Spelling suggestions: "subject:"flash c.method"" "subject:"flash 20method""
1 |
Aplicação do método flash para a estimação da difusividade térmica da geléia de acerola / Flash application of the method for estimation of thermal diffusivity jelly acerolaSilva, Mirtes Aparecida da Conceição 07 April 2011 (has links)
Made available in DSpace on 2015-05-08T14:59:32Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 2230755 bytes, checksum: ca3daa0f19b4271abeb34495fd22c22f (MD5)
Previous issue date: 2011-04-07 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The analysis of the properties of heat and mass transfer in foods has been studied for many
researchers due to their need for knowledge to feed the codes of optimization calculations
and equipment design involving the addition and removal of energy. This work deals with
the solution of an inverse problem of parameter estimation to estimate the thermal
diffusivity and thermal conductivity of a sample of acerola jam. The direct problem is
solved numerically using finite differences and the system of algebraic equations arising
from the method is solved by explicit method. The experimental transient temperature
profile required for the solution of the inverse problem is obtained by a thermal pulse
method, specifically, via flash method. The experimental procedure consists of submitting
a sample of acerola jelly confined in a cylindrical cavity with a thermal disturbance of
short duration on one side (front) and measure the transient temperature evolution on the
other side (back side). The acerola jelly was specially produced and analyzed physical and
chemical for this purpose. For the thermal disturbance of the sample we used a device
called a micro-flash, LFA model 457, manufactured by Netzsch. The pulse of short
duration is from a power system that releases an energy equivalent to 15 joules per pulse
and records the evolution of temperature using an infrared sensor, type ISB. This
equipament has a system for generating laser pulse. The results are shown in terms of
thermal diffusivity and thermal conductivity and are compared with the values available in
literature for similar products. The values found for the thermal diffusivity of 0,121 to
0,148 mm2s-1 and the thermal conductivity of 0,372 to 0,497Wm-1 are in agreement with
the values found by other techniques. / A estimação das propriedades termodinâmicas e de transportes tem sido objeto de
estudo de diversos pesquisadores devido à necessidade de seu conhecimento para alimentar
os códigos de cálculos de otimização e projetos de equipamentos que envolvam adição e
remoção de energia. Esse trabalho trata da solução de um problema inverso de estimação
de parâmetros para estimar a difusividade térmica e a condutividade térmica de uma
amostra de geléia de acerola. O problema direto é resolvido numericamente utilizando
diferenças finitas e o sistema de equações algébricas advindo da aplicação do método é
resolvido pelo método explicito. O perfil de temperatura transiente experimental necessário
para a solução do problema inverso é obtido através de um método de pulso térmico,
especificamente, via método flash. O procedimento experimental consiste de submeter uma
amostra de geléia de acerola confinada em uma cavidade cilíndrica a uma perturbação
térmica de curta duração em uma das faces (anterior) e medir a evolução da temperatura
transiente na outra face (face posterior). A geléia de acerola foi especialmente produzida e
analisada físico-quimicamente com essa finalidade. Para a perturbação térmica da amostra
foi utilizado um dispositivo, denominado de micro-flash, modelo LFA 457, fabricado pela
Netzsch. O pulso de curta duração é originário de um sistema de potencia que libera uma
energia equivalente a 15 Joules por pulso e registra a evolução da temperatura através de
um sensor infravermelho, tipo ISb. Esse equipamento dispõe de um sistema de geração de
pulso laser. Os resultados são mostrados em termos da difusividade térmica e da
condutividade térmica e são comparados com os valores disponíveis na literatura para
produtos da mesma natureza. Os valores encontrados para a difusividade térmica de 0,121
à 0,148 mm2s-1 e para a condutividade térmica de 0,372 à 0,497Wm-1°C-1 estão em acordo
com os valores encontrados por outras técnicas.
|
2 |
Análise teórico-experimental da difusividade térmica em material opaco utilizando o Método Flash / Theoretical-experimental analysis for thermal diffusivity measurements on opaque materials with laser flash methodVilar, Diego Dantas Queiroz 19 July 2012 (has links)
Made available in DSpace on 2015-05-08T14:59:42Z (GMT). No. of bitstreams: 0
Previous issue date: 2012-07-19 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This work proposes the thermal characterization of an opaque solid using the
Flash Method as an estimation technique of thermophysical properties. Thermal
characterization corresponds to the identification of heat transfer properties. The
properties that most interest among researchers are: specific heat, thermal capacity,
conductivity and thermal diffusivity. The characterization techniques have been
evolving in parallel with the rise of new materials, as well as the necessity and accuracy
of the intrinsic characteristics of each one. The use of the equations of heat and mass
transfer is subject to the availability of data on the intrinsic characteristics of the
materials involved, the thermophysical properties in particular. Estimates of energy
exchange can be performed from the values of density, thermal diffusivity, specific heat
and thermal conductivity of materials. In this context, there are countless failures in
thermal projects by the unavailability of reliable data of thermodynamic and transport
properties of the studied object. It is proposed in this research a numerical analysis,
comparing it with experimental data on thermal characterization. Among the available
experimental techniques, a transient pulse method was chosen, in particular, the Flash
method, universally recognized for its accuracy and easy usage. Results are presented in
terms of thermal diffusivity, thermal conductivity and specific heat. / Este trabalho propõe a caracterização térmica de um sólido opaco utilizando o
Método Flash como técnica de estimação de propriedades termofísicas do mesmo.
A caracterização térmica de materiais corresponde à identificação das propriedades de
transporte de calor. As propriedades que despertam maior interesse entre os
pesquisadores são: calor específico, capacidade térmica, condutividade, e difusividade
térmica. As técnicas de caracterização vêm evoluindo paralelamente com o surgimento
de novos materiais, assim como, a necessidade e a precisão das características
intrínsecas de cada um. O uso das equações de transferência de calor e massa é
condicionado à disponibilidade de dados sobre as características intrínsecas dos
materiais envolvidos, em particular das propriedades termofísicas. Estimativas de trocas
energéticas podem ser realizadas a partir dos valores de massa específica, difusividade
térmica, calor específico e condutividade térmica do objeto de estudo. Neste contexto,
inúmeros são os fracassos em projetos térmicos pela não disponibilidade de dados
confiáveis das propriedades termodinâmicas e de transportes dos materiais. Propõe-se
nesta pesquisa uma análise numérica, comparando-a com os dados obtidos
experimentalmente na caracterização térmica. Entre as técnicas experimentais
disponíveis, um método transiente de pulso, foi escolhido, em particular, o Método
Flash, universalmente conhecido pela sua precisão e facilidades de uso. Os resultados
serão apresentados em termos da difusividade térmica, da condutividade térmica e calor
específico.
|
3 |
Estimação das propriedades termofísicas de leite integral através da técnica analítico-experimental. / Estimation of whole milk thermophysical properties by experimental-analytical techniqueOliveira, Edilma Pereira 31 July 2013 (has links)
Made available in DSpace on 2015-05-08T14:59:47Z (GMT). No. of bitstreams: 1
ArquivoTotalEdilma.pdf: 3342457 bytes, checksum: ab038da16334ba7acdbbca9aab59c08b (MD5)
Previous issue date: 2013-07-31 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The estimation of the thermodynamic and transport properties have been studied by many researchers due to the need to input data in calculations and optimization equipment projects that involve adding and removing energy. Transient methods are widely used for determination of thermal transport properties. Usually, these methods are used in homogeneous materials to measure various thermophysical properties, simultaneously or separately. This work deals with the solution of an inverse problem, to estimate thermal properties parameters of whole milk. The direct problem is solved analytically using the Classical Integral Transform Technique (CITT). The proposed algorithm allows the estimation of the thermal conductivity at the interface of a medium composed of three layers through measurements of temperature distribution in one surface, resulting from a transient thermal pulse on the opposite surface. The thermal perturbation of the sample was done using a device known as micro flash LFA model 457, manufactured by Netzsch. The results are shown in terms of thermal diffusivity and thermal conductivity and are compared with values available in the literature for products of the same nature, thus providing thermal properties data of whole milk to be applied in dimensioning calculations of industrial processes. / A estimação das propriedades termodinâmicas e de transportes tem sido objeto de estudo de diversos pesquisadores devido à necessidade de seu conhecimento para alimentar os códigos de cálculos de otimização e projetos de equipamentos que envolvam adição e remoção de energia. Métodos transientes são largamente utilizados para determinação de propriedades térmica de transporte. Normalmente estes métodos são usados em meios homogêneos para mensurar várias propriedades termofísicas, simultaneamente ou separadamente. A análise de materiais compostos de múltiplas camadas é mais complicada. O algoritmo proposto permite a estimativa da difusividade térmica na interface de um meio composto de três camadas através da medida da distribuição detemperatura transiente resultante de um pulso térmico na superfície oposta. Esse trabalho trata da solução de um problema inverso de estimação de parâmetros para estimar as propriedades térmicas de produtos lácteos. O problema direto é resolvido analiticamente utilizando a Técnica da Transformada Integral Clássica (CITT). O procedimento experimental consiste de submeter as amostra de produtos lácteos confinada em uma cavidade cilíndrica a uma perturbação térmica de curta duração em uma das faces (anterior) e medir a evolução da temperatura transiente na outra face (face posterior). Para a perturbação térmica da amostra foi utilizado um dispositivo, denominado de micro-flash, modelo LFA 457, fabricado pela Netzsch. O pulso de curta duração é originário de um sistema de potencia que libera uma energia equivalente a 15 Joules por pulso e registra a evolução da temperatura através de um sensor infravermelho, tipo InSb-IR. Esseequipamento dispõe de um sistema de geração de pulso laser. Os resultados são mostradosem termos da difusividade térmica e da condutividade térmica e são comparados com osvalores disponíveis na literatura para produtos da mesma natureza.
|
4 |
Development of Methods to Identify Thermophysical Properties of Complex Media / Développement de méthodes pour la caractérisation de propriétés thermophysiques de matériaux à structure complexeEl Rassy, Elissa 24 October 2019 (has links)
Les matériaux à structures complexes (anisotropes, multicouches et hétérogènes comme poreux) sont de plus en plus utilisés dans de nombreuses applications (ex. automobile,aéronautique, industrie chimique, génie civil et biomédical), notamment en raison de leur amélioration des propriétés mécaniques et physiques. L’identification des propriétés thermophysiques de ces matériaux devient un enjeu incontournable dans plusieurs applications afin de prédire correctement l’évolution de la température au sein de ces structures et d’assurer le contrôle et la modélisation des transferts de chaleur au cours des processus. Dans ce contexte,l’identification des propriétés thermophysiques de tels matériaux, suscitent depuis de nombreuses années une préoccupation importante et croissante. La principale caractéristique de cette thèse concerne la mise en œuvre d’une méthode d’identification directe et simultanée des diffusivités thermiques de matériaux monocouches ou multicouches à l’aide d’un modèle3D transitoire analytique et d’une expérience unique et non intrusive. La méthode proposée est d’abord validée sur un matériau monocouche opaque et isotrope, puis appliquée et vérifiée sur un matériau orthotrope. La méthode d’identification est basée sur l’expérience bien connue de la méthode flash, qui utilise l’évolution de la température sur la face avant ou arrière de l’échantillon, enregistrée via une caméra infrarouge, pour identifier les paramètres inconnus. Compte tenu de la complexité et de la non-linéarité du problème inverse, un algorithme d’optimisation hybride couplant un algorithme stochastique (Optimisation par essaims particulaires) et un déterministe (de type gradient), a été choisi. L’estimation repose sur la minimisation de l’écart entre les mesures et la réponse d’un modèle semi-analytique inspiré de l’approche des quadripôles thermiques qui prédit l’évolution de la température sur la face avant ou la face arrière. L’excitation thermique, générée par un laser CO2, est représentée par un flux de chaleur localisé imposé qui peut être de type Dirac ou créneau. Les estimations sont comparées aux valeurs trouvées dans la littérature et aux résultats obtenus en utilisant d’autres méthodes bien établies. Enfin, quelques améliorations de la méthode sont étudiées, en termes de temps de calcul et de précision, avec une optimisation des conditions expérimentales241RÉSUMÉ(durée et intensité des créneaux, face de mesure. . . ). La méthode est ensuite généralisée aux matériaux multicouches, puis appliquée expérimentalement à un matériau bicouche. Cette stratégie, qui peut être considérée comme une tâche difficile, est motivée par l’impossibilité,dans certains cas, de séparer les 2 couches, en particulier pour les revêtements déposés sur des substrats, qui sera la dernière application investiguée dans ce travail. Une analyse de sensibilité est souvent effectuée afin de tester la faisabilité de l’estimation et de la comparaison,pour les matériaux à deux couches et multicouches, de plusieurs configurations possibles en termes de faces d’excitation/de mesures. La pré-évaluation des méthodes d’identification et les études paramétriques sont effectuées à l’aide de données synthétiques bruitées et obtenues à l’aide du modèle ou d’un code numérique d’éléments finis (pseudo-expérience) afin de vérifier la faisabilité et la robustesse des approches. L’une des caractéristiques les plus distinctes de cette approche est que l’estimation peut être réalisée, et avec succès, sans aucune connaissance préalable de la forme ou de l’intensité de l’excitation. En effet, outre l’estimation simultanée des diffusivités thermiques, la méthode peut prédire la quantité de chaleur absorbée parle matériau ainsi que la distribution spatiale de l’excitation thermique. / Advanced materials with complex structures (anisotropic, multilayers and heterogeneous like porous) are increasingly used in many applications, (e.g. automotive, aeronautics, chemical industry, civil and biomedical engineering) due to their advantages, in terms of mechanical and physical properties enhancements. Estimating thermophysical properties of such materials becomes a crucial issue in several applications in order to correctly predict temperature evolution inside these structures and to ensure the control and the modelling of heat transfers through the processes. In this context, the identification of such materials thermophysical properties, has taken from many years, a significant and increasing concern. The main feature of this thesis relies on the devolvement of a direct and simultaneous identification method of the thermal diffusivities of monolayer or multilayer materials using an analytical 3D transient model and a unique and non-intrusive experiment. The proposed method is firstly validated on an isotropic opaque monolayermaterial, then applied and verified on an orthotropic one. The identificationmethod is based on the well-known flash-method experiment whose temperature evolution on the front or rear face on the sample, recorded via an IR camera, is used to identify the unknown parameters. Considering the complexity, and the non-linearity of the inverse problem, a hybrid optimization algorithm combining a stochastic algorithm (Particles Swarm Optimization) and a deterministic one (gradient based), has been chosen. This minimization procedure is applied to fit the observation to the output of a pseudo- analytical model inspired from the thermal quadrupoles approach that predicts the temperature evolution on the front or rear face. The thermal excitation, generated by a CO2 laser, is mimicked by an imposed localized heat flux that may be of Dirac or pulse type. The estimations are compared with values from literature and results obtain from well-established methods. Finally, some improvement of the method are investigated, in terms of time consumption and accuracy, with an optimization of the experiment design (pulse time and intensity, measurement face). The method is then generalised to multi-layer materials, then applied experimentally to a two-layer material. This strategy, which can be considered as a challenging task, is motivated by the impossibility, in some cases, to separate the 2 layers, especially for coatings deposited on substrates which is the last application investigated in this work. A sensitivity analysis is often conducted in order to test the feasibility of the estimation and compare, for two-layer and multilayers materials, several possible configurations in terms of excitation/measurements faces. Pre-evaluation of the overall identification methods and parametric studies are performed using synthetic noisy data generated using the model or a numerical finite element code(pseudo-experiment) to verify the approaches feasibility and robustness. One of the most distinctive features of our approach is that the estimation may be successfully achieved without any a priori knowledge about the shape or the intensity of the excitation. Indeed, besides the simultaneous estimation of the thermal diffusivities, the method predicts the total amount of heat absorbed by the material as well as the space shape of the thermal excitation.
|
5 |
Estimação da difusividade térmica de iogurtes comerciais aplicação do metódo flash / Estimation of thermal diffusivity of yogurt commercial - the method flashOliveira, Edilma Pereira 11 August 2009 (has links)
Made available in DSpace on 2015-05-08T14:59:38Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 6363993 bytes, checksum: e8cfe3d37bd9a2f2218e5522ba2ddff7 (MD5)
Previous issue date: 2009-08-11 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The analysis of properties of heat and mass transfer in foods has recently received
increased attention due to its importance in modeling, and in the optimization of
equipments and processes. In this work, an experimental procedure was performed with
commercial-type, natural and skimmed yoghurt purchased from the local market, in order
to estimate the thermal diffusivity. The experimental procedure was developed for liquid
sample. The sample was placed between two metal plates. The thermal diffusivity was
obtained from measurements of frontal temperature. The experimental procedure was
performed in a micro-flash apparatus, model 457 LFA and thermal conductivity was
determined in the calorimeter model 2920 mark TA Modulated. The results for thermal
diffusivity and thermal conductivity present a good agreement with the available values
from the literature. / A análise das propriedades de transferência de calor e massa em alimentos tem
recebido maior atenção recentemente devida sua importância fundamental na modelagem,
na otimização e nos projetos de equipamentos para processos. Neste trabalho,
procedimentos experimentais foram realizados com iogurtes comerciais do tipo natural e
desnatados, obtidos no mercado local com o objetivo de estimar a difusividade térmica. O
procedimento experimental foi desenvolvido para líquidos entre placas metálicas e uma
amostra liquida e mediu a avaliação da temperatura sobre a face frontal, a partir da qual foi
obtida a difusividade térmica. O procedimento experimental foi realizado em um aparelho
micro-flash, modelo LFA 457 da Netzsch e o calor específico foi determinados no
calorímetro modelo 2920 Modulated marca TA. Os resultados obtidos para a difusividade
térmica e condutividade térmica apresentam boa concordância com os valores disponíveis
na literatura.
|
6 |
Caractérisation des propriétés thermiques de liquides semi-transparents à haute température : application aux liquides silicatés / Characterization of the thermal properties of semi-transparent liquids at high temperature : Application to molten silicatesMeulemans, Johann 20 July 2018 (has links)
Le sujet de l'étude concerne la caractérisation des propriétés thermiques de liquides semi-transparents à haute température : les liquides silicatés. La caractérisation de ces matériaux est particulièrement délicate car il faut séparer les contributions des différents modes de transfert thermique (conduction, convection et rayonnement) si l'on veut mesurer des propriétés intrinsèques. Le dispositif expérimental est basé sur une méthode pulsée de type flash. La cellule de mesure, placée au centre d'un four tubulaire, est soumise à une excitation délivrée par un laser continu et l'élévation de température est mesurée à l'aide d'un détecteur infrarouge sur la face opposée à l'excitation. La modélisation du problème direct prend en compte le couplage conducto-radiatif en résolvant l'équation de la chaleur en régime transitoire et l'équation de transfert radiatif (ETR) pour un milieu gris émettant, absorbant et non diffusant à l'aide de la méthode des harmoniques sphériques (approximation P1). La méthode développée permet d'estimer simultanément la diffusivité thermique et un coefficient d'absorption moyen (gris) par méthode inverse. Les résultats expérimentaux obtenus sur des liquides silicatés présentant des propriétés radiatives différentes (i.e., des coefficients d'absorption différents) valident la méthode de caractérisation développée et mise en œuvre dans nos travaux / The study deals with the characterization of the thermal properties of semi-transparent liquids at high temperature: molten silicates. The characterization of such materials is particularly challenging because the contributions of the different heat transfer modes (conduction, convection and radiation) should be accounted for to allow the measurement of intrinsic properties. The experimental setup is based on a transient pulse method derived from the flash method. A heat flux stimulation is generated on the front face of an experimental cell, placed at the center of a tube furnace, with a continuous laser beam and the temperature rise is measured by an infrared detector on the opposite side. The modeling of the direct problem takes into account the conducto-radiative coupling by solving both the heat equation and the radiative transfer equation (RTE) for a gray emitting, absorbing but non-scattering medium with the spherical harmonics method (P1 approximation). The developed method allows to simultaneously estimate the thermal diffusivity and a mean (gray) absorption coefficient by an inverse method. The experimental results obtained on molten silicates with different radiative properties (i.e., different absorption coefficients) validate the characterization method developed and implemented in our work
|
7 |
Análise da transferência de calor acoplada por condução e radiação em meios semitransparentes com aplicação ao método flashRodrigues, Pedro Sinval Ferreira 01 March 2013 (has links)
Made available in DSpace on 2015-05-08T14:59:47Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 3702525 bytes, checksum: d629112a30790123601bde3a6b3ab9b0 (MD5)
Previous issue date: 2013-03-01 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The emergence of new materials has generated a significant growth for determination with accuracy of your thermophysical properties. The knowledge of these properties for several kinds of materials is essential for any research or engineering project that the heat transfer is relevant, because it´s from these that the rates of heat transfer in a process can be calculated. Method flash is one that stands out most among methods for thermal characterization of materials, in that the front surface of a sample is subjected to an energy pulse of high intensity and short duration, at the same time the temperature of the back surface is measured to determine the thermal diffusivity of the material. This thesis presents a methodology to thermal characterization of semitransparent material using method flash. For this, is made an analysis of the problem of heat transfer with coupling conduction-radiation, where the simultaneous solution of energy equation and the radiative transfer equation (RTE) makes necessary. The finite volume method was used to numerically solve the energy equation and the discrete ordinates method to solve the ETR. A computer code was developed in MATLAB to solve the equations, which is tested and validated with existing cases in the literature. / O crescente aparecimento de novos materiais tem gerado um aumento bastante expressivo na demanda pela determinação com maior exatidão e menor incerteza de medição das suas propriedades termofísicas. O conhecimento destas propriedades para os diversos tipos de materiais é essencial em qualquer pesquisa ou projeto de engenharia onde a transferência de calor tenha relevância, pois é a partir destas que podem ser feitos os cálculos das taxas de transferência de calor presentes num determinado processo. Dentre os métodos utilizados para caracterização térmica dos materiais, o método flash é um dos que mais se destaca. Nele a superfície frontal de uma amostra é submetida a um pulso de energia de alta intensidade e curta duração, sendo o aumento da temperatura na superfície traseira medido e utilizado para determinar a difusividade térmica do material. Neste contexto, o presente trabalho tem como objetivo apresentar uma metodologia para caracterização térmica de materiais semitransparentes através do método flash. Para isso, é feita uma análise do problema da transferência de calor com acoplamento conduçãoradiação, onde uma solução simultânea da equação da energia e da equação da transferência radiativa (ETR) se faz necessária. O método dos volumes finitos foi utilizado para resolver numericamente a equação da energia e o método das ordenadas discretas para resolver a ETR. Um código computacional em MATLAB foi elaborado para resolução das equações obtidas, sendo este testado e validado com casos existentes na literatura.
|
8 |
Caractérisation thermique de matériaux anisotropes à hautes températures / Thermal characterization of anisotropic materials at high temperaturesSouhar, Youssef 20 May 2011 (has links)
Le sujet de l'étude concerne la caractérisation thermique à hautes températures de matériaux anisotropes dont la diffusivité thermique varie selon la direction considérée. Cette mesure de la diffusivité est permise par l'observation des variations transitoires de température d'un matériau soumis à un flux de chaleur de type impulsionnel. L’excitation provient d’un Laser et la mesure de température est réalisée par thermographie infrarouge sur la face opposée à l'excitation thermique. Le champ de température ainsi obtenu permet de déterminer les trois diffusivités du matériau selon ses directions d'anisotropie. En effet, grâce à des transformations intégrales du champ de température, il est possible d'obtenir un modèle théorique décrivant les variations de température au sein du matériau. Les estimations des diffusivités s'obtiennent alors par la minimisation de la somme des écarts quadratiques entre les modèles théoriques et leurs équivalents expérimentaux. Il s'agit de problèmes d'optimisation non linéaire et les estimations sont réalisées dans le domaine des fréquences spatiales et dans le temps grâce à une inversion numérique de Laplace. Basée sur des dispositifs optiques, cette méthode est non intrusive et grâce aux modèles analytiques les mesures sont rapides et précises même à haute température. La méthode ainsi que le nouveau banc expérimental mis en place rendent possible la mesure des trois diffusivités en une unique expérience pour des excitations de forme quelconque en espace et non nécessairement Dirac en temps / The study concerns the thermal characterization at high temperatures of anisotropic materials whose thermal diffusivity varies according to the direction considered. This measurement of diffusivity is allowed by the observation of the transient variations of temperature of a material subjected to a heat pulse source. The excitation is performed by a Laser and the temperature measurement is carried out by infrared thermography on the opposite face of the thermal excitation. The temperature field thus obtained makes it possible to determine the three diffusivities of the material according to its directions of anisotropy. Indeed, thanks to integral transforms of the temperature field, it is possible to obtain a theoretical model describing the temperature variations within the material. The estimates of diffusivities are then obtained by the minimization of the sum of squared residuals between the theoretical models and their experimental equivalents. These are problems of nonlinear optimization and the estimations are carried out in the spatial frequency domain and in time thanks to a numerical inversion of Laplace. Based on optical devices this method is non-intrusive and thanks to the use of analytical models the estimations are fast and accurate even at high temperatures. The method and the new experimental facility make it possible to estimate the three thermal diffusivities in a single experiment and this for excitations of any shape in space and not necessarily Dirac’s delta function in time
|
9 |
Modélisation du transfert thermique au sein de matériaux poreux multiconstituants / Modeling of heat transfer within porous multiconstituent materialsNiezgoda, Mathieu 11 December 2012 (has links)
Le CEA travaille sur des matériaux poreux – alvéolaires, composites, céramiques, etc. – et cherche à optimiser leurs propriétés pour des utilisations spécifiques. Ces matériaux, souvent composés de plusieurs constituants, ont en général une structure complexe avec une taille de pores de quelques dizaines de microns. Ils sont mis en oeuvre dans des systèmes de grande échelle, supérieure à leurs propres échelles caractéristiques, dans lesquels on les considère comme équivalents à des milieux homogènes, sans prendre en compte sa microstructure locale, pour simuler leur comportement dans leur environnement d’utilisation.Nous nous intéressons donc à la caractérisation des propriétés thermiques effectives de matériaux à microstructure hétérogène en cherchant à déterminer par méthode inverse en fonction de la température la diffusivité thermique qu’ils auraient s’ils étaient homogènes.L’identification de la diffusivité de matériaux poreux et/ou semi-transparents est rendue difficile par le couplage conducto-radiatif fort qui peut se développer rapidement dans ces milieux avec une augmentation de la température. Nous avons donc modélisé le transfert de chaleur couplé conducto-radiatif en fonction de la température au sein de matériaux poreux multiconstituants à partir de leur microstructure numérisée en voxels. Notre démarche consiste à nous appuyer sur la microstructure 3D obtenue par tomographie. Ces microstructures servent de support numérique à cette modélisation qui permet d’une part de simuler tout type d’expériences thermiques numériques – en particulier la méthode flash dont les résultats nous permettent de déduire la diffusivité thermique –, et d’autre part de reproduire le comportement thermique de ces échantillons dans leur condition d’utilisation. / The CEA works a great deal with porous materials – carbon composites, ceramics – and aims to optimize their properties for specific uses. These materials can be composed of several constituents and generally has a complex structure with pore size of several tens of micrometers. It is used in large-scale systems that are bigger than its own characteristic scale in which they are considered as equivalent to a homogeneous medium for the simulation of its behavior in its using environment without taking into account its local morphology. We are especially interested in the effective thermal diffusivity of heterogeneous materials that we estimate as a function of temperature with the help of an inverse method by considering they are homogeneous.The identification of the diffusivity of porous and/or semitransparent materials is made difficult because of the strong conducto-radiative coupling can quickly occur when the temperature increases. We have thus modeled the coupled conductive and radiative heat transfer as a function of the temperature within porous multiconstituent materials from their morphology discretized into a set of homogeneous voxels. We have developed a methodology that consists in starting from a 3D-microstructure of the studied materials obtained by tomography. The microstructures constitute the numerical support to this modeling that renders it possible, on the one hand, to simulate any kind of numerical thermal experiments, especially the flash method whose the results render it possible to estimate the thermal diffusivity, and on the other hand, to reproduce the thermal behavior of our materials in their using conditions.
|
10 |
Etude de champs de température séparables avec une double décomposition en valeurs singulières : quelques applications à la caractérisation des propriétés thermophysiques des matérieux et au contrôle non destructif / Study of separable temperatur fields with a double singular value decomposition : some applications in characterization of thermophysical properties of materials and non destructive testingAyvazyan, Vigen 14 December 2012 (has links)
La thermographie infrarouge est une méthode largement employée pour la caractérisation des propriétés thermophysiques des matériaux. L’avènement des diodes laser pratiques, peu onéreuses et aux multiples caractéristiques, étendent les possibilités métrologiques des caméras infrarouges et mettent à disposition un ensemble de nouveaux outils puissants pour la caractérisation thermique et le contrôle non desturctif. Cependant, un lot de nouvelles difficultés doit être surmonté, comme le traitement d’une grande quantité de données bruitées et la faible sensibilité de ces données aux paramètres recherchés. Cela oblige de revisiter les méthodes de traitement du signal existantes, d’adopter de nouveaux outils mathématiques sophistiqués pour la compression de données et le traitement d’informations pertinentes. Les nouvelles stratégies consistent à utiliser des transformations orthogonales du signal comme outils de compression préalable de données, de réduction et maîtrise du bruit de mesure. L’analyse de sensibilité, basée sur l’étude locale des corrélations entre les dérivées partielles du signal expérimental, complète ces nouvelles approches. L'analogie avec la théorie dans l'espace de Fourier a permis d'apporter de nouveaux éléments de réponse pour mieux cerner la «physique» des approches modales.La réponse au point source impulsionnel a été revisitée de manière numérique et expérimentale. En utilisant la séparabilité des champs de température nous avons proposé une nouvelle méthode d'inversion basée sur une double décomposition en valeurs singulières du signal expérimental. Cette méthode par rapport aux précédentes, permet de tenir compte de la diffusion bi ou tridimensionnelle et offre ainsi une meilleure exploitation du contenu spatial des images infrarouges. Des exemples numériques et expérimentaux nous ont permis de valider dans une première approche cette nouvelle méthode d'estimation pour la caractérisation de diffusivités thermiques longitudinales. Des applications dans le domaine du contrôle non destructif des matériaux sont également proposées. Une ancienne problématique qui consiste à retrouver les champs de température initiaux à partir de données bruitées a été abordée sous un nouveau jour. La nécessité de connaitre les diffusivités thermiques du matériau orthotrope et la prise en compte des transferts souvent tridimensionnels sont complexes à gérer. L'application de la double décomposition en valeurs singulières a permis d'obtenir des résultats intéressants compte tenu de la simplicité de la méthode. En effet, les méthodes modales sont basées sur des approches statistiques de traitement d'une grande quantité de données, censément plus robustes quant au bruit de mesure, comme cela a pu être observé. / Infrared thermography is a widely used method for characterization of thermophysical properties of materials. The advent of the laser diodes, which are handy, inexpensive, with a broad spectrum of characteristics, extend metrological possibilities of infrared cameras and provide a combination of new powerful tools for thermal characterization and non destructive evaluation. However, this new dynamic has also brought numerous difficulties that must be overcome, such as high volume noisy data processing and low sensitivity to estimated parameters of such data. This requires revisiting the existing methods of signal processing, adopting new sophisticated mathematical tools for data compression and processing of relevant information.New strategies consist in using orthogonal transforms of the signal as a prior data compression tools, which allow noise reduction and control over it. Correlation analysis, based on the local cerrelation study between partial derivatives of the experimental signal, completes these new strategies. A theoretical analogy in Fourier space has been performed in order to better understand the «physical» meaning of modal approaches.The response to the instantaneous point source of heat, has been revisited both numerically and experimentally. By using separable temperature fields, a new inversion technique based on a double singular value decomposition of experimental signal has been introduced. In comparison with previous methods, it takes into account two or three-dimensional heat diffusion and therefore offers a better exploitation of the spatial content of infrared images. Numerical and experimental examples have allowed us to validate in the first approach our new estimation method of longitudinal thermal diffusivities. Non destructive testing applications based on the new technique have also been introduced.An old issue, which consists in determining the initial temperature field from noisy data, has been approached in a new light. The necessity to know the thermal diffusivities of an orthotropic medium and the need to take into account often three-dimensional heat transfer, are complicated issues. The implementation of the double singular value decomposition allowed us to achieve interesting results according to its ease of use. Indeed, modal approaches are statistical methods based on high volume data processing, supposedly robust as to the measurement noise.
|
Page generated in 0.0567 seconds