• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 2
  • Tagged with
  • 24
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Study of the Fruit Inhibitory Mechanism on Citrus flowering. Nutritional, Hormonal and Genetic Factors

Marzal Blay, Andrés 22 February 2025 (has links)
[ES] En los cítricos, la baja temperatura promueve la inducción floral en otoño-invierno aumentando la expresión del gen promotor CiFT3 (homólogo en los cítricos del gen FLOWERING LOCUS T). La presencia de un gran número de frutos en el árbol durante ese momento inhibe la expresión de CiFT3 y la floración, pero se desconoce la señal inhibitoria que genera el fruto. Las hipótesis mayormente aceptadas proponen que la señal puede ser hormonal o nutricional. En el primer caso, el efecto inhibidor se atribuye a las hormonas que el fruto produce y exporta durante su desarrollo. En el segundo caso, el efecto inhibidor se atribuye a la alta demanda y consumo de carbohidratos por los frutos en desarrollo. Ambas hipótesis son complementarias y no excluyentes entre sí. Además, se ha demostrado que el fruto promueve la activación epigenética del represor de la floración CcMADS19 (homólogo en los cítricos del gen FLOWERING LOCUS C), que inhibe la expresión del gen CiFT3. Con el objetivo de determinar qué señal produce el fruto para inhibir la floración, en esta Tesis se propone la siguiente hipótesis: El fruto inhibe la floración a través de la síntesis y exportación de auxinas que activa la síntesis de giberelinas y, a su vez, la expresión de CcMADS19. Mediante experimentos con tratamientos exógenos de auxinas, giberelinas, y sus antagonistas, aclareo de frutos, y la interrupción del transporte por el floema entre el fruto y las yemas, los resultados indican que ni las giberelinas ni las auxinas se relacionan de forma consistente con la activación de la expresión de CcMADS19 en las hojas. En las yemas, las giberelinas se relacionan con la activación del gen inhibidor CENTRORRADIALIS (CEN), cuando hay fruto por aumento de la síntesis de GA4, y cuando no hay fruto por su aplicación exógena. La presencia del fruto aumenta la concentración de auxinas en el tallo y la yema en el momento de la inducción, y reprime su síntesis y trasporte. Pero esto no impide que, en la yema, el gen CcMADS19 esté epigenéticamente silenciado y que el silenciamiento se transmita a los nuevos brotes vegetativos. Estos brotes florecen en el siguiente ciclo, y, en sus yemas, la diferenciación floral se relaciona con un aumento de la síntesis y trasporte de auxinas y una reducción de la síntesis de giberelinas. / [CA] Als cítrics, les baixes temperatures promouen la inducció floral a la tardor i l'hivern augmentant l'expressió del gen promotor CiFT3 (homòleg en els cítrics del gen FLOWERING LOCUS T). La presència d'un gran nombre de fruita a l'arbre en aquest moment inhibeix l'expressió de CiFT3 i la floració, però es desconeix la senyal inhibidora que genera la fruita. Les hipòtesis majoritàriament acceptades proposen que la senyal pot ser hormonal o nutricional. En el primer cas, l'efecte inhibidor s'atribueix a les hormones que la fruita produeix i exporta durant el seu desenvolupament. En el segon cas, l'efecte inhibidor s'atribueix a la alta demanda i consum de carbohidrats per part de la fruita en desenvolupament. Ambdues hipòtesis són complementàries i no es descarten mútuament. A més, s'ha demostrat que la fruita promou l'activació epigenètica del repressor de la floració CcMADS19 (homòleg en els cítrics del gen FLOWERING LOCUS C), que inhibeix l'expressió del gen CiFT3. Amb l'objectiu de determinar quina senyal produeix la fruita per inhibir la floració, en aquesta Tesi es proposa la següent hipòtesi: La fruita inhibeix la floració mitjançant la síntesi i exportació d'auxines que activa la síntesi de giberelines i, al seu torn, l'expressió de CcMADS19. Mitjançant experiments amb tractaments exògens d'auxines, giberelines i els seus antagonistes, aclarida de fruita i la interrupció del transport pel floema entre la fruita i les brots, els resultats indiquen que ni les giberelines ni les auxines es relacionen de manera consistent amb l'activació de l'expressió de CcMADS19 a les fulles. A les gemmes, les giberelines es relacionen amb l'activació del gen inhibidor CENTRORRADIALIS (CEN) quan hi ha fruita per l'augment de la síntesi de GA4 i quan no hi ha fruita per la seua aplicació exògena. La presència de la fruita augmenta la concentració d'auxines a la tija i la gemma en el moment de la inducció i reprimeix la seua síntesi i transport. Però això no impedeix que, a la gemma, el gen CcMADS19 estigui epigenèticament silenciat i que el silenciament es transmeti als nous brots vegetatius. Aquests brots floreixen al següent cicle i, a les seues gemmes, la diferenciació floral es relaciona amb un augment de la síntesi i transport d'auxines i una reducció de la síntesi de giberelines. / [EN] In citrus, low temperature promotes flower induction in autumn-winter by increasing the expression of the CiFT3 promoter gene (citrus homologue of the FLOWERING LOCUS T gene). The presence of large numbers of fruits on the tree at this time inhibits CiFT3 expression and flowering, but the inhibitory signal produced by the fruits is unknown. The most widely accepted hypotheses are that the signal is hormonal or nutritional. In the first case, the inhibitory effect is attributed to hormones produced and exported by the fruit during development. In the second case, the inhibitory effect is attributed to the high demand and consumption of carbohydrates by the developing fruit. The two hypotheses are complementary and not mutually exclusive. In addition, it has been shown that the fruit promotes the epigenetic activation of the flowering repressor CcMADS19 (citrus homolog of the FLOWERING LOCUS C gene), which inhibits the expression of the CiFT3 gene. To determine which signal is produced by the fruit to inhibit flowering, the following hypothesis is proposed in this thesis: The fruit inhibits flowering through the synthesis and export of auxins, which activates the synthesis of gibberellins and, in turn, the expression of CcMADS19. Experiments with exogenous treatments of auxins, gibberellins and their antagonists, fruit thinning, and disruption of phloem transport between fruit and buds indicate that neither gibberellins nor auxins are consistently associated with the activation of CcMADS19 expression in leaves. In buds, gibberellins are associated with the activation of the flowering inhibitor CENTRORADIALIS (CEN), in the presence of fruit by increasing GA4 synthesis, and in the absence of fruit by its exogenous application. The presence of fruit increases the concentration of auxin in the stem and bud at the time of induction and suppresses its synthesis and transport. However, this does not prevent the epigenetic silencing of the CcMADS19 gene in the bud, which is transmitted to the leaves of the new vegetative shoots. These shoots flower in the following cycle, where floral differentiation is associated with an increase in auxin synthesis and transport and a decrease in gibberellin synthesis in the bud. / Marzal Blay, A. (2024). Study of the Fruit Inhibitory Mechanism on Citrus flowering. Nutritional, Hormonal and Genetic Factors [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/203155
22

Impacto de la senescencia foliar sobre la producción de fotoasimilados y el rendimiento de maíz (Zea mays L.) bajo condiciones de estrés abiótico

Antonietta, Mariana A. 05 April 2013 (has links)
El objetivo general de esta tesis fue estudiar si la demora en la senescencia foliar (carácter stay-green, SG) en híbridos de maíz confiere tolerancia del rendimiento al estrés abiótico. Se realizaron ensayos a campo utilizando híbridos contrastantes en la senescencia foliar. Se registró la evolución de la senescencia, la producción neta de fotoasimilados, el rendimiento y sus componentes. Bajo sequía en post-floración, los genotipos SG presentaron mayor producción de fotoasimilados y esto se relacionó con mayor conductancia estomática y con la retención de área foliar verde (AFV). Esta ventaja se tradujo en mayor rendimiento (a través de un mayor peso de grano, PG) en dos ensayos; en el tercer ensayo los genotipos SG presentaron menor partición a espiga por lo que el rendimiento no se diferenció del grupo de híbridos no stay-green (NSG). En condiciones de deficiencias de N, los genotipos SG presentaron mayor producción de fotoasimilados en post-floración mientras las temperaturas mínimas se mantuvieron por encima de 10°C, pero pérdidas netas de materia seca por debajo de este umbral que no se observaron en los genotipos NSG o con mayor nivel de fertilización. El carácter SG no se relacionó con el rendimiento o con el PG a bajo nivel de N (18 kg de N ha-1) pero sí al aumentar la dosis de fertilización (100 y 200 kg de N ha-1). En condiciones de estrés por alta densidad poblacional, se compararon dos genotipos. El genotipo SG presentó menor producción de asimilados, y menor inducción de la senescencia de las hojas basales por sombreo. El genotipo SG demoró la senescencia aún cuando la absorción de N en post-floración fue menor que en el genotipo NSG. El PG se relacionó con la concentración de N en granos, y ambos fueron menores en el genotipo SG, resultando en menor rendimiento. En un tercer ensayo, se incorporaron dos genotipos adicionales. En uno de ellos, el carácter SG se mantuvo sólo en las hojas superiores; éste genotipo SG presentó mayor PG y rendimiento en comparación con los otros tres. Finalmente, se analizó la degradación de proteínas foliares durante el llenado. La degradación de proteínas se relacionó positivamente con el PG en condiciones de deficiencias de N pero inversamente cuando las plantas se fertilizaron con 200 kg N ha-1. Uno de los genotipos SG mostró muy escasa degradación de proteínas mientras que en otro SG la degradación aumentó en respuesta a las deficiencias de N. En conclusión, la contribución del carácter SG a la estabilidad del rendimiento depende de la capacidad que presenten los genotipos SG para ajustar la expresión del carácter en función del ambiente (por ejemplo, induciendo la senescencia en respuesta al sombreo, o por deficiencias de N edáfico).
23

Factores ecofisiológicos relacionados con el crecimiento vegetativo, floración y desarrollo del fruto del aguacate

Gandolfo Wiederhold, Sandra Paola Ramona 27 October 2008 (has links)
En este estudio se analizó la respuesta y comportamiento estacional de diversos factores ecofisiológicos sobre la concentración de carbohidratos, fracciones nitrogenadas, proteínas y de indicadores de estrés (ácido abscísico, prolina, contenido en clorofilas y fluorescencia clorifílica), frente a la presencia del fruto, y la respuesta de la planta en relación a la brotación y floración siguiente. En los ensayos, fueron utilizados árboles de aguacate (Persea americana Mill.) cv. 'Hass' adultos, injertados sobre patrones de raza mexicana en un huerto comercial localizado en Callosa d' En Sarriá, Alicante, España. Los ensayos involucraron dos niveles de radiación, tres intensidades de floración y el seguimiento estacional de todos los tejidos de un brote y su fruto. Los resultados permitieron identificar, mediante la eliminación sucesiva del fruto, el período durante el cual el fruto ejerce su influencia inhibidora de la siguiente floración, siendo ésta el mismo momento desde la floración hasta finalizada la segunda caída fisiológica de frutos. El comportamiento de los azúcares resultó modificado, tanto por los niveles de radiación, como por las intensidades de floración. La semilla fue un fuerte sumidero durante el período entre la primera y la segunda brotación vegetativa, acumulando la mayor parte del almidón en este período. El período de floración y primer crecimiento vegetativo se mostró significativamente dependiente de los azúcares solubles y almidón acumulados durante la segunda brotación. En el período posterior a ésta, el fruto ejerce una significativa fuerza sumidero con la consiguiente acumulación de carbohidratos solubles en sus tejidos. Los carbohidratos que presentaron mayor relevancia en las épocas y eventos fenológicos analizados fueron la gluc-6-P, la manoheptulosa y el perseitol. La madurez del fruto se relacionó con disminuciones significativas de manoheptulosa y perseitol en sus tejidos. Estos dos azúcares mostraron tener movilidad libre en los te / Gandolfo Wiederhold, SPR. (2008). Factores ecofisiológicos relacionados con el crecimiento vegetativo, floración y desarrollo del fruto del aguacate [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/3441 / Palancia
24

Identification of Bioactive Molecules in the Control of Flowering Time

Praena Tamayo, Jesús 02 September 2022 (has links)
[ES] El tiempo de floración es uno de los caracteres más importantes que influyen en la productividad y el rendimiento de los cultivos. La identificación de compuestos sintéticos que sean bioactivos en el control de la inducción floral es de gran interés. Su identificación podría permitirnos ajustar el tiempo de floración en los cultivos, adaptándolos a las condiciones ambientales más favorables. Para identificar estos compuestos, hemos tomado dos enfoques diferentes: un cribado genético químico y la caracterización del metaboloma de transición floral. En primer lugar, realizamos un rastreo de genética química para identificar moléculas pequeñas que tengan el potencial de controlar la expresión del florígeno, FLOWERING LOCUS T (FT) o la actividad o señalización de FT en Arabidopsis. Para ello, hemos utilizado plantas transgénicas que expresan el gen ß-GLUCURONIDASE (GUS) bajo el control del promotor FT para probar una librería de 360 moléculas preseleccionadas. Los resultados positivos obtenidos se volvieron a analizar mediante un cribado secundario basado en la expresión del gen reportero LUCIFERASE (LUC) bajo el control del promotor FT. Utilizando este enfoque, hemos identificado una molécula que induce con éxito la floración en condiciones de cultivo in vitro. En segundo lugar, hemos caracterizado la función del ácido pipecólico (Pip), una molécula previamente identificada como candidata a regular la floración. Hemos confirmado que las mutaciones en las enzimas responsables de la biosíntesis de Pip muestran una alteración en la respuesta del tiempo de floración. Además, hemos identificado un nuevo papel del Pip relacionado con el crecimiento y el tamaño de la roseta de Arabidopsis. Finalmente, utilizamos un sistema inducible basado en el promotor de CONSTANS (CO) que controla la expresión del gen endógeno de CO fusionado con el receptor de glucocorticoides de rata (CO::GR). De manera que con un solo tratamiento con dexametasona podemos inducir la floración. Con este sistema, realizamos un estudio del metaboloma de muestras de ápices y hojas mediante técnicas de metabolómica dirigida, lipidómica, cuantificación hormonal y transcriptómica. La integración de estos conjuntos de datos ómicos nos ha permitido identificar rutas metabólicas que se encuentran alteradas durante la transición floral. A su vez, la caracterización de mutantes de pérdida de función que codifican enzimas clave de esas vías metabólicas, reveló que algunos de estos mutantes mostraban un fenotipo afectado para el tiempo de floración. Entre ellos, nos enfocamos en la caracterización de los genes relacionados con el metabolismo de la rafinosa, un oligosacárido de reserva. Mutantes afectados en el gen RAFFINOSE SYNTHASE 5 (RS5) presentan un fenotipo de floración temprana y fertilidad reducida. En base a los resultados obtenidos, proponemos un modelo en el que, durante la transición floral, se produce una reestructuración de las ratios entre carbohidratos sencillos (monosacáridos y disacáridos) y de reserva, como la rafinosa. Estos cambios podrían ser modulados por el ácido abscísico (ABA) y por genes relacionados con la floración, desencadenando cambios en el metabolismo de la trehalosa y promoviendo una expresión temprana de FT. / [CA] El temps de floració és un dels caràcters amb més influència en la productivitat i el rendiment dels cultius. La identificació de compostos sintètics bioactius per al control de la inducció floral és de gran interés, ja que la seua identificació podria permetre ajustar el temps de floració dels cultius, aspecte que podria contribuir a l'adaptació a condicions ambientals més favorables. Per a identificar aquests compostos, hem portat a terme dues aproximacions diferents: un garbellat genètic químic i la caracterització del metaboloma de la transició floral. En primer lloc, hem realitzat un cribratge genètic-químicper a identificar xicotetes molècules amb potencial per a controlar l'expressió del florígen, FLOWERING LOCUS T (FT) o l'activitat o la senyalització de FT a Arabidopsis. Per a portar a terme aquest cribratge, hem utilitzat plantes transgèniques que expressen el gen ß-GLUCURONIDASE (GUS) sota el control del promotor de FT amb les quals hem assajat una llibreria de 360 molècules preseleccionades de manera prèvia. Els resultats positius obtinguts en aquest cribratge t s'han sotmés a un cribratge secundari basat en l'expressió del gen reporter LUCIFERASE (LUC) sota el control del promotor FT. La utilització d'aquesta primera aproximació ha permés la idenfiticació d'una molècula que indueix amb èxit la floració en condicions de cultiu in vitro. En En segon lloc, hem caracteritzat la funció de l'àcid pipecòlic (Pip), una molècula prèviament identificada com a candidata a regular la floració. Aquesta aproximació ens ha permet confirmar que mutacions als enzims responsables de la biosíntesi de Pip comporten una alteració al temps de floració. A més, en aquest treball hem identificat un nou paper del Pip relacionat amb el creixement i la grandària de la roseta d'Arabidopsis. Finalment, hem utilitzat un sistema induïble basat en el promotor de CONSTANS (CO) que controla l'expressió del gen endogen de CO fusionat al receptor de glucocorticoides de rata (CO::GR). Aquesta construcció ens proporciona una ferramenta amb la qual induir la floració amb un sol tractament amb dexametasona. A continuació, hem realitzat un estudi del metaboloma de mostres d'àpexs i fulles mitjançant tècniques de metabolòmica dirigida, lipidómica, quantificació hormonal i transcriptòmica. La integració d'aquest conjunt de dades ómiques ens ha permés identificar les rutes metabòliques que es troben alterades durant la transició floral. Al mateix temps, la caracterització de mutants de pèrdua de funció que codifiquen enzims clau per a aquestes rutes metabòliques, ha revelat que alguns d'aquests mutants mostren un fenotip afectat pel que fa al temps de floració. Dintre dels mutants analitzats, ens hem centrat en la caracterització dels gens relacionats amb el metabolisme de la rafinosa, un oligosacàrid de reserva. Els mutants del gen RAFFINOSE SYNTHASE 5 (RS5) presenten un fenotip de floració primerenca i fertilitat reduïda. Sobre la base dels resultats obtinguts, proposem un model en el qual, durant la transició floral, es produeix una reestructuració de les ràtios entre carbohidrats senzills (monosacàrids i disacàrids) i de reserva, com la rafinosa. Aquests canvis podrien ser modulats per l'àcid abscísic (ABA) i per gens relacionats amb la floració, i desencadenariencanvis al metabolisme de la trehalosa, així com la generació de l'expressió primerenca de FT. / [EN] Flowering time is one of the most important traits affecting crop productivity and yield. The identification of natural or synthetic bioactive compounds for the control of flowering induction is of great interest. The identification of compounds with the potential to regulate flowering could allow us to fine-tune flowering responses in crops and adapt them to the changing environmental conditions. To identify these compounds, we have taken two different approaches: a chemical genetic screening and the characterization of the metabolome of floral transition. First, we performed a chemical genetic screening to identify small molecules that have the potential to control the expression of the florigen FLOWERING LOCUS T (FT) or FT activity or signaling in Arabidopsis. We used transgenic plants expressing the ß-GLUCURONIDASE gene (GUS) under the control of the FT promoter to test a preselected library of 360 molecules. Positive hits were retested by a secondary screening based on the expression of the LUCIFERASE (LUC) reporter gene under the control of the FT promoter. Using this approach, we have identified one molecule that successfully induces flowering under in vitro culture conditions. Secondly, we have characterized the function of pipecolic acid (Pip), a molecule previously identified as a candidate to regulate flowering time. We have confirmed that mutations in enzymes responsible for Pip biosynthesis display an altered flowering response. A new role for Pip in rosette growth is also revealed in this work. Finally, we used an inducible system based on the promoter of CONSTANS (CO) driving the expression of CO fused to the rat glucocorticoid receptor (CO::GR). Such a construction provides a tool to induce flowering with a single dexamethasone treatment. We then performed a comprehensive metabolomic study of the shoot apex and leaf samples that included targeted metabolomics, lipidomics, hormone quantification, and transcriptomics. Integration of these omic datasets has allowed us to point out metabolic pathways that are altered during floral induction. Characterization of loss-of-function mutants coding key enzymes of those metabolic pathways revealed that some of these mutants showed a flowering time phenotype. Among them, we focused on the characterization of the contribution of the raffinose metabolism, a storage oligosaccharide, to the determination of flowering time. Mutants affecting RAFFINOSE SYNTHASE 5 (RS5) exhibit an early flowering phenotype and reduced fertility. We propose a model in which the balance between simple and storage carbohydrates in the apex changes during floral induction. This change could be modulated by ABA and flowering-related genes, and it triggers changes in trehalose metabolism, promoting flowering by an early FT upregulation. / Praena Tamayo, J. (2022). Identification of Bioactive Molecules in the Control of Flowering Time [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/185177 / TESIS

Page generated in 0.0448 seconds