• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 2
  • 2
  • Tagged with
  • 21
  • 21
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Integrated Hydro-geomorphological Approach to Flash Flood Risk Assessment and Mitigation Strategies in Wadi Systems / ワジ流域におけるフラッシュフラッドのリスク評価と被害軽減対策のための水文地形学的総合アプローチに関する研究

Mohammed, Abdel-Fattah Sayed Soliman 25 September 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第20681号 / 工博第4378号 / 新制||工||1680(附属図書館) / 京都大学大学院工学研究科都市社会工学専攻 / (主査)教授 角 哲也, 准教授 竹門 康弘, 准教授 Sameh Kantoush / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
12

SUSTAINABLE FUTURES, WATER INFRASTRUCTURE LEGACIES AND RACIAL CAPITALISM: A CASE STUDY OF THE MID-MISSISSIPPI RIVER REGION

Heck, Sarah 08 1900 (has links)
Over the past several decades, flooding events in the United States have become the most frequent and costliest natural disaster. In the US, city and regional leaders are planning new water and flood mitigation infrastructure in response to the challenges of flooding, uneven urbanization, and racialized exclusion. Historically, projects to keep water out have never been universal or evenly applied. Yet, ‘learning to live’ with water, a key tagline in current sustainable development paradigms, masks how histories of racialized land development are entangled with contemporary water infrastructure projects and are productive of regional planning power. This dissertation centers racial capitalism in analysis of how contemporary water infrastructure projects are entangled with, and informed by, histories of racialized land development in the mid-Mississippi River Region. Through two case studies on flood mitigation infrastructure in eastern Missouri, I trace the historic development of infrastructures that shape the ongoing racialization of space, infrastructure (re)development and community vulnerability to flooding today. The case studies draw from a range of data, including archival research on histories of land and infrastructure development, participant observation of planning meetings, professional conferences, and local neighborhood initiatives, and field observations of the built environment. I argue that 1) scholarship concerned with social-environmental inequities should engage racial capitalism as a framework to “provincialize” urban theory and environmental racism as a means to theorize uneven infrastructural provisioning as a mode of urbanization that (re)produces social difference and value creation under racial capitalism, 2) the historical development of flood control in the Mississippi region was fundamental to the development of racial capitalism because it consolidated regional planning power through methods of social and environmental domination, and 3) contemporary infrastructural redevelopment and flood mitigation projects must contend with the path dependencies of structural racism to disrupt existing cycles of marginalization across social differences to deliver meaningfully on equity goals. Ultimately, this study finds that flood-mitigation infrastructures, including levees, floodways, and dams, on the Missouri River and gray and green stormwater infrastructure (GSI) in the City of St. Louis are embedded in broader social-environmental networks and regional power blocs, whose regional history and dynamics have created distinct patterns of uneven urbanization and vulnerability to flooding disasters. Because infrastructure projects are embedded in the built environment for decades, the social relations comprising their implementation, or lack thereof, reach into present and future development considerations. Thus, when planning projects fail to grapple with path dependencies of past infrastructure projects, they may reproduce structural racism and re-create patterns of uneven urbanization and vulnerability to flooding disasters. / Geography
13

Flood Mitigation in Jeddah, Saudi Arabia

Almalki, Abrar A. 14 September 2017 (has links)
No description available.
14

Hydro-Urbanism : Reimagining Urban Landscapes to Accommodate and Utilize Stormwater

Putta, Praneetha 09 April 2024 (has links)
Urban flooding presents a significant challenge to cities worldwide, resulting in loss of life and economic damage. Factors such as urbanization, climate change, and extreme weather events compound the vulnerability of urban areas to flooding, with rapid urbanization emerging as a primary driver of increased flood risk. In response to this pressing issue, this thesis embarks on a transformative exploration, advocating for a paradigm shift in urban stormwater management through the lens of "Hydro-Urbanism." Central to this concept is recognizing stormwater as a valuable resource rather than a mere liability. By implementing targeted strategies to curb runoff, detain stormwater, and replenish groundwater, cities can mitigate the adverse impacts of urban flooding while enhancing resilience and livability. Through a comprehensive review of existing literature and analysis of case studies, this research explores the efficacy of diverse stormwater management techniques in alleviating urban flooding and fostering sustainable urban development. In addition to technical aspects, the study delves into the socioeconomic dimensions of Hydro-Urbanism, highlighting the significance of community engagement and participatory planning in creating resilient and inclusive urban environments. Focused on Hyderabad city in Telangana, India, this project lies at the intersection of cultural heritage and modernity, confronting significant challenges posed by urban flooding amidst rapid urban expansion. By reframing the narrative around water from vulnerability to resilience and opportunity, the project aims to harness the power of stormwater as a catalyst for change. A tailored typology-based approach seeks to nurture a future where cities and water coexist harmoniously, protecting urban areas from flooding and fostering a more harmonious relationship between urban communities and the natural world. / Master of Science / Urban flooding, characterized by the inundation of urban streets, buildings, and infrastructure, arises when rainwater overwhelms drainage systems or water bodies overflow due to heavy rainfall or storms. It is a significant challenge faced by cities globally, leading to property damage, transportation disruptions, and risks to public safety. In response to the pressing issue of urban flooding, this project adopts a novel approach called "Hydro-Urbanism," emphasizing the interconnection between water and urban landscapes and aiming to transform how cities manage stormwater resources. Unlike traditional methods that view stormwater as a problem to be mitigated, Hydro-Urbanism recognizes stormwater as a valuable resource that can be harnessed for various purposes. It seeks to establish a symbiotic relationship between urban environments and water, wherein stormwater is managed strategically to mitigate flooding risks and enhance urban resilience while improving the quality of urban life. Amid rapid urbanization, exemplified vividly in cities like Hyderabad in the Telangana state of India, the balance between expanding urban sprawl and natural ecosystems has become increasingly fragile. Here, the challenge of managing stormwater looms large, threatening public safety, infrastructure integrity, and economic stability. Nevertheless, what if we could flip this narrative? What if stormwater could be a resource instead of being a menace? Focused on Hyderabad, a city at the crossroads of tradition and modernity, this project proposes a typology-based approach tailored to its unique urban fabric. By harnessing the potential of stormwater, the project aims to pave the way for a more resilient and adaptive urban future. Ultimately, the goal is to foster a harmonious coexistence between urban communities and stormwater resources, ensuring cities' long-term viability and well-being in the face of environmental uncertainties.
15

Avaliação de cenários de inundações urbanas a partir de medidas não-estruturais de controle: trecho da bacia do córrego do Gregório, São Carlos - SP / Urban flooding scenarios assessment from non-structural measures of flood control: part of the Gregório river basin in São Carlos - SP

Boldrin, Rodrigo Süzes 23 May 2005 (has links)
Os processos de cheias em bacias urbanas vêm sendo agravados devido a uma série de motivos associados à ocupação desordenada do solo urbano. As medidas de controle de enchentes podem ter sua eficiência analisada através da modelagem hidrológica matemática. É neste sentido que o presente trabalho analisa a influência da urbanização sobre os distúrbios no escoamento superficial, por meio de simulações de cenários urbanísticos propostos, com a finalidade de servir como ferramenta de planejamento urbano. Para isso, definiu-se como área de estudo, parte da bacia do Córrego do Gregório, São Carlos - SP. As principais informações da bacia a serem consideradas são: topografia, hidrografia, uso do solo urbano, expansão da área urbana, áreas de proteção ambiental e divisores de microbacias. O modelo hidrológico utilizado é o IPHS-1, do tipo concentrado. Para essa análise são propostos e simulados cenários urbanísticos, baseados na adoção de medidas de controle de inundações não-estruturais, referindo-se principalmente, à conservação de áreas verdes e disciplinamento do uso e ocupação do solo, verificando sua eficiência na redução do volume escoado e atenuação das vazões de pico. / The flooding processes in urban basins have become worse due to many reasons. All of them associated with the disorganized occupancy of the urban area land. The efficiency of flood mitigation measures can be analyzed by mathematical modeling. This study aims to be used as a tool for urban planning and it analyses the influence of the urbanization processes on surface runoff, using simulation of several urbanization scenarios. The case study was undertaken at the Gregório River Basin in São Carlos - SP. The main information considered was topography, hydrology, urban land use, urbanization, protected land and sub-basins. The software used was IPHS-1 which is a lumped hydrologic model. In this research many urbanization scenarios are proposed and simulated. These views are based in many nonstructural flood mitigation alternatives such as land cover conservation, use and occupancy of the land, in order to check their efficiency in reducing the total volume of surface runoff and the peak flow.
16

Avaliação de cenários de inundações urbanas a partir de medidas não-estruturais de controle: trecho da bacia do córrego do Gregório, São Carlos - SP / Urban flooding scenarios assessment from non-structural measures of flood control: part of the Gregório river basin in São Carlos - SP

Rodrigo Süzes Boldrin 23 May 2005 (has links)
Os processos de cheias em bacias urbanas vêm sendo agravados devido a uma série de motivos associados à ocupação desordenada do solo urbano. As medidas de controle de enchentes podem ter sua eficiência analisada através da modelagem hidrológica matemática. É neste sentido que o presente trabalho analisa a influência da urbanização sobre os distúrbios no escoamento superficial, por meio de simulações de cenários urbanísticos propostos, com a finalidade de servir como ferramenta de planejamento urbano. Para isso, definiu-se como área de estudo, parte da bacia do Córrego do Gregório, São Carlos - SP. As principais informações da bacia a serem consideradas são: topografia, hidrografia, uso do solo urbano, expansão da área urbana, áreas de proteção ambiental e divisores de microbacias. O modelo hidrológico utilizado é o IPHS-1, do tipo concentrado. Para essa análise são propostos e simulados cenários urbanísticos, baseados na adoção de medidas de controle de inundações não-estruturais, referindo-se principalmente, à conservação de áreas verdes e disciplinamento do uso e ocupação do solo, verificando sua eficiência na redução do volume escoado e atenuação das vazões de pico. / The flooding processes in urban basins have become worse due to many reasons. All of them associated with the disorganized occupancy of the urban area land. The efficiency of flood mitigation measures can be analyzed by mathematical modeling. This study aims to be used as a tool for urban planning and it analyses the influence of the urbanization processes on surface runoff, using simulation of several urbanization scenarios. The case study was undertaken at the Gregório River Basin in São Carlos - SP. The main information considered was topography, hydrology, urban land use, urbanization, protected land and sub-basins. The software used was IPHS-1 which is a lumped hydrologic model. In this research many urbanization scenarios are proposed and simulated. These views are based in many nonstructural flood mitigation alternatives such as land cover conservation, use and occupancy of the land, in order to check their efficiency in reducing the total volume of surface runoff and the peak flow.
17

Simulating hydraulic interdependence between bridges along a river corridor under transient flood conditions

Trueheart, Matthew Everett 01 January 2019 (has links)
The interactions between rivers, surrounding hydrogeological features, and hydraulic structures such as bridges are not well-established or understood at the network scale, especially under transient conditions. The cascading hydraulic effects of local perturbations up- and downstream of the site of perturbation may have significant, unexpected, and far-reaching consequences, and therefore often cause concern among stakeholders. The up- and downstream hydraulic impacts of a single structural modification may extend much farther than anticipated, especially in extreme events. This work presents a framework and methodology to perform an analysis of interdependent bridge-stream interactions along a river corridor. Such analysis may help prioritize limited resources available for bridge and river rehabilitations, allow better-informed cost/benefit analysis, facilitate holistic design of bridges, and address stakeholder concerns raised in response to planned bridge and infrastructure alterations. The stretch of the Otter Creek from Rutland to Middlebury, VT, is used as a test bed for this analysis. A two-dimensional hydraulic model is used to examine the effects individual structures have on the bridge-stream network, particularly during extreme flood events. Results show that, depending on their characteristics, bridges and roadways may either attenuate or amplify peak flood flows up- and downstream, or have little to no impact at all. Likewise, bridges may or may not be sensitive to any changes in discharge that result from perturbation of existing structures elsewhere within the network. Alterations to structures that induce substantial backwaters may result in the most dramatic impacts to the network, which can be either positive or negative. Structures that do not experience relief (e.g., roadway overtopping) may be most sensitive to network perturbations.
18

Amphibious Architectures: The Buoyant Foundation Project in Post-Katrina New Orleans

Fenuta, Elizabeth Victoria 08 December 2010 (has links)
This is a research-based thesis building upon the study conducted over the past two years with Dr. Elizabeth English on the Buoyant Foundation Project (BFP). The BFP is currently developing an amphibious foundation system to retrofit vernacular wooden ‘shotgun’ houses in the Lower Ninth Ward in New Orleans. This neighbourhood was chosen because of its unique cultural heritage and the severe, but recoverable, damage incurred in the aftermath of Hurricane Katrina. The BFP system will allow homes to float when flooding occurs, rising and descending vertically to avoid flood damage. It provides an alternative solution to permanent static elevation, the mitigation strategy currently recommended by the United States federal government. The thesis will demonstrate how the Buoyant Foundation Project is a culturally supportive, technically feasible, economical, sustainable and resilient form of flood mitigation for post-Katrina New Orleans.
19

Amphibious Architectures: The Buoyant Foundation Project in Post-Katrina New Orleans

Fenuta, Elizabeth Victoria 08 December 2010 (has links)
This is a research-based thesis building upon the study conducted over the past two years with Dr. Elizabeth English on the Buoyant Foundation Project (BFP). The BFP is currently developing an amphibious foundation system to retrofit vernacular wooden ‘shotgun’ houses in the Lower Ninth Ward in New Orleans. This neighbourhood was chosen because of its unique cultural heritage and the severe, but recoverable, damage incurred in the aftermath of Hurricane Katrina. The BFP system will allow homes to float when flooding occurs, rising and descending vertically to avoid flood damage. It provides an alternative solution to permanent static elevation, the mitigation strategy currently recommended by the United States federal government. The thesis will demonstrate how the Buoyant Foundation Project is a culturally supportive, technically feasible, economical, sustainable and resilient form of flood mitigation for post-Katrina New Orleans.
20

Flood inundation mapping of the Catalpa Creek Watershed

Poudel, Subodh 08 December 2023 (has links) (PDF)
This study addresses flood risk assessment in the Catalpa Creek watershed, located in northeast Mississippi, USA. Employing the Hydrological Modeling System (HEC-HMS) and the River Analysis System (HEC-RAS), integrated models were developed and calibrated, to predict flood behavior within the watershed. The study conducted flood frequency analyses for return periods ranging from 2 to 100 years and generated flood inundation maps, pinpointing flood-prone areas. Mitigation measures for flood risk management were recommended. The results underscore the effectiveness of the integrated modeling approach for simulating and understanding the complex dynamics of flood events. The research identified critical flood-prone zones, emphasizing the importance of proactive flood risk management. The calibrated hydrological model serves as a valuable tool for stormwater management, water resource planning, and watershed assessment. The study provides insights into flood risk in the Catalpa Creek watershed, offering valuable guidance to regional decision-makers. This study lays the foundation for future investigations in floodplain encroachment, sediment transport, stream restoration, and flood inundation hazard mapping.

Page generated in 0.1198 seconds