Spelling suggestions: "subject:"filtrations"" "subject:"infiltrations""
1 |
Filtrations à temps discretCeillier, Gael 01 December 2010 (has links) (PDF)
Le caractère standard ou non standard est un invariant important dans la théorie des filtrations à temps discret négatif. Le but principal de cette thèse est de determiner si certaines filtrations sont standard ou non. Nous nous intéressons tout d'abord aux filtrations des processus des mots découpés, introduits et étudiés par Smorodinsky et par Laurent. Nous montrons que la condition suffisante de non standardité donnée par Laurent est aussi une condition nécessaire. Il en découle un critère simple de standardité, qui nous permet de donner un exemple de filtration non standard qui devient standard dès que le temps est accéléré par l'omission d'un nombre infini d'instants. Nous étudions ensuite les filtrations naturelles de processus stationnaires à valeurs dans un ensemble fini. Récemment Bressaud et al.\ ont donné une condition nécessaire pour que la filtration naturelle d'un tel processus $(X_k)_k$ soit standard quand le cardinal de l'espace d'états vaut $2$. Leur condition utilise les lois conditionnelles $p(\cdot|x)$ de $X_0$ sachant tout le passé $(X_k)_{k \le -1}=x$ et contrôle l'influence du passé lointain sur l'évolution présente du processus. Elle utilise les écarts maximaux entre $p(\cdot|x)$ et $p(\cdot|y)$ pour des suites infinies $x$ et $y$ qui co\"\i ncident sur leurs $n$ derniers termes. Nous donnons une condition suffisante de standardité faisant intervenir les écarts moyens entre ces lois conditionnelles plutôt que les écarts maximaux.
|
2 |
Noetherian Filtrations and Finite Intersection AlgebrasMalec, Sara 18 July 2008 (has links)
This paper presents the theory of Noetherian filtrations, an important concept in commutative algebra. The paper describes many aspects of the theory of these objects, presenting basic results, examples and applications. In the study of Noetherian filtrations, a few other important concepts are introduced such as Rees algebras, essential powers filtrations, and filtrations on modules. Basic results on these are presented as well. This thesis discusses at length how Noetherian filtrations relate to important constructions in commutative algebra, such as graded rings and modules, dimension theory and associated primes. In addition, the paper presents an original proof of the finiteness of the intersection algebra of principal ideals in a UFD. It concludes by discussing possible applications of this result to other areas of commutative algebra.
|
3 |
Noetherian Filtrations and Finite Intersection AlgebrasMalec, Sara 18 July 2008 (has links)
This paper presents the theory of Noetherian filtrations, an important concept in commutative algebra. The paper describes many aspects of the theory of these objects, presenting basic results, examples and applications. In the study of Noetherian filtrations, a few other important concepts are introduced such as Rees algebras, essential powers filtrations, and filtrations on modules. Basic results on these are presented as well. This thesis discusses at length how Noetherian filtrations relate to important constructions in commutative algebra, such as graded rings and modules, dimension theory and associated primes. In addition, the paper presents an original proof of the finiteness of the intersection algebra of principal ideals in a UFD. It concludes by discussing possible applications of this result to other areas of commutative algebra.
|
4 |
Modélisation des risques souverains et applications / Sovereign risk modelling and applicationsLi, Jean-Francois, Shanqiu 17 November 2016 (has links)
La présente thèse traite la modélisation mathématique des risques souverains et ses applications.Dans le premier chapitre, motivé par la crise de la dette souveraine de la zone euro, nous proposons un modèle de risque de défaut souverain. Ce modèle prend en compte aussi bien le mouvement de la solvabilité souveraine que l’impact des événements politiques critiques, en y additionnant un risque de crédit idiosyncratique. Nous nous intéressons aux probabilités que le défaut survienne aux dates d’événements politiques critiques, pour lesquelles nous obtenons des formules analytiques dans un cadre markovien, où nous traitons minutieusement quelques particularités inhabituelles, entre autres le modèle CEV lorsque le paramètre d’élasticité β >1. Nous déterminons de manière explicite le processus compensateur du défaut et montrons que le processus d’intensité n’existe pas, ce qui oppose notre modèle aux approches classiques. Dans le deuxième chapitre, en examinant certains modèles hybrides issus de la littérature, nous considérons une classe de temps aléatoires dont la loi conditionnelle est discontinue et pour lesquels les hypothèses classiques du grossissement de filtrations ne sont pas satisfaites. Nous étendons l’approche de densité à un cadre plus général, où l’hypothèse de Jacod s’assouplit, afin de traiter de tels temps aléatoires dans l’univers du grossissement progressif de filtrations. Nous étudions également des problèmes classiques : le calcul du compensateur, la décomposition de la surmartingale d’Azéma, ainsi que la caractérisation des martingales. La décomposition des martingales et des semi-martingales dans la filtration élargie affirme que l’hypothèse H’ demeure valable dans ce cadre généralisé. Dans le troisième chapitre, nous présentons des applications des modèles proposés dans les chapitres précédents. L’application la plus importante du modèle de défaut souverain et de l’approche de densité généralisée est l’évaluation des titres soumis au risque de défaut. Les résultats expliquent les sauts négatifs importants dans le rendement actuariel de l’obligation à long terme de la Grèce pendant la crise de la dette souveraine. La solvabilité de la Grèce a tendance à s’empirer au fil des années et le rendement de l’obligation a des sauts négatifs lors des événements politiques critiques. En particulier, la taille d’un saut dépend de la gravité d’un choc exogène, du temps écoulé depuis le dernier événement politique, et de la valeur du recouvrement. L’approche de densité généralisée rend aussi possible la modélisation des défauts simultanés qui, bien que rares, ont un impact grave sur le marché. / This dissertation deals with the mathematical modelling of sovereign credit risk and its applications. In Chapter 1, motivated by the European sovereign debt crisis, we propose a hybrid sovereign risk model which takes into account both the movement of the sovereign solvency and the impact of critical political events besides the idiosyncratic credit risk. We are interested in the probability that the default occurs at critical political dates, for which we obtain closed-form formulae in a Markovian setting, where we deal with some unusual features, such as a treatment of the CEV model when the elasticity parameter β > 1. We compute explicitly the compensator process of default and show that the intensity process does not exist. In Chapter 2, by studying certain hybrid models in literature on credit risks, we consider a type of random times whose conditional probability distribution is not continuous and by which standard intensity and density hypotheses in the enlargement of filtrations are not satisfied. We propose a generalised density approach, where the hypothesis of Jacod is relaxed, in order to deal with such random times in the framework of progressive enlargement of filtrations We also study classic problems such as the computation of the compensator process of the random time, the decomposition of the Azéma supermartingale, as well as the martingale characterisation. The martingale and semimartingale decompositions in the enlarged filtration show that the H’-hypothesis holds in this generalised framework. In Chapter 3, we display several applications of the models proposed in the previous chapters. The most important application of the hybrid default model and the generalised density approach is the valuation of default claims. The results explain the significant negative jumps in the long-term Greek government bond yield during the sovereign debt crisis. The solvency of Greece tends to fall gradually through time and the bond yield has negative jumps when critical political events are held. In particular, the size of a jump depends on the seriousness of an exogenous shock, the elapsed time since the last political event, and the value of the recovery payment. The generalised density approach also makes possible the modelling of simultaneous defaults, which are rare but may have an important impact.
|
5 |
Pricing and Hedging of Defaultable ModelsAntczak, Magdalena, Leniec, Marta January 2011 (has links)
Modelling defaultable contingent claims has attracted a lot of interest in recent years, motivated in particular by the Late-2000s Financial Crisis. In several papers various approaches on the subject have been made. This thesis tries to summarize these results and derive explicit formulas for the prices of financial derivatives with credit risk. It is divided into two main parts. The first one is devoted to the well-known theory of modelling the default risk while the second one presents the results concerning pricing of the defaultable models that we obtained ourselves.
|
6 |
Risques, Options sur Hedge Funds et Produits HybridesAtlan, Marc 23 January 2007 (has links) (PDF)
Cette thèse est composée de cinq chapitres qui correspondent à cinq articles. Le premier article étudie d'un point de vue théorique les modèles à volatilités locale et stochastique, et leur relation, d'ailleurs illustrée d'exemples. Enfin, l'impact de taux stochastiques sur ces deux modélisations est analysé ainsi que l'effet de taux stochastiques sur le lien entre volatilités locale et stochastique. Les articles 2 et 3 étudient des modèles de type Constant Elasticity of Variance pour valoriser des produits hybrides crédit et action. L'article 4 se propose de prendre en compte l'effet de frais de gestion et de performance sur la valorisation d'options sur hedge funds et ainsi sont fournies des formules quasi-fermées de pricing d'options vanilles sur hedge funds. Enfin, le chapitre 5 avec examine à un niveau conceptuel illustré d'exemples provenant de propriétés fines du mouvement Brownien et des grossissements de filtration, la question des risques qui sont ou ne sont pas pricés dans une économie.
|
7 |
Filtrations on Combinatorial Intersection Cohomology and Invariants of SubdivisionsTsang, Ling Hei January 2022 (has links)
No description available.
|
8 |
Structures produits sur la filtration par le poids des variétés algébriques réelles / Product structures on the weight filtration of real algebraic varietiesLimoges, Thierry 10 March 2015 (has links)
On associe à chaque variété algébrique définie sur R un complexe de cochaînes filtré, qui calcule la cohomologie à supports compacts et coefficients dans Z_2 de ses points réels. Ce complexe filtré est additif pour les inclusions fermées et acyclique pour la résolution des singularités, et est unique à quasi-isomorphisme filtré près. Il est représenté par la filtration duale de la filtration géométrique sur les chaînes semi-algébriques à supports fermés définie par McCrory and Parusiński, et induit une suite spectrale qui calcule la filtration par le poids sur la cohomologie à supports compacts. Cette suite spectrale est un invariant naturel qui contient les nombres de Betti virtuels. On montre que le produit cartésien de deux variétés nous permet de comparer le produit de leurs complexe de poids et suite spectrale respectifs avec ceux du produit, et on prouve que les produits cap et cup en cohomologie et homologie sont filtrés par rapport à ces filtrations par le poids réelles. / We associate to each algebraic variety defined over R a filtered cochain complex, which computes the cohomology with compact supports and Z_2-coefficients of the set of its real points. This filtered complex is additive for closed inclusions and acyclic for resolution of singularities, and is unique up to filtered quasi-isomorphism. It is represented by the dual filtration of the geometric filtration on semialgebraic chains with closed supports defined by McCrory and Parusiński, and leads to a spectral sequence which computes the weight filtration on cohomology with compact supports. This spectral sequence is a natural invariant which contains the additive virtual Betti numbers. We then show that the cross product of two varieties allows us to compare the product of their respective weight complexes and spectral sequences with those of their product, and prove that the cup and cap products in cohomology and homology are filtered with respect to the real weight filtrations.
|
9 |
Information and Default Risk in Financial ValuationLeniec, Marta January 2016 (has links)
This thesis consists of an introduction and five articles in the field of financial mathematics. The main topics of the papers comprise credit risk modelling, optimal stopping theory, and Dynkin games. An underlying theme in all of the articles is valuation of various financial instruments. Namely, Paper I deals with valuation of a game version of a perpetual American option where the parties disagree about the distributional properties of the underlying process, Papers II and III investigate pricing of default-sensitive contingent claims, Paper IV treats CVA (credit value adjustment) modelling for a portfolio consisting of American options, and Paper V studies a problem motivated by model calibration in pricing of corporate bonds. In each of the articles, we deal with an underlying stochastic process that is continuous in time and defined on some probability space. Namely, Papers I-IV treat stochastic processes with continuous paths, whereas Paper V assumes that the underlying process is a jump-diffusion with finite jump intensity. The information level in Paper I is the filtration generated by the stock value. In articles III and IV, we consider investors whose information flow is designed as a progressive enlargement with default time of the filtration generated by the stock price, whereas in Paper II the information flow is an initial enlargement. Paper V assumes that the default is a hitting time of the firm's value and thus the underlying filtration is the one generated by the process modelling this value. Moreover, in all of the papers the risk-free bonds are assumed for simplicity to have deterministic prices so that the focus is on the uncertainty coming from the stock price and default risk.
|
10 |
Information and semimartingalesAnkirchner, Stefan 22 July 2005 (has links)
Die stochastische Analysis gibt Methoden zur Erfassung und Beschreibung von zufälligen numerischen Prozessen an die Hand. Die Beschreibungen hängen dabei sehr stark von der Informationsstruktur ab, die den Prozessen in Gestalt von Filtrationen zugrunde gelegt wird. Der 1. Teil der vorliegenden Arbeit handelt davon, wie sich ein Wechsel der Informationsstruktur auf das Erscheinungsbild eines stochastischen Prozesses auswirkt. Konkret geht es darum, wie sich eine Filtrationsvergrößerung auf die Semimartingalzerlegung eines Prozesses auswirkt. In dem 2. und 3. Teil der Arbeit wird die Rolle von Information im finanzmathematischen Nutzenkalkül untersucht. Im 2. Teil werden unter der Annahme, dass der maximale erwartete Nutzen eines Händlers beschränkt ist, qualitative Erkenntnisse über den Preisprozess hergeleitet. Es wird gezeigt, dass endlicher Nutzen einige strukturelle Implikationen für die intrinsische Sichtweise hat. Im 3. Teil wird quantitativ untersucht, wie sich Information auf den Nutzen auswirkt. Aus extrinsischer Sicht werden Händler mit unterschiedlichem Wissen verglichen. Falls die Präferenzen durch die logarithmische Nutzenfunktion beschrieben werden, stimmt der Nutzenzuwachs mit der gemeinsamen Information zwischen dem zusätzlichen Wissen und dem ursprünglichen Wissen überein, wobei `gemeinsame Information' im Sinne der Informationstheorie verstanden wird. / Stochastic Analysis provides methods to describe random numerical processes. The descriptions depend strongly on the underlying information structure, which is represented in terms of filtrations. The first part of this thesis deals with impacts of changes in the information structure on the appearance of a stochastic process. More precisely, it analyses the consequences of a filtration enlargement on the semimartingale decomposition of the process. The second and third part discuss the role of information in financial utility calculus. The second part is of a qualitative nature: It deals with implications of the assumption that the maximal expected utility of an investor is bounded. It is shown that finite utility implies some structure properties of the price process viewed from the intrinsic perspective. The third part is of a quantitative nature: It analyzes the impact of information on utility. From an extrinsic point of view traders with different knowledge are compared. If the preferences of the investor are described by the logarithmic utility function, then the utility increment coincides with the mutual information between the additional knowledge and the original knowledge.
|
Page generated in 0.1057 seconds