• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 39
  • 19
  • 13
  • 6
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 189
  • 189
  • 36
  • 33
  • 20
  • 16
  • 16
  • 15
  • 14
  • 14
  • 13
  • 13
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

3D study of non-metallic inclusions by EEmethod and use of statistics for the estimationof largest size inclusions in tool steel.

Safa, Meer January 2010 (has links)
The control of non-metallic inclusions is very important for the improvement of performance during the application of tool steel. This present study was performed to see the effect of changing of some process parameters during the vacuum degassing of the melt and how these changing parameters affects the characteristics of inclusions in tool steel. The main parameters that were changed during the vacuum degassing were the change of induction stirring, argon flow rate from both the plug 1 and 2 and different ladle ages for different heat. Electrolytic extraction method was used to observe the morphology and characteristics of inclusions as a 3 dimensional view in tool steel. Four lollipop samples from four different heats were used for the experiment and all the samples were after vacuum (AV) degassing. In this study four different types of inclusions were found and they are classified as type 1, 2, 3 and 4. Of them type 1 inclusion was the major one with mostly spherical shaped. This study shows that among the three parameters, induction stirring has the biggest effect for the total number of inclusions per volume in the sample than the other two parameters Heat 4A showed the lowest number of inclusions per volume comparing with the other heats. The main reason behind this can be said that the induction stirring was the lowest comparing with the other heats with moderate argon flow and ladle age of 12. Extreme value analysis was used in this study to predict the probability of getting largest size inclusions in a certain volume of the metal. For the prediction of the largest inclusion size, both the electrolytic extraction (3D) and cross-sectional (2D) method was used. Later in this study comparison was done to determine the accuracy of both the methods and it is concluded that for the type 1 inclusions electrolytic extraction method shows almost similar trend with cross-sectional method and electrolytic extraction method shows better accuracy for the prediction of largest size inclusions than the cross-sectional method. Electrolytic Extraction method is also applicable for the prediction of largest size inclusions for multiple types of inclusions.
142

Development and testing of algorithms for optimal thruster command distribution during MTG orbital manoeuvres

Sprengelmeyer, Lars January 2020 (has links)
An accurate satellite attitude and orbit control is a key factor for a successful mission. It guarantees for example sun acquisition on solar panels, fine pointing for optimal telescope usage or satellite lifting to reach higher orbits, when required. Furthermore attitude and orbit control is applied to compensate any occurring disturbances within the space environment. The problem tackled in the present thesis is the optimization of thruster commanding to perform spacecraft orbital manoeuvres. The main objective is to develop different algorithms that are suitable for on-board implementation and to compare their performance. For an optimal thruster command distribution the algorithms shall solve linear programming (or optimization) problems, more exact they shall compute thruster on-times to generate desired torques and/or forces, which are requested by the on-board software. In total three different algorithms are developed of which the first one is based on the pseudoinverse of a matrix, the second one is a variation of the Simplex method and the third one is based on Karmarkar’s algorithm, which belongs to the interior-point methods. The last two methods are well known procedures to solve linear programming problems and in theory they have been analyzed before. However this paper proves their practical application and industrial feasibility for orbital manoeuvres of the weather satellites of ESA’s MTG project and their scalability to any number of thrusters on a generic satellite for 6 degrees of freedom manoeuvres. There are 6 MTG satellites and each has 16 one-sided reaction control thrusters, placed at specific positions and pointed towards defined directions. Physical mechanisms limit the thrusters output to minimum on- and off-times. The focus of this thesis will be on the orbital transfer mode, due to the high disturbances that arise during four motor firing sessions at the apogee, executed to reach higher orbits and finally GEO. The firing sessions are performed by a liquid apogee engine and while this engine is in boost mode, the thrusters shall be used for attitude control only. The technique (nominal case) developed by OHB for this maneuver and currently operational uses 4 thrusters only, which are all pointing in the engine’s direction. They are also used to settle the fuel before the engine is turned on. For control the Pseudoinverse method is applied. If one of the 4 thrusters fails, the backup scenario takes place, which includes using 4 totally different thrusters and no fuel settling, due to their unfavorable position with respect to the engine. The initial idea of this work was to develop a controller for 6 thrusters, using only 2 of the 4 nominal case thrusters, to have a better control performance in the backup case. The Pseudoinverse method was developed by OHB before, thus only small changes needed to be applied to work with 6 thrusters. The two other algorithms, based on the Simplex and Karmarkar method, were completely developed from scratch. To analyze their performance several tests were executed. This includes unit tests on a simple computer hardware with different input, Monte Carlo simulations on a cluster to test if the algorithms are suitable for MTG orbital manoeuvres and the application to 12 thrusters, mounted on a generic satellite to generate torques and forces at the same time for 6 degrees of freedom manoeuvres. For each thruster configuration the worst case outputs are shown in so called minimum control authority plots. The performance analysis consists of the maximum and average deviation between requested and generated torque/force, the average computed thruster on-times, the algorithms computation(running) time and iteration steps. For MTG the test results clearly confirm that the usage of 6 thrusters leads to more accurate generated torques and better control authority, than using only 4 thrusters. The Simplex method stands out here in particular, showing excellence performance regarding torque precision. Nevertheless the accuracy goes at the expense of computation effort. While the Pseudoinverse method is very fast and needs only one iteration step, the Simplex is half a magnitude, the Karmarkar one magnitude slower. But the latter lead to lower thruster on-times in terms of firing duration and thus fuel consumption is reduced. Also it is shown that Simplex and Karmarkar can control 12 thrusters at the same time to generate torques and forces, which proves their scalability to any thruster distribution. In the end it comes to the question whether generating a more accurate torque/force or the computational effort, which is strongly hardware dependent, is more important. A decision which depends on the mission’s objective. This paper shows that all three implemented algorithms are able to handle attitude control in the MTG backup scenario and beyond.
143

An Experimental Study of Scuffing Performance of a Helical Gear Pair Subjected to Different Lubrication Methods

Abraham, Rohit Mathew 15 September 2014 (has links)
No description available.
144

The impact of the variable flow rate application system on pesticide dose-transfer processes and development of resistance to insecticides in fall armyworm Spodoptera frugiperda (J. E Smith)

Al-Sarar, Ali Saeed January 2003 (has links)
No description available.
145

Carbon Filters for Drinking Water Treatment – How Flow Rate and Empty Bed Contact Time Influence the Performance / Kolfilter för dricksvattenrening - Hur flödeshastighet och uppehållstid påverkar reningen

Bäckström Nilsson, Wilma January 2021 (has links)
Dricksvatten är en essentiell del av ett hållbart samhälle. Därför är det viktigt att säkerställa säkert dricksvatten genom fungerande vattenreningsverk. En viktig förorening att behandla är NOM, som i sig är ofarligt men som kan producera farliga föroreningar. En teknik som används för behandling av NOM är kolfiltrering. Hur ökad flödeshastighet och ökad kontakttid påverkade kolfiltrens effektivitet undersöktes vid dricksvattenreningsverket Norrvatten. De undersökta parametrarna var partiklar, ultraviolett absorbans vid 254 nm, turbiditet, konduktivitet, fluorescent löst organiskt material, totalt organiskt kol, kemisk syreförbrukning, odlingsbara mikroorganismer och lukt. Tre kolfilter studerades vid olika flödeshastigheter; 190, 220, 250 och 280 L/s under ett dygn var. Samtidigt hade två filter ökad kontakttid på 60 och 76 % under sex veckor, medan ett filter fortsatte med den vanliga flödeshastigheten på 190 L/s. Utgående vatten från filtren analyserades för att se om dessa ändringar hade någon effekt på vattenreningen. Denna preliminära studie fann ingen signifikant effekt på kolfiltreringens rening på grund av ökad flödeshastighet eller uppehållstid. Detta kan vara en indikation på att kolfiltreringen kan hantera en framtida flödesökning och därmed vara en väsentlig del av en framtida expansionen av vattenreningsverket. De tecken som visade på att kolfiltren påverkades av ökningen av flödeshastigheter kunde förklaras av fluktuationer i inkommande vatten och skillnader mellan de olika filtren. I framtiden bör effekten av inkommande vatten studeras i detalj. En mer ingående analys av både inkommande och utgående vatten till kolfiltren bör utföras, där provtagning sker oftare för att bättre förstå fluktuationerna i inkommande föroreningskoncentrationer. Dessutom bör testerna upprepas för att se hur reningen skiljer sig från dag till dag. Hur kolfiltren hanterar ökade flödeshastigheter över längre tidsperioder bör också undersökas vidare. / Drinking water is an essential part of a sustainable society. In the future, the demand for drinking water will increase and contaminants in the water sources are also predicted to increase. Therefore, it is essential to ensure safe drinking water through functioning drinking water treatment plants (DWTPs). One important contaminant to treat is natural organic matter (NOM), which is harmless in itself but can produce harmful products. One technique to use for treating NOM is carbon filters (CFs). The effect of increased flow rate and increased empty bed contact time (EBCT) on the CF efficiency was investigated at a DWTP. The investigated parameters were particles, ultraviolet absorbance at 254 nm, turbidity, conductivity, cultivable microorganisms, fluorescent dissolved organic matter, total organic carbon, chemical oxygen demand, and odour. Three CFs were studied at different flow rates; 190, 220, 250, and 280 L/s for 24 hours each. Additionally, two filters had increased EBCT of 60 and 76 %, while one filter continued with the regular flow rate of 190 L/s for six weeks. Outgoing water from the filters was analysed to see if the change had any effect on the DWTP. This preliminary study did not find any significant effect on the CF treatment caused by increased flow rate or EBCT. This could be an indication that the CFs can handle a future increase in flow rate and thus be an essential part of a future expansion of the DWTP. The indications of CFs being affected by the increase in flow rates for some of the parameters could be explained by fluctuations in incoming water or differences between the separate filters. In the future, a more thorough analysis of both incoming and outgoing water to the CFs should be done, where sampling occurs more frequently to better understand the fluctuations in incoming contaminant concentrations. The measurements should also be repeated to see how the treatment differs from day to day. How the CFs handle increased flow rates over longer time periods should also be investigated further.
146

Design and Development of an Experimental Test Rig for Heat Sinks / Utveckling och konstruktion av en experimentell testrigg för värmesänkor

Abraham, Gabriel Kaduvinal January 2020 (has links)
Heat sinks are used mainly to take away the excessive heat which are produced in a component. This transfer of heat enables a smooth operation of the system with the heat generating component. The efficiency of heat sink is often dependent on the amount of heat it can take away within the smallest duration of time. Several designs and manufacturing techniques have been developed to improve this performance of heat sinks. This project aims at building a test rig which can be used to test the efficiency of heat sinks. The test rig should be designed to be modular, i.e. it should be able to test heat sinks of different sizes and also adhering to the design requirements. The project started with a broad information search on heat sinks and different testing methods. A system architecture was formulated for this test rig as a beginning stage and to find the different architectural components. The main principal components were selected fulfilling the design requirements. A chiller with pump, a flow meter with controller, temperature and pressure sensors and piping’s including a flexible pipe were the main components of the system created. When the specific components were chosen, the design was embodied and the components were arranged in a compact manner as a SolidEdge CAD-model. After several design iterations, a final design was selected. The experimental test rig was then built in the flow lab. The built experimental test setup is able to be adjusted to install heat sinks of different sizes making it modular in design. Future work to improve the performance of the test rig is also suggested. / Värmesänkor, som exempelvis kylflänsar, används främst för att transportera bort värme som orsakas av förluster i en komponent. Denna värmeöverföring möjliggör en smidig drift av systemet där den värmegenererande komponenten ingår. Värmesänkans effektivitet beror på hur mycket värmeeffekt den kan transportera bort. Flera olika konstruktioner och tillverkningstekniker har utvecklats för att förbättra värmesänkors kylprestanda. Målet med detta projekt är att bygga en testrigg som kan användas för att testa kylflänsars effektivitet. Testriggen ska utformas så att den är modulär, dvs. den ska kunna användas för att testa kylflänsar av olika storlekar. Projektet startade med en bred informationssökning om kylflänsar och olika testmetoder. En systemarkitektur skapades som ett början och för att hitta systemets olika principkomponenter. De viktigaste huvudkomponenterna som uppfyllde designkraven valdes sedan. En kylare med pump, en flödesmätare med regulator, temperatur- och tryckgivare och rörledningar, inklusive ett flexibelt rör var de viktigaste komponenterna i det system som skapades. De specifika komponenterna valdes sedan och de representerades och arrangerades på ett kompakt sätt som en system-CAD-modell i SolidEdge. Efter flera iterationer valdes en slutlig konstruktion, och den experimentella testriggen byggdes sedan i flödeslaboratoriet. Den experimentella testriggen kan justeras för att installera kylflänsar av olika storlekar, vilket innebär att den, i viss mån, är modulär. Framtida arbeten för att förbättra testriggens prestanda föreslås också.
147

Intelligent Non-Invasive Thermal Energy Flow Rate Sensor for Laminar and Turbulent Pipe Flows

Alanazi, Mohammed Awwad 23 March 2022 (has links)
This dissertation describes the development of an intelligent non-invasive thermal energy flow rate sensor for laminar and turbulent pipe flows. Energy flow rate is the thermal energy that is carried by a fluid, for example, in a pipe to heat or cool a space in a building. It can be measured by an energy flow rate sensor which consists of a volume flow rate meter and supply and return fluid temperature sensors to bill the users for their energy usage. A non-invasive, low-cost, and easy to install thermal energy flow rate sensor based on thermal interrogation transient heat flux and temperature measurements has been developed to measure fluid velocity and fluid temperature in pipes. This sensor can be used for different pipe diameters, different pipe materials, and different viscous fluids. The transient measurements are made on the outer surface of a pipe by using a heat flux sensor and a thin-film thermocouple which are covered by a thin-film heater. A one-dimensional transient thermal model is applied before and during activation of the external heater along with a parameter estimation code to provide estimates of the fluid heat transfer coefficient and apparent thermal resistance between the thermocouple and the pipe surface. This dissertation contributes to the sensor's development in three ways. First, a new design is developed by using a single layer of Kapton tape with an adhesive (dielectric material) between the thermocouple foils and the pipe wall to isolate the thermocouple electrically from the pipe surface. This new design gives accurate and reliable estimates of the internal mean fluid temperature without environmental interference. Second, this new sensor design is tested for turbulent pipe flows with two different pipe diameters ( = 25.4 mm and = 12.7 mm) and two different viscous fluids (diesel oil and water). Experiments are completed over a large range of fluid velocity from 0.2 m/s to 5.5 m/s and a range of fluid temperature from 20 ℃ to 50 ℃. The estimated parameters, heat transfer coefficient and apparent thermal resistance, are correlated with the fluid velocity and fluid temperature. This sensor gives a good correlation, repeatability, and sensitivity between the estimated parameters and the fluid velocities with an accurate estimation of the fluid temperatures without environmental interference. Third, this sensor is tested for laminar flow in pipes over a range of fluid velocity from 0.049 m/s to 0.45 m/s and a range of fluid temperature from 20 ℃ to 50 ℃. A new empirical correlation between the estimated parameters and the laminar fluid velocity has been developed. The results show that this sensor gives lower sensitivity and accuracy between the estimated parameters and the fluid velocity and fluid temperature for the laminar flow. / Doctor of Philosophy / Heating or cooling is responsible for approximately 50% of the total energy consumption in a building. Budlings' energy consumption can be measured by energy flow rate sensors (measuring both fluid velocity and fluid temperature). Current energy flow rate sensors are invasive (requiring installation inside the system and disturbing the flow) which create unacceptable risks, such as fluid leaks and damage the equipment. Other energy flow rate sensors based on ultrasonic and electromagnetic technologies are non-invasive which can be installed on the outside of the pipe without disturbing the flow, however, they are expensive to buy, difficult to install, and hard to calibrate. Therefore, developing new sensor techniques is necessary, preferably non-invasive, low-cost, and easy to install. In this dissertation, a new non-invasive, low-cost, and easy to install thermal energy flow rate sensor has been designed, developed, and tested. This thermal sensor is based on transient heat flux and temperature measurements which are made on the outside of a copper pipe surface by using a heat flux sensor and a thermocouple. This sensor is used to estimate the energy consumption by measuring a fluid velocity and a fluid temperature in heating and cooling pipe applications for different pipe diameters, different fluids, and different pipe materials. A parameter estimation code is developed to match the analytical and experimental sensor temperature values and to estimate the unknown system parameters. These parameters are correlated with the fluid velocity and fluid temperature. Experiments are completed over a large range of fluid velocity from 0.049 m/s to 5.5 m/s and a range of fluid temperature from 20℃ to 50℃. The encouraging measurement results show that this sensor gives a good correlation, repeatability, accuracy, and sensitivity between the estimated parameters and the fluid velocities with an accurate estimation of the fluid temperatures to allow calculation of the thermal energy consumption.
148

Non-invasive Method to Measure Energy Flow Rate in a Pipe

Alanazi, Mohammed Awwad 08 November 2018 (has links)
Current methods for measuring energy flow rate in a pipe use a variety of invasive sensors, including temperature sensors, turbine flow meters, and vortex shedding devices. These systems are costly to buy and install. A new approach that uses non-invasive sensors that are easy to install and less expensive has been developed. A thermal interrogation method using heat flux and temperature measurements is used. A transient thermal model, lumped capacitance method LCM, before and during activation of an external heater provides estimates of the fluid heat transfer coefficient ℎ and fluid temperature. The major components of the system are a thin-foil thermocouple, a heat flux sensor (PHFS), and a heater. To minimize the thermal contact resistance 𝑅" between the thermocouple thickness and the pipe surface, two thermocouples, welded and parallel, were tested together in the same set-up. Values of heat transfer coefficient ℎ, thermal contact resistance 𝑅", time constant 𝜏, and the water temperature °C, were determined by using a parameter estimation code which depends on the minimum root mean square 𝑅𝑀𝑆 error between the analytical and experimental sensor temperature values. The time for processing data to get the parameter estimation values is from three to four minutes. The experiments were done over a range of flow rates (1.5 gallon/minute to 14.5 gallon/minute). A correlation between the heat transfer coefficient ℎ and the flow rate 𝑄 was done for both the parallel and the welded thermocouples. Overall, the parallel thermocouple is better than the welded thermocouple. The parallel thermocouple gives small average thermal contact resistance 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑅"=0.00001 (𝑚2.°C/𝑊), and consistence values of water temperature and heat transfer coefficient ℎ, with good repeatability and sensitivity. Consequently, a non-invasive energy flow rate meter or (BTU) meter can be used to estimate the flow rate and the fluid temperature in real life. / MS / Today, the measuring energy flow rate, measuring flow rate and the fluid temperature, in a pipe is crucial in many engineering fields. In addition, there has been increased use of energy flow rate meters in the renewable energy system and other applications such as solar thermal and geothermal to estimate the useful thermal energy. Some of the commercial energy flow rate meters are using an invasive sensor, has to be inside the pipe, including turbine flow meter and vortex shedding device. These systems are expensive and difficult to install. A new approach that uses non-invasive sensors, attached on the outside of the pipe, that are easy to install and less expensive has been developed by using the heat flux and temperature measurements. A parameter estimation routine was used to analyze the data which depends on the minimum root mean square 𝑅𝑀𝑆 error between the calculated and experimental temperature values. A correlation between the unknown parameter, heat transfer coefficient (ℎ), and the measured flow rate 𝑄 was done to estimate the flow rate. The results show that the new non-invasive system has good repeatability, 15.45%, high sensitivity, and it is easy to install. Consequently, a non-invasive energy flow rate meter or (BTU) meter can be used to estimate the flow rate and the fluid temperature in real life.
149

A Novel Thermal Method for Pipe Flow Measurements Using a Non-invasive BTU Meter

Alshawaf, Hussain M J A A M A 25 June 2018 (has links)
This work presents the development of a novel and non-invasive method that measures fluid flow rate and temperature in pipes. While current non-invasive flow meters are able to measure pipe flow rate, they cannot simultaneously measure the internal temperature of the fluid flow, which limits their widespread application. Moreover, devices that are able to determine flow temperature are primarily intrusive and require constant maintenance, which can shut down operation, resulting in downtime and economic loss. Consequently, non-invasive flow rate and temperature measurement systems are becoming increasingly attractive for a variety of operations, including for use in leak detection, energy metering, energy optimization, and oil and gas production, to name a few. In this work, a new solution method and parameter estimation scheme are developed and deployed to non-invasively determine fluid flow rate and temperature in a pipe. This new method is utilized in conjunction with a sensor-based apparatus--"namely, the Combined Heat Flux and Temperature Sensor (CHFT+), which employs simultaneous heat flux and temperature measurements for non-invasive thermal interrogation (NITI). In this work, the CHFT+ sensor embodiment is referred to as the British Thermal Unit (BTU) Meter. The fluid's flow rate and temperature are determined by estimating the fluid's convection heat transfer coefficient and the sensor-pipe thermal contact resistance. The new solution method and parameter estimation scheme were validated using both simulated and experimental data. The experimental data was validated for accuracy using a commercially available FR1118P10 Inline Flowmeter by Sotera Systems (Fort Wayne, IN) and a ThermaGate sensor by ThermaSENSE Corp. (Roanoke, VA). This study's experimental results displayed excellent agreement with values estimated from the aforementioned methods. Once tested in conjunction with the non-invasive BTU Meter, the proposed solution and parameter estimation scheme displayed an excellent level of validity and reliability in the results. Given the proposed BTU Meter's non-invasive design and experimental results, the developed solution and parameter estimation scheme shows promise for use in a variety of different residential, commercial, and industrial applications. / MS / This work documents the development of a novel and non-invasive method that measures fluid flow rate and temperature in pipes. While current non-invasive flow meters are able to measure pipe flow rate, they cannot simultaneously measure the internal temperature of the fluid flow, which limits their widespread application. Moreover, devices that are able to determine flow temperature are primarily intrusive and require constant maintenance, which can shut down operation, resulting in downtime and economic loss. Consequently, non-invasive flow rate and temperature measurement systems are becoming increasingly attractive for a variety of operations, including for use in leak detection, energy metering, energy optimization, and oil and gas production, to name a few. This paper presents a new method that utilizes a non-invasive British Thermal Unit (BTU) Meter based on Combined Heat Flux and Temperature Sensor (CHFT+) technology to determine fluid flow rate and temperature in pipes. The non-invasive BTU Meter uses thermal interrogation to determine different flow parameters, which are used to determine the fluid flow rate and temperature inside a pipe. The method was tested and validated for accuracy and reliability through simulations and experiments. Given the proposed BTU Meter’s noninvasive design and excellent experimental results, the developed novel sensing method shows promise for use in a variety of different residential, commercial, and industrial applications.
150

Investigations of Flow Patterns in Ventilated Rooms Using Particle Image Velocimetry : Applications in a Scaled Room with Rapidly Varying Inflow and over a Wall-Mounted Radiator

Sattari, Amir January 2015 (has links)
This thesis introduces and describes a new experimental setup for examining the effects of pulsating inflow to a ventilated enclosure. The study aimed to test the hypothesis that a pulsating inflow has potential to improve ventilation quality by reducing the stagnation zones through enhanced mixing. The experimental setup, which was a small-scale, two-dimensional (2D), water-filled room model, was successfully designed and manufactured to be able to capture two-dimensional velocity vectors of the entire field using Particle Image Velocimetry (PIV). Using in-house software, it was possible to conclude that for an increase in pulsation frequency or alternatively in the flow rate, the stagnation zones were reduced in size, the distribution of vortices became more homogeneous over the considered domain, and the number of vortices in all scales had increased. Considering the occupied region, the stagnation zones were moved away in a favorable direction from a mixing point of view. In addition, statistical analysis unveiled that in the far-field occupied region of the room model, stronger eddies were developed that we could expect to give rise to improved mixing. As a fundamental experimental study performed in a 2D, small-scale room model with water as operating fluid, we can logically conclude that the positive effect of enhanced mixing through increasing the flow rate could equally be accomplished through applying a pulsating inflow. In addition, this thesis introduces and describes an experimental setup for study of air flow over a wall-mounted radiator in a mockup of a real room, which has been successfully designed and manufactured. In this experimental study, the airflow over an electric radiator without forced convection, a common room-heating technique, was measured and visualized using the 2D PIV technique. Surface blackening due to particle deposition calls for monitoring in detail the local climate over a heating radiator. One mechanism causing particle deposition is turbophoresis, which occurs when the flow is turbulent. Because turbulence plays a role in particle deposition, it is important to identify where the laminar flow over radiator becomes turbulent. The results from several visualization techniques and PIV measurements indicated that for a room with typical radiator heating, the flow over the radiator became agitated after a dimensionless length, 5.0–6.25, based on the radiator thickness. Surface properties are among the influencing factors in particle deposition; therefore, the geometrical properties of different finishing techniques were investigated experimentally using a structured light 3D scanner that revealed differences in roughness among different surface finishing techniques. To investigate the resistance to airflow along the surface and the turbulence generated by the surfaces, we recorded the boundary layer flow over the surfaces in a special flow rig, which revealed that the types of surface finishing methods differed very little in their resistance and therefore their influence on the deposition velocity is probably small. / Det övergripande syftet med den första studien i avhandlingen var att undersöka hypotesen att ett pulserande inflöde till ett ventilerade utrymme har en potential till att förbättra ventilationens kvalitet genom att minska stagnationszoner och därigenom öka omblandningen. För genomförande av studien byggdes en experimentuppställning i form av en tvådimensionell (2D) småskalig modell av ett ventilerat rum. Strömningsmediet i modellen var vatten. Det tvådimensionella hastighetsfältet registrerades över hela modellen med hjälp av Particle Image Velocimetry (PIV). Vid ett stationärt tillflöde bildas ett stagnationsområde i centrum av rumsmodellen. Vid ett pulserade inflöde genererades sekundära virvlar. Med en egen utvecklad programvara var det möjligt att kvantifiera statistiken hos virvlarna. Det pulserade inflödet gjorde att inom området där det vid stationärt tillflöde fanns en stagnationszon ökade antalet virvlar i alla storlekar och fördelningen av virvlar blev mera homogen än tidigare. Detta kan förväntas ge upphov till förbättrad omblandning. Baserat på en grundläggande experimentell studie utförd i en småskalig tvådimensionell rumsmodell med vatten som strömningsmedium kan vi logiskt dra slutsatsen att ett pulserande tilluftsflöde har en potential att förbättra omblandningen.  I en fortsatt studie i avhandlingen visuliserades och mättes hastighetsfältet och därefter beräknades statistiska värden av exempelvis medelhastighet, standardavvikelse och skjuvspänning hos hastighetsfluktuationerna i luftströmmen över en väggmonterad radiator med 2D-PIV-teknik.  Bakgrunden till studien är att en bidragande orsak till partikelavsättning på väggytor är turbofores som uppträder vid en turbulent luftström. Studien genomfördes genom uppbyggnad av en fullskalig rumsmodell. Eftersom turbulens spelar en roll vid partikelavsättning genom turbofores är det viktigt att identifiera var det laminära flödet över radiatorn blir turbulent. Resultaten baserat på visualisering och PIV-mätningar indikerade att, för ett rum med denna typ av radiatoruppvärmning, blev flödet över radiatorn turbulent efter en dimensionslös längd lika med 5,0‒6,25 gånger radiatorns tjocklek. Ytors egenskaper är viktiga vid partikelavsättning. Därför har de geometriska egenskaperna hos några olika metoder för ytbehandling undersökts experimentellt med hjälp av en scanner för strukturerat 3D-ljus. Resultaten visar på skillnader i ytråhet hos de olika ytbehandlingsmetoderna. För att undersöka motståndet mot luftströmning längs ytan och den turbulens som genereras av ytorna registrerade vi gränsskiktsflödet över ytorna i en speciell luftströmningsrigg. Detta påvisade att motståndet hos de olika typerna av ytbehandlingsmetoder skilde sig mycket litet åt och därför är troligt vid deras påverkan på depositionshastigheten mycket liten. / <p>QC 20150525</p>

Page generated in 0.5171 seconds