Spelling suggestions: "subject:"fluid flow"" "subject:"tluid flow""
411 |
Experimental Investigations and Theoretical/Empirical Analyses of Forced-Convective Boiling of Confined Impinging Jets and Flows through Annuli and ChannelsV.S. Devahdhanush (13119831) 21 July 2022 (has links)
<p>This study comprises experimental investigations and theoretical/empirical analyses of three forced-convective (pumped) boiling schemes: (i) confined round single jet and jet array impingement boiling, and flow boiling through conventional-sized (ii) concentric circular annuli and (iii) rectangular channels. These schemes could be utilized in the thermal management of various applications including high-heat-flux electronic devices, power devices, electric vehicle charging cables, avionics, future space vehicles, etc.</p>
|
412 |
EXPERIMENTAL STUDY OF LUBRICANT DROPLETS IN A ROTARY COMPRESSOR AND OPTICAL DIAGNOSTICS OF EVAPORATION PROCESSPuyuan Wu (13949580) 13 October 2022 (has links)
<p> </p>
<p>Part I studies the lubricant sprays and droplets in a rotary compressor. Air conditioning (AC) systems are now widely used in residential and commercial environments, while the compressor is the most important element in the AC system, and rotary compressors are often used in split AC appliances, whose number is estimated to reach 3.7 billion in 2050. In a rotary compressor, the lubricant oil atomizes into small droplets due to the differential pressure in and out of the cylinder. Part of the lubricant oil droplets carried by the refrigerant vapor will ultimately exhaust from the compressor through the discharge pipe. The ratio of the discharged oil volume to the total oil volume is characterized as the Oil Discharge Ratio (ODR). High ODR will reduce the reliability of the compressor and deteriorate the heat transfer of the condenser and the evaporator, resulting in decreased efficiency. Thus, controlling the ODR is a key issue for the design of the rotary compressor.</p>
<p>In Part I, rotary compressors were modified to provide optical access into its internal space, i.e., the lower cavity (refers to the space between the cylinder and the motor), above the rotor/stator, and at the discharge tube level. The modified rotary compressors’ operation was supported by a test rig which provided a wide range of operating conditions, e.g., pressure and frequency. Thus, in-situ optical measurements, e.g., shadowgraph and holograph, can be performed to visualize the lubricant sprays and droplets in the rotary compressor. An image processing routine containing the Canny operator and Convolutional Neural-Network was developed to identify droplets from high-resolution shadowgraph images, while Particle Image Velocimetry (PIV) and Optical Flow Velocimetry (OFV) were applied to calculate the spray and droplet’s velocities with time-resolved shadowgraph images. Parallel Four-Step Phase Shifting Holograph (PFSPSH) located the droplets’ positions in a three-dimensional volume under the specific operating condition.</p>
<p>Both primary and secondary atomization were observed in the rotary compressor, while primary atomization is the major source of droplet production. The droplet size distributions versus the frequency, vertical direction, radial direction, and pressure are obtained. It is observed that the droplet characteristic mean diameters increase with the frequency and pressure. They also become larger in the outer region above the rotor/stator and keep constant in the radial direction at the discharge tube level. The penetration velocity of the lubricant spray is calculated in the lower cavity. An outward shift of the jet core combined with an outward velocity component was observed. Additionally, horizontal swirling velocity above the rotor/stator and at the discharge tube level and the vertical recirculation velocity above the rotor/stator are characterized. The volume fraction of droplets was also characterized under the specific operating condition. The results provide detailed experimental data to set up the boundary conditions used in CFD. They also show that the droplets in the upper cavity are mostly from the discharge process of the cylinder in the lower cavity. The results support a droplet pathway model in the rotary compressor, which can guide the optimization of future rotary compressors.</p>
<p>Evaporation is commonly seen in hydrology, agriculture, combustion, refrigeration, welding, etc. And it always accompanies heat and mass transfer at the liquid-gas interface and is affected by the substance’s properties, the environment’s pressure, temperature, convection, and so on. PFSPSH in Part I aims to retrieve the phase information for holograph reconstruction. Part II further explores the application of the PFSPSH technology in Part I to observe the evaporation process of acetone, where the phase disturbance caused by the vapor is used to reconstruct the vapor concentration in space. The method is called Parallel Four-Step Phase Shifting Interferometer (PFSPSI). The first case studies the evaporation process of the acetone contained in a liquid pool with uniform air flow in a low-speed wind tunnel. The mole fractions of the acetone vapor near the liquid-air interface with different air speeds are characterized. The second case studies the evaporation process of acetone droplets levitated by an ultrasound levitator. The mole fraction of the acetone vapor near the liquid-air interface is characterized by assuming an axisymmetric field and using the analytical solution of the inverse Abel transform. The asymmetric pattern of the acetone vapor field is observed, which is considered due to the drastic sound pressure change at the stand wave location produced by the ultrasound levitator. The mass transfer of the evaporation process by the vapor’s mole fraction is calculated and compared with the mass transfer calculated by the droplet size change. It is observed that the mass transfer by the vapor’s mole fraction is generally smaller than the mass transfer calculated by the droplet size change, which can be explained by the convection process induced by the acoustic streaming.</p>
|
413 |
ANALYSIS OF POWDER-GAS FLOW IN NOZZLES OF SPRAY-BASED ADDITIVE MANUFACTURING TECHNOLOGIESTheodore Gabor (19332160) 06 August 2024 (has links)
<p dir="ltr">Powder Sprays such as Direct Energy Deposition and Cold Spray are rapidly growing and promising manufacturing methods in the Additive Manufacturing field, as they allow easy and localized delivery of powder to be fused to a substrate and consecutive layers. The relatively small size of nozzles allows for these methods to be mounted on CNC machines and Robotic Arms for the creation of complex shapes. However, these manufacturing methods are inherently stochastic, and therefore differences in powder size, shape, trajectory, and velocity can drastically affect whether they will deposit on a substrate. This variation results in an inherent reduction of deposition efficiency, leading to waste and the need for powder collection or recycling systems. The design of the nozzles can drastically affect the variation of powder trajectory and velocity on a holistic level, and thus understanding the gas-powder flow of these nozzles in respect to the features of said nozzles is crucial. This paper proposes and examines how changes in the nozzle geometry affect gas-powder flow and powder focusing for Direct Energy Deposition and Cold Spray. In addition, a new Pulsed Cold Spray nozzle design is proposed that will control the amount of gas and powder used by the nozzle via solenoid actuation. By making these changes to the nozzle, it is possible to improve deposition efficiency and reduce powder/gas waste in these processes, while also allowing for improved coating density. Furthermore, the research done in this thesis will also focus on novel applications to powder spray manufacturing methods, focusing on polymer metallization and part identification.</p>
|
414 |
REDUCED ORDER MODELING ENABLED PREDICTIONS OF ADDITIVE MANUFACTURING PROCESSESCharles Reynolds Owen (19320985) 02 August 2024 (has links)
<p dir="ltr">For additive manufacturing to be a viable method to build metal parts for industries such as nuclear, the manufactured parts must be of higher quality and have lower variation in said quality than what can be achieved today. This high variation in quality bars the techniques from being used in high safety tolerance fields, such as nuclear. If this obstacle could be overcome, the benefits of additive manufacturing would be in lower cost for complex parts, as well as the ability to design and test parts in a very short timeframe, as only the CAD model needs to be created to manufacture the part. In this study, work to achieve this lower variation of quality was approached in two ways. The first was in the development of surrogate models, utilizing machine learning, to predict the end quality of additively manufactured parts. This was done by using experimental data for the mechanical properties of built parts as outputs to be predicted, and in-situ signals captured during the manufacturing process as inputs to the model. To capture the in-situ signals, cameras were used for thermal and optical imaging, leveraging the natural layer-by-layer manufacturing method used in AM techniques. The final models were created using support vector machine and gaussian process regression machine learning algorithms, giving high correlations between the insitu signals and mechanical properties of relative density, elongation to fracture, uniform elongation, and the work hardening exponent. The second approach to this study was in the development of a reduced order model for a computer simulation of an AM build. For project, a ROM was built inside the MOOSE framework, and was developed for an AM model designed by the MOOSE team, using proper orthogonal decomposition to project the problem onto a lower dimensional subspace, using POD to design the reduced basis subspace. The ROM was able to achieve a reduction to 1% the original dimensionality of the problem, while only allowing 2-5% relative error associated with the projection.</p>
|
415 |
LIQUID FUEL TRANSPORT PHENOMENA IN ROTATING DETONATION ENGINESMatthew Hoeper (19824417) 10 October 2024 (has links)
<p dir="ltr">Interest in using detonation-based combustion cycles for use propulsion and power generation has gained considerable attention in the last 10 years or so. The rotating detonation engine (RDE), in particular, has garnered the most attention as a possible replacement for current generation combustion systems. RDEs are continuous flow devices that typically operate in a non-premixed fashion. Reactants are injected into an annular combustion chamber that is usually several millimeters wide. One or more detonation waves propagate azimuthally around the annulus, consuming the reactants. The products then expand out of the combustor where it can produce thrust or be passed into a turbine. The detonation wave front in RDEs travel at speeds between 1-3 km/s which poses additional complexity beyond traditional combustors. There are large gaps in the research community for RDEs that use one or more liquid based propellants. Questions regarding liquid breakup, atomization, breakup, recovery all remain unanswered both experimentally and numerically. This work seeks to understand these fundamental physical phenomena that drive these devices by applying advanced, high-speed laser and other optical diagnostics. </p><p dir="ltr"> A 120 mm nominal diameter rotating detonation combustor that operates on non-premixed hydrogen-air was modified to remove a hydrogen orifice and was replaced with a single liquid fuel injector. This simple, yet important, modification enables the study of a one-way coupling between a liquid fuel jet and a detonation wave at relevant spatio-temporal scales. Planar laser-induced fluorescence was performed at rates up to 1 MHz to quantify the quasi-steady jet dynamics and the recovery behavior of the single liquid jet. Long-duration PLIF imaging lasting 30-40 detonation periods at 300 kHz was also performed for statistical significance. A diesel liquid-in-crossflow injector was observed to breakup or be removed from the PLIF plane within only a few microseconds. After the detonation wave passes through the spray there is a significant dwell period can last between 20-40% of the detonation period before the new fuel is issued into the channel. The quasi-steady liquid jet trajectory was also compared to a jet-in-crossflow from literature and there is decent agreement in the jet near-field. </p><p dir="ltr"> The same hardware scheme with a different liquid fuel injector was tested in conjunction with an alternative imagine scheme. The first technique was able to capture details in the radial-axial plane but could not resolve any motion in the azimuthal direction. A volume-based illumination scheme was used for LIF to image a liquid fuel jet in the azimuthal-axial plane. For this experiment the location of the liquid fuel jet was moved into a different position and as a result experiences significantly different behavior than the jet in crossflow. The breakup and evaporation process takes place over a much longer period of time and there is no pause of liquid fuel injection. Similarly, LIF was performed at 300 kHz for 30 detonation cycles to enable sadistically quantification and phase averaging. Filtered OH* and CH* chemiluminescence imaging was also performed over the same field of view as the LIF imaging. Estimation of the velocity field was calculated using optical flow from the Jet-A LIF images. The velocity results agree well with the recovery analysis from the PLIF measurements.</p><p dir="ltr"> Using the same liquid fuel injection scheme, Jet-A droplet diameter and velocity was measured <i>in-situ</i> during a hot-fire experiment using phase Doppler interferometry (PDI). Although a point technique, PDI was used to measure thousands of droplets during a single test at multiple locations and with multiple conditions. As a means of comparison, cold flow experiments were performed with water in the exit plume. Droplet diameters were measured between 1-20 µs in both cases. PDI results were compared with the optical flow results and there is agreement in median velocities and some differences in the minimum and maximum velocity values. Possible sources of error in the diameter measurement are discussed as well.</p>
|
416 |
Evolution thermique, circulation de fluide et fracturation associées à la structuration du bassin d’avant-pays sud-pyrénéen / Thermal evolution, fluid flow and fracture development related to the structuration of the south pyrenean foreland basinCrognier, Nemo 09 December 2016 (has links)
Le bassin de Jaca (Pyrénées espagnoles) est un exemple classique de bassins d’avant pays, où les grandes lignes du remplissage sédimentaire, ainsi que la chronologie des failles ont été très étudiées. Il reste toutefois à mieux comprendre la paléo-hydrologie et l’histoire thermique du bassin, de manière à proposer un modèle de circulation des fluides pendant sa mise en place et sa déformation (Paléocène-Oligocène). Pour ce faire, ce travail propose d’analyser la répartition de la fracturation, d’étudier les conditions de formation des veines syn-tectoniques et de caractériser la maturité de la matière organique sur l’ensemble du paléobassin d’avant-pays de Jaca, des zones internes vers les zones externes.L’analyse pétrographique, géochimique et microthermométrique des veines montre que la grande majorité des fluides minéralisateurs sont à l’équilibre isotopique et thermique avec l’encaissant. Dans le détail, nous avons identifié 2 événements principaux de formation de veines dans la zone interne du bassin (Sierras Interiores), que nous proposons d’associer au fonctionnement des failles majeures dans le socle. Nous suggérons que les fluides circulent le long des niveaux de décollements et sont expulsés sur de courtes distances (< 10 km), au travers des réseaux de fractures, vers le bassin d’avant-pays. Le reste du bassin enregistre principalement des fluides locaux, parfois associés à l’infiltration d’eau météorique. L’analyse des températures d’enfouissement (50°C à 250°C), qui inclut des données de Δ47, montre une organisation N-S relativement homogène depuis les Sierras Interiores (fenêtre à gaz) jusqu’aux Sierras Exteriores (immature), avec des anomalies longitudinales marquées. Les modélisations thermiques 1D sur 9 puits virtuels suggèrent que les températures maximales vers les Sierras Interiores peuvent résulter d’un enfouissement sédimentaire, dont une grande partie est érodée actuellement. Nous proposons que ces parties érodées correspondent à des dépôts tardi-orogéniques conglomératiques déposés à proximité de la zone axiale. Les données suggèrent une répartition non homogène de ces dépôts selon un axe E-W, impliquant des transferts sédimentaires plus complexes qu’habituellement discutés. Au vu de nos résultats et des précédentes études, le modèle paléohydrologique et thermique du bassin de Jaca, et à plus grande échelle, de la chaîne plissée sud-pyrénéenne, est compartimenté à la fois dans l’espace et dans le temps, en lien avec à la propagation latérale et frontale de la déformation, qui contrôle l’ouverture du système. Le modèle paléohydrologique et thermique de la chaîne plissée sud-pyrénéenne constitue donc un potentiel analogue aux chaînes plissées dont le raccourcissement résulte d’une convergence oblique. / The Jaca basin (Spanish Pyrenees) is a classical example of a foreland basin, where the sedimentary filling and the calendar of thrust activation have been extensively studied. It remains to understand the paleohydrology and the thermal history of the basin, so as to provide a fluid flow model related to its formation and deformation (Paleoecene-Oligocene). To do this, this work proposes to analyze the distribution of fracturing, to study the conditions of formation of syn-tectonic veins and to characterize the maturity of organic matter throughout the Jaca foreland basin, from hinterland to external areas.Petrographical, geochemical and microthermometric analysis of veins show that the vast majority of mineralizing fluids are at the isotopic and thermal equilibrium with the host-rock. In detail, we identified two main events of vein precipitation in the inner part of the basin (Sierras Interiores), probably related to major basement thrust activations. We suggest that fluids flow along decollement levels and are expelled over short distances (<10 km), through fracture networks towards the foreland basin. The other part of the basin mainly record local fluids, sometimes associated with the infiltration of meteoric water. Analysis of burial temperatures (50 °C to 250 °C), which includes Δ47 data, shows a relatively homogeneous N-S organization from the Sierras Interiores (gas window) to Sierras Exteriores (immature), with strong longitudinal anomalies. Thermal 1D modelling of 9 virtual wells suggest that the maximum temperatures of Sierras Interiores result from sedimentary accumulation, whose a large amount is now eroded. We propose that this eroded thickness corresponds to late-orogenic conglomeratic deposits near the axial zone. The data suggest an inhomogeneous distribution of the deposits along an E-W axis, involving more complex sedimentary transfers than usually discussed. Given our results and previous studies, the paleohydrological and thermal model of the Jaca basin, and on a larger scale, of the South Pyrenean fold and thrust belt, is compartmentalized both in space and in time, in response to the propagation of and oblique deformational front, which controls the opening of the system. The paleohydrological and thermal model of the South Pyrenean fold and thrust belt is therefore a potential analogue to fold and thrust belt including shortening due to an oblique convergence.
|
417 |
Discontinuous Galerkin Finite Element Method for the Nonlinear Hyperbolic Problems with Entropy-Based Artificial Viscosity StabilizationZingan, Valentin Nikolaevich 2012 May 1900 (has links)
This work develops a discontinuous Galerkin finite element discretization of non- linear hyperbolic conservation equations with efficient and robust high order stabilization built on an entropy-based artificial viscosity approximation.
The solutions of equations are represented by elementwise polynomials of an arbitrary degree p > 0 which are continuous within each element but discontinuous on the boundaries. The discretization of equations in time is done by means of high order explicit Runge-Kutta methods identified with respective Butcher tableaux.
To stabilize a numerical solution in the vicinity of shock waves and simultaneously preserve the smooth parts from smearing, we add some reasonable amount of artificial viscosity in accordance with the physical principle of entropy production in the interior of shock waves. The viscosity coefficient is proportional to the local size of the residual of an entropy equation and is bounded from above by the first-order artificial viscosity defined by a local wave speed. Since the residual of an entropy equation is supposed to be vanishingly small in smooth regions (of the order of the Local Truncation Error) and arbitrarily large in shocks, the entropy viscosity is almost zero everywhere except the shocks, where it reaches the first-order upper bound.
One- and two-dimensional benchmark test cases are presented for nonlinear hyperbolic scalar conservation laws and the system of compressible Euler equations. These tests demonstrate the satisfactory stability properties of the method and optimal convergence rates as well. All numerical solutions to the test problems agree well with the reference solutions found in the literature.
We conclude that the new method developed in the present work is a valuable alternative to currently existing techniques of viscous stabilization.
|
418 |
Charakterisierung des hydromechanischen Verhaltens der Gesteine des Mittleren Buntsandsteins im Hinblick auf eine geothermische Nutzung: Strukturgeologische Geländeaufnahmen, gesteinsmechanische Untersuchungen und numerische Modellierungen / Characterisation of hydro-mechanical processes in the Middle Buntsandstein formation with regard to the utilisation of geothermal energy: Field studies, geomechanical measurements and numerical modellingMüller, Christian 21 July 2009 (has links)
No description available.
|
419 |
Seismic structure, gas hydrate, and slumping studies on the Northern Cascadia margin using multiple migration and full waveform inversion of OBS and MCS dataYelisetti, Subbarao 05 November 2014 (has links)
The primary focus of this thesis is to examine the detailed seismic structure of the
northern Cascadia margin, including the Cascadia basin, the deformation front and
the continental shelf. The results of this study are contributing towards understanding
sediment deformation and tectonics on this margin. They also have important
implications for exploration of hydrocarbons (oil and gas) and natural hazards (submarine landslides, earthquakes, tsunamis, and climate change).
The first part of this thesis focuses on the role of gas hydrate in slope failure observed
from multibeam bathymetry data on a frontal ridge near the deformation front
off Vancouver Island margin using active-source ocean bottom seismometer (OBS)
data collected in 2010. Volume estimates (∼ 0.33 km^3) of the slides observed on this
margin indicate that these are capable of generating large (∼ 1 − 2 m) tsunamis.
Velocity models from travel time inversion of wide angle reflections and refractions
recorded on OBSs and vertical incidence single channel seismic (SCS) data were used
to estimate gas hydrate concentrations using effective medium modeling. Results indicate a shallow high velocity hydrate layer with a velocity of 2.0 − 2.1 km/s that
corresponds to a hydrate concentration of 40% at a depth of 100 m, and a bottom
simulating reflector (BSR) at a depth of 265 − 275 m beneath the seafloor (mbsf).
These are comparable to drilling results on an adjacent frontal ridge. Margin perpendicular normal faults that extend down to BSR depth were also observed on SCS
and bathymetric data, two of which coincide with the sidewalls of the slump indicating
that the lateral extent of the slump is controlled by these faults. Analysis of
bathymetric data indicates, for the first time, that the glide plane occurs at the same
depth as the shallow high velocity layer (100±10 mbsf). In contrast, the glide plane
coincides with the depth of the BSR on an adjacent frontal ridge. In either case, our
results suggest that the contrast in sediments strengthened by hydrates and overlying
or underlying sediments where there is no hydrate is what causing the slope failure
on this margin.
The second part of this dissertation focuses on obtaining the detailed structure
of the Cascadia basin and frontal ridge region using mirror imaging of few widely
spaced OBS data. Using only a small airgun source (120 cu. in.), our results indicate
structures that were previously not observed on the northern Cascadia margin. Specifically, OBS migration results show dual-vergence structure, which could be related to horizontal compression associated with subduction and low basal shear stress resulting from over-pressure. Understanding the physical and mechanical properties of the basal layer has important implications for understanding earthquakes on this margin.
The OBS migrated image also clearly shows the continuity of reflectors which enabled
the identification of thrust faults, and also shows the top of the igneous oceanic crust
at 5−6 km beneath the seafloor, which were not possible to identify in single-channel
and low-fold multi-channel seismic (MCS) data.
The last part of this thesis focuses on obtaining detailed seismic structure of the
Vancouver Island continental shelf from MCS data using frequency domain viscoacoustic
full waveform inversion, which is first of its kind on this margin. Anelastic
velocity and attenuation models, derived in this study to subseafloor depths of ∼ 2
km, are useful in understanding the deformation within the Tofino basin sediments,
the nature of basement structures and their relationship with underlying accreted
terranes such as the Crescent and the Pacific Rim terranes. Specifically, our results
indicate a low-velocity zone (LVZ) with a contrast of 200 m/s within the Tofino basin
sediment section at a depth 600 − 1000 mbsf over a lateral distance of 10 km. This
LVZ is associated with high attenuation values (0.015 − 0.02) and could be a result
of over pressured sediments or lithology changes associated with a high porosity layer
in this potential hydrocarbon environment. Shallow high velocities of 4 − 5 km/s
are observed in the mid-shelf region at depths > 1.5 km, which is interpreted as
the shallowest occurrence of the Eocene volcanic Crescent terrane. The sediment
velocities sharply increase about 10 km west of Vancouver Island, which probably
corresponds to the underlying transition to the Mesozoic marine sedimentary Pacific
Rim terrane. High attenuation values of 0.03 − 0.06 are observed at depths > 1 km,
which probably corresponds to increased clay content and the presence of mineralized
fluids. / Graduate / 0373 / 0372 / 0605 / subbarao@uvic.ca
|
420 |
微粒子スラリーのろ過設計に関する研究 / ビリュウシ スラリー ノ ロカ セッケイ ニカンスル ケンキュウ吉田 友一, Yuichi Yoshida 01 March 2018 (has links)
粉体の微粒子化に伴い,固液分離操作の中でも高精度かつ多量処理が可能なろ過の重要性はますます高まっている.しかしながら,微粒子スラリーのろ過抵抗は非常に大きく,所望の処理能力を得られないことが多い.本論文では,ろ過操作設計におけるろ材抵抗,スラリー凝集・分散状態,ケークろ過抵抗の予測に関して数値シミュレーションを利用した検討を行うことで,微粒子スラリーのろ過抵抗の低減に有用な知見を得ることができた. / 著者名の「吉」は「土」の下に「口」の置き換え / 博士(工学) / Doctor of Philosophy in Engineering / 同志社大学 / Doshisha University
|
Page generated in 0.0457 seconds