• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 124
  • 35
  • 20
  • 10
  • 6
  • Tagged with
  • 276
  • 276
  • 276
  • 103
  • 49
  • 38
  • 36
  • 35
  • 31
  • 30
  • 24
  • 24
  • 22
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Structural behaviour and optimization of moment-shaped reinforced concrete beams

Hashemian, Fariborz 25 July 2012 (has links)
This research includes a preliminary study prior to the commencement of the Ph.D. work and three phases of design, construction and testing of three generations of moment-shaped beams. Each phase of the research brought a better understanding of curved beams which follow the shape of the moment diagram. The moment diagram in this study was for simply supported beams supporting a uniformly distributed load as would be the case in the majority of building designs. The original theory for this research can be described as follows: Moment-shaped beams are the natural outcome of a fundamental understanding of stress paths in a horizontal load bearing member. By following these stress paths we may provide materials where required to most efficiently carry the compression and tension stresses to the supports. Allowing stresses to follow their naturally desired paths reduces regions where stresses cross paths called disturbed regions. The outcome of the final phase of this research was the development of the third generation of curved beams with a camber. These beams, designated as Cambered Curve beams (CCBs), exhibited the same behaviour as the rectangular control beam design using CSA-A23.3 up to the serviceability failure of L/360 (12mm). The CCB moment-shaped beams require 20% less concrete and 40% less reinforcing steel (no shear stirrups) to carry the ultimate load which is only 12% less than that carried by the CSA-designed control beam. Due to a closed system of internal forces, the moment-shaped beams remain intact and are able to sustain self weight, even after total failure. A significant part of this research was to modify and verify a FORTRAN-based finite element analysis program: FINIT-Y. This program was reconstructed to analyse a full size beam, and enabled the researcher to model and correctly predict the maximum load, crack pattern and failure mode. This study found that moment-shaped beams with no shear reinforcement have the same stiffness and load carrying capacity as the CSA-designed rectangular control beam with shear reinforcement up to serviceability failure (L/360). The study also found that moment-shaped beams have significantly lower ductility at the ultimate load.
152

Prédiction de la non-rupture fragile dans un joint soudé en acier C-Mn dans le domaine de la transition fragile/ductile / Prediction of non-brittle fracture in the welded joint of C-Mn steel in the brittle/ductile transition domain

Nguyen, Thai Ha 19 November 2009 (has links)
Ce travail de thèse s’inscrit dans le contexte de la sûreté nucléaire, et plus précisément, de l’intégrité des circuits secondaires des Réacteurs à eau pressurisée (REP). L’étude porte donc sur le comportement à rupture de structures minces soudées dans le domaine haut de la transition fragile/ductile. Elle a pour objectif de développer le modèle en contrainte seuil initialement développé par Chapuliot, qui permet de prédire la non-rupture par clivage de cette structure soudée. Le modèle est identifié pour la soudure de l’acier au C-Mn de construction nucléaire, en s’intéressant plus particulièrement à la limite supérieure du domaine de transition.Une contrainte seuil, en-dessous de laquelle le clivage ne peut avoir lieu, est identifiée à partir d’essais de traction à basses températures sur éprouvettes axisymétriques entaillées prélevées dans le joint soudé. Cette contrainte seuil permet de définir le volume seuil, ou volume dans lequel les contraintes principales maximales dépassent la contrainte seuil au cours de l’essai.L’analyse au MEB des faciès des éprouvettes rompues montre que la zone fondue brute de solidification dans la ZAT est la zone la plus susceptible de cliver. La relation entre la probabilité de rupture fragile et le volume seuil dans cette zone est établie via une fonction de sensibilité, grâce à des essais sur éprouvettes CT et à leur simulation multi-matériaux. Le modèle ainsi identifié est testé pour prévoir la non rupture par clivage d’éprouvettes SENT prélevées dans le joint soudé et sollicitées en traction. Les résultats obtenus sont encourageants relativement à la transférabilité du modèle à la structure réelle / This work concerns the nuclear safety, specifically the secondary circuit integrity of pressurized water reactors (PWR). Therefore, the present study focuses on the fracture behaviour of welded thin structures in brittle/ductile transition. It aims at developing the threshold stress model initially proposed by Chapuliot, to predict the non-brittle-fracture of this welded structure. The model is identified for the welded joint in C-Mn steel for nuclear construction, specifically in the upper part of the transition.A threshold stress, below which the cleavage cannot take place, is identified using tensile tests at low temperature on axis-symmetrical notched specimens taken in welded joint. This threshold stress is used to define the threshold volume where the maximum principal stress exceeds the threshold stress during the test.The analysis by SEM of specimen fracture surfaces shows that the gross solidification molten zone in the weld is the most likely to cleave. The relation between the brittle fracture probability and the threshold volume in the gross solidification molten zone is established via a sensitivity function, using multi-materials simulations. The model thus identified is tested for the prediction of non-brittle-fracture of SENT specimens taken in the welded joint and tested in tension. The results obtained are encouraging with regards to the transferability of the model to the actual structure
153

Prédiction de la performance d’adhérence de caoutchoucs pour semelles : Analyses tribologique, mécanique et numérique / Grip prediction for outsole rubbers : tribological, mechanical and finite element analyses

Bodillard, Jérôme 13 July 2016 (has links)
Ce travail de thèse porte sur la problématique industrielle du « grip » des semelles de chaussures de randonnées et de course-à-pied (le « trail »). Nous menons une démarche exploratoire pluridisciplinaire pour prédire a priori la performance d’adhérence des mélanges de caoutchoucs chargés, réticulés pour semelles. Nous envisageons trois méthodologies : tribologique, mécanique et numérique.- En tribologie, nous utilisons l’approche normée des équipements de protections individuels (EPI). Nous discutons les conditions d’essais et les préparations surfaciques pertinentes pour les pratiques de plein air.- En mécanique, nous caractérisons la dissipation d’énergie lors d’une déformation car nous considérons cette hystérèse comme contribution majoritaire du frottement des caoutchoucs sur des surfaces rigides et mouillées. Comme dans l’industrie pneumatique nous recherchons une démarche prédictive basée sur l’analyse mécanique dynamique (DMA) en estimant les pertes par hystérèses en conditions de frottements.- Numériquement, nous utilisons des données mécaniques (hystérèse issue de la charge-décharge en traction grande déformation : viscohyperélasticité) et tribologiques (transition entre le frottement statique et dynamique) pour mettre en place des simulations par éléments finis qui devront aider la conception des futurs crampons.Chaque méthodologie est indépendante même si les mécanismes physiques considérés sont communs à toutes les démarches. Que ce soit de manière tribologique, mécanique, surfacique ou numérique, nous nous intéressons aux relations entre les déformations du caoutchouc et son frottement. / This thesis addresses the grip of hiking and trail-running shoes. We focus on cross-linked, silica-filled, outsoles rubbers. Our aim is to predict grip quality perceived by users. To do so, we explore multidisciplinary techniques. We consider three methodologies: tribological and mechanical characterizations and modelling.- Tribological study is based on footwear standard (personal protective equipment). We discuss an adaptation for outdoor outsoles. We set test conditions and surface preparations required for a pertinent and reproducible characterization.- Mechanical study deals with hysteresis phenomena as a major contributor to rubber friction on wet surfaces. We try to set a predictive characterization based on dynamic mechanical analysis (DMA) by estimation of hysteresis loss in mechanical conditions representative of friction solicitations.- Tribological (static-dynamic transition) and mechanical (hyperelasticity or viscohyperelasticity obtained from tension: large cyclic loading-unloading) phenomena are implemented with finite element modelling. 2D and 3D modelling would support future lugs development.Each methodology is independent considering identical physical mechanisms. Based on mechanics, tribology and surface science or modelling we study the relationship between rubber deformation and friction.
154

Characterization and modeling of abdominal organs / Caractérisation et modélisation des organes abdominaux

Umale, Sagar 19 December 2012 (has links)
Le pourcentage élevé de blessures dues à des traumatismes abdominaux survenant lors d’accidents de la route mais également la nécessité de détecter des maladies (l'hépatite virale, la cirrhose, le cancer etc.), ont conduits plusieurs chercheurs à étudier les propriétés mécaniques des organes abdominaux à la fois in vivo et in vitro. Dans tous les MEF de corps humain actuellement disponibles, les organes abdominaux sont caractérisés par des lois élastiques linéaires ou viscoélastiques linéaires, alors que ces matériaux montrent un comportement non linéaire hyper élastique. L’objectif de ce travail de thèse est de développer des modèles par éléments finis (MEF) robustes des différents organes de l’abdomen tels que le foie, le rein et la rate. Pour ce faire des tests expérimentaux sur chacun des constituants de ces organes ont été réalisés dans le but de caractériser le comportement mécanique de ceux-ci et de déterminer les propriétés mécaniques inhérentes à ces constituants. Pour caractériser mécaniquement ces différents constituants, des tests statiques ont donc été réalisés pour chacun des constituants du foie et du rein porcin à savoir, des tests de traction de la capsule de Glisson et de la capsule rénale ainsi que des veines hépatiques, des tests de compression et de cisaillement pour le parenchyme hépatique et le cortex rénale. Finalement la rate a été testée en compression statique. Les résultats expérimentaux obtenus ont été utilisés afin de caractériser les tissus par des lois de comportement de type hyper élastique, viscoélastique et hyper viscoélastique sous la forme de modèles d'Ogden, Mooney Rivlin et Maxwell et implémentés dans les MEF porcin et humain développés dans le cadre de cette thèse. Ces MEF ont ensuite été validés en regards de tests expérimentaux dynamiques in vivo réalisés sur modèle porcin et vis-à-vis de la littérature pour les MEF d’organes humains. Ainsi, les MEF développés dans cette étude sont les premiers modèles détaillés et validés et peuvent désormais être utilisés dans le cadre de reconstructions d’accidents mais également pour des applications biomédicales dans le but de développer des environnements virtuels de chirurgie, de planifier les actes chirurgicaux et d’aider les chirurgiens à l’apprentissage de gestes. / The objective of this study is to develop robust finite element models of abdominal organs (viz. liver, kidney and spleen), by performing experiments on each organ’s constituents to extract the material properties. Understanding the mechanical properties of the organs of the human body is the most critical aspect of numerical modeling for medical applications and impact biomechanics. Many researchers work on identifying mechanical properties of these organs both in vivo and in vitro considering the high injury percentage of abdominal trauma in vehicle accidents and for easy detection of diseases such as viral hepatitis, cirrhosis, cancer etc. In all the current available finite element human body models the abdominal organs are characterized as linear elastic or linear visco-elastic material, where as the materials actually show a non linear hyper elastic behavior. In this study the organs are modeled for first time as hyper visco-elastic materials and with individual constituents of each (viz. the capsule and veins). To characterize the tissue, static experiments are performed on individual parts of the abdominal organs, like incase of liver, Glisson’s capsule and hepatic veins are tested under static tension where as liver parenchyma is tested under static compression and under shear at low frequency. In case of kidneys, renal capsule is tested under static tension and renal cortex is tested under static compression, where as spleen tissue is tested under static compression. The results of the these experiments are used to characterize the tissues as hyper elastic, visco elastic and hyper visco elastic materials in the form of Ogden, Mooney Rivlin and Maxwell materials. These material models are further used to develop the finite element model of organs for human and pigs. The developed models are validated by performing in vivo dynamic tests on pigs, whereas using dynamic tests data from the literature on human liver and reproducing the same with the numerical approach in the LS Dyna explicit solver. The developed models are observed to be robust and can be used for accident reconstruction as well for biomedical applications viz., to develop virtual surgical environments & to plan surgeries or train surgeons.
155

High Fidelity Modeling of Cold-Formed Steel Single Lap Shear Screw Fastened Connections

Kalo, Rita 19 March 2019 (has links)
Cold-formed steel connections are commonly fastened using self-tapping self-drilling screws. The behavior of these connections can differ based on the screw manufacturer or the cold-formed steel product used, both of which have a large selection available for use in industry. Because of their popularity and the many possible variations of these connections, researchers have frequently tested screw connections to characterize their behavior. However, repeatedly conducting this type of experiment is time consuming and expensive. Therefore, the purpose of this work was to create finite element models that can successfully predict the behavior of single lap shear screw connections, a common connection type used in cold-formed steel framing. These models were created using the finite element program Abaqus/CAE. To validate these models, test results from Pham and Moen (2015) were used to compare the stiffness, strength, and failure mode of multiple connections. A parametric study is also conducted to determine the influence of contact parameters on the behavior of the model. The results showed that all models consistently had good agreement with the connection stiffness and that most of the models also had good agreement with the peak load and failure mode of the v tests. These results were also compared to the design equations available for screw connections from the American Iron and Steel Institute (AISI). This comparison revealed that the models are more successful at predicting screw connection behavior than AISI, and thus work is required to improve the accuracy of AISI’s design equations. The eventual goal of this work is to develop a procedure to build and validate models without requiring test data. This work continuing in the future can lead to recommendations to improve AISI’s design equations and to implement the behavior of the connections into large cold-formed steel framing models such as diaphragms or shear walls.
156

Fluid-Structure Interaction Modeling of Human Upper Airway Collapse in Obstructive Sleep Apnea

Mehra, Puneet 04 November 2019 (has links)
No description available.
157

Development of a Bridge SteelEdge Beam Design : FE Modelling for a Vehicle Collision andCase Study

Ramos Sangrós, Diego January 2015 (has links)
The degradation of bridge edge beam systems in Sweden entailed the study of new alternativedesigns, which may become more optimal from a life-cycle perspective than the currenttypical solution used (concrete integrated). Subsequently, a U-shaped steel edge beamproposed by the consulting engineering group Ramböll was considered by the SwedishTransport Administration for its use in a real bridge project. This thesis follows theimplementation of this alternative in a bridge project.The goals of the thesis are to study the development of the U-shaped steel edge beam solutionin the case study, and to identify the key factors behind it. The case study consists of a roadframe bridge where a heavily damaged bridge edge beam system is going to be replaced.For the structural design of the solution, a static linear analysis of a vehicle collision has beencarried out with the help of Finite Element Modelling and current codes. The report shows themodelling of the design solution throughout different development phases in the project. Thecommercial software used has been LUSAS.As an outcome of the project, four models have been designed and analysed, two of themdeveloped by the author as proposed solutions. The factors behind the different changes in thedesign have been identified as: (1) structural resistance, (2) constructability and (3) the use ofstainless steel. Moreover, the connection between the steel edge beam and the concrete slabhas been the main critical part for the structural resistance. Finally, the current preliminarymodel at the moment this thesis is written, which was proposed in the project meetings, meetsthe requirements from a structural point of view.
158

Innovative Cold-Formed Steel Shear Walls with Corrugated Steel Sheathing

Mahdavian, Mahsa 05 1900 (has links)
This thesis presents two major sections with the objective of introducing a new cold-formed steel (CFS) shear wall system with corrugated steel sheathings. The work shown herein includes the development of an optimal shear wall system as well as an optimal slit configuration for the CFS corrugated sheathings which result in a CFS shear wall with high ductility, high strength, high stiffness and overall high performance. The conclusion is based on the results of 36 full-scale shear wall tests performed in the structural laboratory of the University of North Texas. A variety of shear walls were the subject of this research to make further discussions and conclusions based on different sheathing materials, slit configurations, wall configurations, sheathing connection methods, wall dimensions, shear wall member thicknesses, and etc. The walls were subject to cyclic (CUREE protocol) lateral loading to study their deformations and structural performances. The optimal sit configuration for CFS shear walls with corrugated steel sheathings was found to be 12×2 in. vertical slits in 6 rows. The failure mode observed in this shear wall system was the connection failure between the sheathing and the framing members. Also, most of the shear walls tested displayed local buckling of the chord framing members located above the hold-down locations. The second section includes details of developing a Finite Element Model (FEM) in ABAQUS software to analyze the lateral response of the new shear wall systems. Different modeling techniques were used to define each element of the CFS shear wall and are reported herein. Material properties from coupon test results are applied. Connection tests are performed to define pinching paths to model fasteners with hysteretic user-defined elements. Element interactions, boundary conditions and loading applications are consistent with full scale tests. CFS members and corrugated sheathings are modeled with shell elements, sheathing-to-frame fasteners are modeled using nonlinear springs (SPRING2 elements) for monotonic models and a general user defined element (user subroutine UEL) for cyclic models. Hold-downs are defined by boundary conditions. A total of three models were developed and validated by comparing ABAQUS results to full scale test results.
159

Finite Element Modeling and Experimental Characterization of Skin and Subcutaneous Tissue Damage and Fracture

John David Toaquiza Tubon (12089969) 18 February 2022 (has links)
This study provides an overview of the implementation of a nonlinear microstructural constitutive model in ABAQUS employing a user subroutine at the level of the biomedical engineer. Two different element formulations are employed: a continuum incompressible and a plane stress incompressible. All examples are validated by performing a number of deformations on 2D and 3D square elements and comparing the analytical formulation in a programming language and the user subroutine in ABAQUS. Application models will be presented that provide a deeper look into the impacts of soft tissue deformation, damage, and fracture. Additionally, we investigate the mechanical behavior of skin layers in terms of the nominal stress-strain curve using uniaxial and cyclic loading tests on porcine skin specimens in two forms: dermis integrating epidermis and hypodermis. Experiments were performed on specimens from the belly and breast of the pigs and under both orthogonal orientations with respect to the spine direction. All tests were carried out at room temperature with cyclic loading at a constant strain rate and increasing stretch increments. Finally, data is fitted using microstructural constitutive model.
160

Structural Identification and Damage Identification using Output-Only Vibration Measurements

Xing, Shutao 01 August 2011 (has links)
This dissertation studied the structural identification and damage detection of civil engineering structures. Several issues regarding structural health monitoring were addressed. The data-driven subspace identification algorithm was investigated for modal identification of bridges using output-only data. This algorithm was tested through a numerical truss bridge with abrupt damage as well as a real concrete highway bridge with actual measurements. Stabilization diagrams were used to analyze the identified results and determine the modal characteristics. The identification results showed that this identification method is quite effective and accurate. The influence of temperature fluctuation on the frequencies of a highway concrete bridge was investigated using ambient vibration data over a one-year period of a highway bridge under health monitoring. The data were fitted by nonlinear and linear regression models, which were then analyzed. The substructure identification by using an adaptive Kalman filter was investigated by applying numerical studies of a shear building, a frame structure, and a truss structure. The stiffness and damping were identified successfully from limited acceleration responses, while the abrupt damages were identified as well. Wavelet analysis was also proposed for damage detection of substructures, and was shown to be able to approximately locate such damages. Delamination detection of concrete slabs by modal identification from the output-only data was proposed and carried out through numerical studies and experimental modal testing. It was concluded that the changes in modal characteristics can indicate the presence and severity of delamination. Finite element models of concrete decks with different delamination sizes and locations were established and proven to be reasonable. Pounding identification can provide useful early warning information regarding the potential damage of structures. This thesis proposed to use wavelet scalograms of dynamic response to identify the occurrence of pounding. Its applications in a numerical example as well as shaking table tests of a bridge showed that the scalograms can detect the occurrence of pounding very well. These studies are very useful for vibration-based structural health monitoring.

Page generated in 0.1373 seconds