• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 2
  • Tagged with
  • 35
  • 24
  • 12
  • 11
  • 9
  • 9
  • 8
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Classificação de estruturas de Nambu lineares e p-formas singulares

Almeida, Carla Rodrigues 13 August 2012 (has links)
Made available in DSpace on 2016-12-23T14:34:49Z (GMT). No. of bitstreams: 1 Carla Rodrigues Almeida.pdf: 592195 bytes, checksum: 070fca888db010e772db2fafedfd378d (MD5) Previous issue date: 2012-08-13 / O objetivo deste trabalho é estudar as folheações que surgem a partir de estruturas de Nambu e apresentar a relação entre formas diferenciais e algumas destas estruturas. Mais precisamente, fazer um estudo da geometria de Poisson e de folheações singulares, enfatizando o caso da folheação simplética que surge da estrutura de Poisson e, em seguida, apresentar a geometria de Nambu, estudando o caso das folheações que surgem destas estruturas de ordem maiores ou iguais a três. Neste caso particular, vamos mostrar como tais estruturas de Nambu se relacionam com formas diferenciais e, por esta relação, classificar as estruturas de Nambu lineares através de um resultado de classificação de p-formas integráveis / The aim of this work is to study the foliations that arise from Nambu structures and present the relationship between differential forms and some of this structures. More specifically, to make a study of the Poisson geometry and of singular foliations, emphasiz-ing the case of the simplectic foliation that arises from the Poisson structure and then, to present the Nambu geometry, studying the case of the foliations that arise from the this structures of order grater than or equal to three. In this particular case, we shall show how this Nambu structures are related with differential formas and, by this relationship, classify linear Nambu structure through a result of classification of integrable differential p-forms
32

Aspectos topológicos na teoria geométrica de folheações / Topological aspects in the geometric theory of foliations

Icaro Gonçalves 09 December 2016 (has links)
Neste trabalho calculamos a classe de Euler de uma folheação umbílica em um ambiente com forma de curvatura apropriada. Combinamos o teorema de Hopf-Milnor e o número de Euler de uma folheação, definido por Connes, para mostrar como a geometria da folheação influencia na topologia da variedade folheada, bem como na topologia da folheação. Além disso, exibimos uma lista de invariantes topológicos para campos vetoriais unitários em hipersuperfícies fechadas do espaço Euclidiano, e mostramos como estes invariantes podem ser empregados como obstruções a certas folheações com geometria prescrita. / In this work we compute the Euler class of an umbilic foliation on a manifold with suitable curvature form. We combine the Hopf-Milnor theorem and the Euler number of a foliation, defined by Connes, in order to show how the geometry of the foliation influences the topology of the foliated space as well as the topology of the foliation. Besides, we exhibit a list of topological invariants for unit vector fields on closed Euclidean hypersurfaces, and show how these invariants may be employed as obstructions to certain foliations with prescribed geometry.
33

Estabilidade de folheações via teorema da função inversa de Nash-Moser / Stability of foliations by Nash-Moser inverse function theorem

Melo, Mateus Moreira de, 1991- 27 August 2018 (has links)
Orientador: Diego Sebastian Ledesma / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-27T09:00:29Z (GMT). No. of bitstreams: 1 Melo_MateusMoreirade_M.pdf: 1155879 bytes, checksum: 5582968247f7c4155e31b28d1531679a (MD5) Previous issue date: 2015 / Resumo: Neste trabalho, estudamos o conceito de estabilidade para folheações. Com este objetivo, usamos um complexo não-linear formado por mapas e variedades na categoria Fréchet Tame. Aplicamos uma variação do Teorema da Função Inversa de Nash-Moser ao complexo não-linear obtendo uma relação entre estabilidade e a exatidão tame da linearização do complexo não-linear. Além disso, o complexo linearizado é identificado com um trecho do complexo de Rham da folheação, ou seja, transforma-se o estudo de estabilidade em analisar a exatidão tame de um grupo de cohomologia da folheação. Assim descrevemos uma família de folheações estáveis, chamadas folheações infinitesimalmente estáveis. Esta família dá uma direção para o estudo de estabilidade de folheações / Abstract: In this work, we study the concept of stability for foliations. With this aim we use a non linear complex formed by maps and manifolds in Fréchet Tame category. We apply a variation of The Nash-Moser Inverse Function Theorem to non-linear complex obtaining a relation between the stability and the tame exactness of the linearized complex. Moreover, the linearized complex is identified with a piece of the complex de Rham of the foliation, i.e., we transformed the stability study into a analysis of tameness vanishing on the cohomology group of the foliation. Thus we describe a family of stable foliations, called infinitesimally stable foliations. This family gives a direction for the study of stability of foliations / Mestrado / Matematica / Mestre em Matemática
34

Ações e folheações polares em variedades de Hadamard

Caramello Junior, Francisco Carlos 27 February 2014 (has links)
Submitted by Ronildo Prado (ronisp@ufscar.br) on 2016-08-30T20:16:50Z No. of bitstreams: 1 6841.pdf: 671749 bytes, checksum: fee45931185f019b1c8d5bb4946465b0 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2016-08-30T20:17:52Z (GMT) No. of bitstreams: 1 6841.pdf: 671749 bytes, checksum: fee45931185f019b1c8d5bb4946465b0 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2016-08-30T20:18:45Z (GMT) No. of bitstreams: 1 6841.pdf: 671749 bytes, checksum: fee45931185f019b1c8d5bb4946465b0 (MD5) / Made available in DSpace on 2016-08-30T20:19:00Z (GMT). No. of bitstreams: 1 6841.pdf: 671749 bytes, checksum: fee45931185f019b1c8d5bb4946465b0 (MD5) Previous issue date: 2014-02-27 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / O objetivo principal deste trabalho é apresentar alguns resultados recentes na teoria de folheações polares, também chamadas de folheações riemannianas singulares com seções, em variedades de curvatura não positiva, presentes no artigo [24]. As ações polares também são estudadas, pois são objetos de pesquisa ativa que motivam e ilustram o estudo das folheações polares. Fornecemos uma demonstração de que não existem folheações polares próprias em variedades compactas de curvatura não positiva. Além disso, apresentamos um resultado que descreve globalmente as folheações polares próprias em variedades de Hadamard. Abordamos este resultado também no contexto particular das ações polares, utilizando a teoria de subvariedades taut. As ações adjunta e por conjugação são brevemente estudadas como exemplos clássicos de ações polares. / This work aims at presenting some recent results on the theory of polar foliations, also know as singular riemannian foliations with sections, on nonpositively curved manifolds, as seen in T oben [24]. Polar actions are also studied, for they are active research subject that motivate and illustrate polar foliations. We give a proof of the nonexistence of proper polar foliations on compact manifolds of nonpositive curvature. Then we present a result that globally describes proper polar foliations on Hadamard manifolds. We prove this same result in the special case of polar actions by using the theory of taut submanifolds. The adjoint and conjugation actions are brie y presented as classical examples of polar actions.
35

Sobre o teorema de Campbell-Magaard e o problema de Cauchy na relatividade

Sanomiya, Thais Akemi Tokubo 11 March 2016 (has links)
Submitted by Vasti Diniz (vastijpa@hotmail.com) on 2017-09-18T11:49:17Z No. of bitstreams: 1 arquivototal.pdf: 2571485 bytes, checksum: 176b4eb5f639864aaef387d41330b286 (MD5) / Made available in DSpace on 2017-09-18T11:49:17Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 2571485 bytes, checksum: 176b4eb5f639864aaef387d41330b286 (MD5) Previous issue date: 2016-03-11 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / After the formulation of general relativity differential geometry has become an increasing important tool in theoretical physics. This is even more clear in the investigation of the so-called embedding space-time theories. In this work we focus our attention in the Cauchy problem. These have played a crucial role in our understanding of the mathematical struc­ture of general relativity and embedding theories. We investigate the similarities and diffe­rences between the two approaches. We also study an extension of the Campbell-Magaard theorem and give two examples of both formalisms. / A geometria diferencial passou a ser uma ferramenta fundamental na fisica com o surgi­mento da relatividade geral. Em particular, destacamos sua importância na investigado das chamadas teorias de imersdo do espaco-tempo. Neste trabalho analisamos dois grandes for­malismos fundamentados de forma direta ou indireta na teoria de imersões: o teorema de Campbell-Magaard e o problema de Cauchy para a relatividade geral. Tendo como princi­pal objetivo tracar um paralelo entre esses dois formalismos, estudamos, nesta dissertacdo, o problema de valor inicial (pvi) para a relatividade geral mostrando que alem de admitir a formulae-do de pvi, a mesma é bem posta. Ademais, aplicamos este formalismo para o caso de uma metrica do tipo Friedmann-Robertson-Walker em (3+1). Estudamos tambem o teorema de Campbell-Magaard e sua extensdo para o espaco-tempo de Einstein e aplicamos este teorema para uma metrica do tipo de Sitter em (2+1).

Page generated in 0.0223 seconds