-2. On the other hand, ectopic expression of FGF-2 isoforms fusioned to protA in Balb3T3 immortalized cells did not cause transformation and neither modified the mitogenic response of this cell to recombinant FGF2. Recombinant FGF-2 stimules Y1 cells to produce intracellular ROS and to release superoxide anions into intracellular medium. Moreover, the ROS scavenger NAC protect Y1 cells from senescence induced by FGF-2, suggesting that ROS may be mediate senescence triggering induced by FGF-2.
19

FGFR1-Frs2/3 Signalling Maintains Sensory Progenitors during Inner Ear Hair Cell Formation. / FGFR1-Frs2/3シグナルは内耳有毛細胞形成において前駆細胞能を維持する

Ono, Kazuya 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第18168号 / 医博第3888号 / 新制||医||1003(附属図書館) / 31026 / 京都大学大学院医学研究科医学専攻 / (主査)教授 伊藤 壽一, 教授 大森 治紀, 教授 影山 龍一郎 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
20

Integration Capacity of Human Induced Pluripotent Stem Cell-Derived Cartilage / ヒトiPS細胞由来軟骨の癒合能の検討

Chen, Xike 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第21657号 / 医博第4463号 / 新制||医||1035(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 戸口田 淳也, 教授 松田 秀一, 教授 安達 泰治 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM

Page generated in 0.0638 seconds