• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 125
  • 23
  • 14
  • 12
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 212
  • 212
  • 80
  • 47
  • 41
  • 36
  • 32
  • 30
  • 26
  • 26
  • 22
  • 22
  • 21
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Trophic, Indirect, and Evolutionary Interactions in a Plant–Herbivore–Parasitoid System

Stenberg, Johan January 2008 (has links)
The aim of this thesis project was to elucidate patterns and processes associated with the biotic interactions in a natural plant–herbivore–parasitoid food web characterized by spatial and temporal heterogeneity with regard to species composition. The system examined is based on island populations of the perennial herb Meadowsweet (Filipendula ulmaria, Rosaceae), located in the Skeppsvik Archipelago. The area is subject to isostatic rebound, amounting to 0.85 cm per year; this makes it possible to calculate the age of the rising islands. Meadowsweet colonizes new islands when they are about 100 years old. Meadowsweet is consumed by two major herbivores in the study area: Galerucella tenella and Altica engstroemi (Coleoptera: Chrysomelidae). Both herbivores overwinter in the topsoil and successful colonization occurs when the islands reach a height that prevents the beetles from being removed or killed as a result of wave wash during the winter. I found that both herbivores significantly reduced individual plant fitness and population growth rate. A “cafeteria experiment” with Galerucella showed that this beetle discriminated between plants from different islands, avoiding plants from old islands which contained high concentrations of putative defence compounds, while readily accepting plants from younger islands which contained lower concentrations of these chemicals. Further, the plant species exhibited a trade-off between growth and production of the putative defence compounds. Taken together, these results were interpreted as providing evidence of herbivore-driven evolution of resistance in Meadowsweet. Further, laboratory studies suggested that Galerucella gradually includes a less preferred host plant (Rubus arcticus, Rosaceae) in its diet as Meadowsweet resistance increases. This implies that Galerucella drives its own host-breadth enlargement by selectively inducing a ‘rent rise’ in the original host, Meadowsweet. In a number of field studies I showed that the oligophagous parasitoid Asecodes mento (Hymenoptera: Eulophidae) has a strong positive effect on Meadowsweet seed set by removing large numbers of G. tenella larvae. This top-down effect is, however, altered by the presence of a close relative of G. tenella, namely G. calmariensis, which is monophagous on Purple loosestrife (Lythrum salicaria, Lythraceae). G. tenella experiences associational susceptibility when coexisting with G. calmariensis since the latter supports a higher and more fit pool of shared parasitoids and because Meadowsweet attracts a higher proportion of the shared parasitoid females than Purple loosestrife. This implies that G. tenella densities are very low in coexisting populations and that Meadowsweet experiences associational resistance and produces more seeds when co-occurring with Purple loosestrife. Thus, selection for increased resistance in Meadowsweet is likely to be relaxed in populations mixed with Purple loosestrife. I conclude that the evolution of plant resistance is likely to depend on the length of time and intensity of selection. When Meadowsweet colonizes new islands it experiences a period of enemy-free space; followed by a midlife and ageing with selection by herbivores. The intensity of this selection does, however, depend on the presence of additional plant and herbivore species.
102

The aquatic microbial food web and occurence of predation-resistant and potentially pathogenic bacteria, such as Francisella tularensis

Thelaus, Johanna January 2008 (has links)
All natural aquatic systems harbour a vast variety of microorganisms. In the aquatic microbial food web, the larger microorganisms (i.e. protozoa) feed on the smaller microorganisms (i.e. bacteria and phytoplankton). An increase in nutrient availability results in changes of the microbial food web structure, like altered community composition and blooms of toxic phytoplankton. In this thesis work I hypothesised that nutrient-rich aquatic environments, with strong protozoan predation, favour the occurrence of predation-resistant bacteria like F. tularensis, and that the microbial food web may provide a reservoir for the bacterium between outbreaks. By using a size-structured ecosystem food web model it was shown that the protozoan predation pressure on bacteria, defined as protozoan predation per bacterial biomass, increases with increasing nutrient availability in aquatic systems (estimated chlorophyll a 0.2 to 112 μg L-1). This dynamics was caused by increasing growth-rate of a relatively constant number of bacterial cells, maintaining the growth of an increasing number of protozoan cells. The results were supported by meta-analysis of field studies. Thus my results suggest that protozoa control the bacterial community by predation in nutrient-rich environments. In a field study in a natural productivity gradient (chlorophyll a 1.4 to 31 μg L-1) it was shown that intense selection pressure from protozoan predators, favours predation-resistant forms of bacteria. Thus, the abundance of predation-resistant bacteria increases with increasing nutrient availability in lakes. Furthermore, I could demonstrate that the bacterium Francisella tularensis, the causative agent of tularemia, was present in eutrophic aquatic systems in an emerging tularemia area. Isolated strains of the bacterium were found to be resistant to protozoan predation. In a microcosm study, using natural lake water, high nutrient availability in combination with high abundance of a small colourless flagellate predator favoured the occurrence of F. tularensis holarctica. In laboratory experiments F. tularensis strains were able to form biofilm at temperatures between 30-37°C, but not below 30°C. In conclusion, I have shown that the protozoan predation pressure on bacteria increases with increasing nutrient availability in aquatic systems. Predation-resistant forms of bacteria, such as F. tularensis are favoured in nutrient-rich environments. The complexity of the microbial food web and nutrient-richness of the water, influence the transmission of the pathogenic F. tularensis holarctica. However, over long periods of time, the bacterium survives in lake water but may lose its virulence. The temperature-regulated biofilm formation by F. tularensis may play a role in colonization of vectors or for colonization of hosts, rather than for survival in aquatic environments.
103

Determining food web impacts on experimental aquatic systems from the disposal of oil sands process-affected waste materials.

Elshayeb, Monalisa January 2006 (has links)
Current mining operators in the Athabasca oil sands deposit of Alberta, Canada have made commitments to zero discharge of oil sands process-affected waste materials (OSPM) from the mine site and rehabilitation of mined lands to a pre-mining state. As part of aquatic reclamation efforts, experimental test sites that contain a range of OSPM (solid and liquid components) were constructed to monitor the evolution and viability of aquatic habitats used as disposal sinks for OSPM produced by mining activities. In the present study, stable isotopes of carbon, nitrogen and sulphur were used to gauge some of the potential effects of OSPM site construction methods on aquatic food webs. Carbon and nitrogen isotopic signatures of sediment, dissolved inorganic carbon, dissolved organic carbon, particulate organic matter, periphytic material, plants, plankton, aquatic invertebrates and fish were used to assess differences related to the naphthenic acid (NA) concentration in OSPM and reference sites. For statistical analyses, sites were grouped into low (0 to 4 mg/L), medium (4 to 15 mg/L) and high (> 15 mg/L) NA concentrations. There were no significant differences in food web area or food web length among the low, medium and high NA concentration sites. In most cases, sample carbon isotope analyses of low, medium and high NA concentration sites were not significantly different, suggesting food web carbon sources did not include significant contributions from OSPM materials at OSPM sites. Significant differences, however, were found in the sample nitrogen isotope signatures between low, medium and high NA concentration sites. Ammonia from OSPM is suggested to be the main contributor to &delta;<sup>15</sup>N enrichment. <br /><br /> To determine the potential effects of site construction and OSPM within experimental test sites, carbon and sulphur stable isotopes of water, plankton, aquatic invertebrates and fish were analyzed. With the exception of <em>Chaoborus</em> and <em>Haliplus</em>, all carbon isotope signatures were not significantly different in constructed and reference sites. Also with the exception of <em>Haliplus</em>, sulphur isotope values for aquatic organisms from constructed and reference sites were significantly different. Aquatic organisms and water samples from constructed sites built in, or close, to the boundary of Kcw clays typically had &delta;<sup>34</sup>S < 0 ?. Coinciding with depleted &delta;<sup>34</sup>S signatures found in these aquatic systems were elevated sulphate concentrations. The waters at experimental test sites are in direct contact with the soil materials that facilitate the accumulation of sulphates as a result of the oxidation of substrate sulphide minerals. In general the results of the study suggest that aquatic food web structure and function do not change with the introduction of OSPM. Shifts in isotopic signatures suggestive of changes in food web structure, however, do occur when site construction exposes Kcw clays in the substrate.
104

Reintroducing captive bred species : a community ecological perspective

Svensson, Joakim January 2011 (has links)
Throughout history species has gone extinct due to anthropogenic activities. During the last century efforts have been done to reintroduce species back into the wild. Zoos that originally were created as amusement parks for people have today a new purpose; to keep and breed species in captivity for later reintroductions in the wild. However a relaxed environment such as a zoo leads to a general fitness decline of up to 40% per generation in captivity. The probability of a successful reintroduction of a species that has been bred in a zoo will be lower the longer time it has been kept in captivity. The reintroduction of a captive bred species can also cause secondary extinctions and other negative effects on the food-web. Both changes in the community caused by the loss of a species and changes in the species itself caused by captivity can be expected to affect the outcome of a reintroduction attempt. Using a modeling approach I here investigate how the reintroduction of a captive bred species (at three different trophic levels; basal, intermediate and top predator species) affects a food-web and what risks there are in reintroducing it. A Lokta-Volterra model with type II functional response is used. I investigate three scenarios: the reintroduction of a species with 0% change in its attributes, 40% change in its attributes and 75% change in its attributes. It was found that the most important factor for reintroduction success when reintroducing a species is whether it is a producer species (basal species) or a consumer species (intermediate and top predator species). The producer species were most sensitive to the changes in their attributes, whilst consumer species were more sensitive to change in the food-web (Euclidian distance). The producer species were found to cause most secondary extinctions in all scenarios, hence indicating that it is a bottom-up controlled food-web. The present study suggests that the success of a reintroduction attempt is affected both by the degree of changes in the food web caused by the initial loss of the species and the degree of change in the species itself caused by captivity.
105

Determining food web impacts on experimental aquatic systems from the disposal of oil sands process-affected waste materials.

Elshayeb, Monalisa January 2006 (has links)
Current mining operators in the Athabasca oil sands deposit of Alberta, Canada have made commitments to zero discharge of oil sands process-affected waste materials (OSPM) from the mine site and rehabilitation of mined lands to a pre-mining state. As part of aquatic reclamation efforts, experimental test sites that contain a range of OSPM (solid and liquid components) were constructed to monitor the evolution and viability of aquatic habitats used as disposal sinks for OSPM produced by mining activities. In the present study, stable isotopes of carbon, nitrogen and sulphur were used to gauge some of the potential effects of OSPM site construction methods on aquatic food webs. Carbon and nitrogen isotopic signatures of sediment, dissolved inorganic carbon, dissolved organic carbon, particulate organic matter, periphytic material, plants, plankton, aquatic invertebrates and fish were used to assess differences related to the naphthenic acid (NA) concentration in OSPM and reference sites. For statistical analyses, sites were grouped into low (0 to 4 mg/L), medium (4 to 15 mg/L) and high (> 15 mg/L) NA concentrations. There were no significant differences in food web area or food web length among the low, medium and high NA concentration sites. In most cases, sample carbon isotope analyses of low, medium and high NA concentration sites were not significantly different, suggesting food web carbon sources did not include significant contributions from OSPM materials at OSPM sites. Significant differences, however, were found in the sample nitrogen isotope signatures between low, medium and high NA concentration sites. Ammonia from OSPM is suggested to be the main contributor to &delta;<sup>15</sup>N enrichment. <br /><br /> To determine the potential effects of site construction and OSPM within experimental test sites, carbon and sulphur stable isotopes of water, plankton, aquatic invertebrates and fish were analyzed. With the exception of <em>Chaoborus</em> and <em>Haliplus</em>, all carbon isotope signatures were not significantly different in constructed and reference sites. Also with the exception of <em>Haliplus</em>, sulphur isotope values for aquatic organisms from constructed and reference sites were significantly different. Aquatic organisms and water samples from constructed sites built in, or close, to the boundary of Kcw clays typically had &delta;<sup>34</sup>S < 0 ?. Coinciding with depleted &delta;<sup>34</sup>S signatures found in these aquatic systems were elevated sulphate concentrations. The waters at experimental test sites are in direct contact with the soil materials that facilitate the accumulation of sulphates as a result of the oxidation of substrate sulphide minerals. In general the results of the study suggest that aquatic food web structure and function do not change with the introduction of OSPM. Shifts in isotopic signatures suggestive of changes in food web structure, however, do occur when site construction exposes Kcw clays in the substrate.
106

The role of marine macrophytes in providing essential ecosystem services: Their relative contribution and how services are impacted by eutrophication

Schmidt, Allison Louise 06 December 2012 (has links)
Most coastal ecosystems are dominated by marine macrophytes that deliver a range of ecologically and economically important services such as carbon and nitrogen cycling and storage, and habitat provision to a range of associated species. The relative contribution of these services among different vegetated habitats, however, and their alteration due to anthropogenic stressors is little known. In this thesis, I first examined the within and between ecosystem structure and services of eelgrass (Zostera marina) and rockweed (Ascophyllum nodosum) beds in Atlantic Canada. Both habitats significantly enhanced the overall abundance and diversity of associated species, whereas differences in the spe-cies assemblages were attributed to differences in canopy structure within and between habitats. Changes in the canopy structure of the foundation species will affect associated food webs and ecosystem services. Next, I used large-scale field surveys to examine the effects of eutrophication on the structure and services of eelgrass beds. As eutrophication increased, plant dominance shifted from eelgrass to macroalgae and phytoplankton at a regional scale. The faunal community showed increases in filter feeders, detritivores and some herbivores, while sensitive species declined. These faunal changes can be linked to enhanced food availability and predation refuge offered by increased phytoplankton and opportunistic macroalgae. However, the loss of eelgrass and sensitive species highlight the negative consequences of eutrophication on eelgrass ecosystems and the services they provide. I also reviewed the global carbon and nitrogen storage and habitat services of mangroves, salt marshes, seagrass meadows and macroalgal beds. Despite only occupying 0.7% of the ocean area, together these ecosystems make up 12% of the oceanic carbon stock thereby playing an important role in global carbon and nitrogen storage. Moreover, these macrophyte habitats enhanced species richness and abundance of associated fauna and juvenile fishes. Overall, my findings indicate that each macrophyte habitat has its strengths yet all are essential in providing the full range of ecosystem services. Increasing human impacts along the coasts, however, are threatening macrophyte ecosystems worldwide, and their further decline will impair the provision of important services and human well-being. Lastly, I discuss the implications of my work for management and conservation.
107

Top-down and bottom-up effects in a Fennoscandian tundra community

Grellmann, Doris January 2001 (has links)
The objective of this thesis was to investigate the effects of mammalian grazers, such as microtine rodents and reindeer, (top-down effects) and nutrient availability (bottom- up effects) on the plant community of a tundra heath. I conducted a large-scale fertilization experiment and studied the impact of grazers using exclosures. I measured the effects of fertilization and grazing on soil microbial activity and nutrient cycling. I investigated the responses to fertilization of the invertebrate community, I studied the effects on the quality of bilberry as food for mammalian herbivores, and I looked at how concentrations of nutrients and carbon-based secondary defences against herbivory fluctuated between seasons in unfertilized and fertilized treatments. The results of my thesis show that the plant community investigated is exposed to a strong top-down control by mammalian herbivores. On the fertilized and grazed areas the aboveground biomass of the vascular plant community did not increase compared to unfertilized areas. However, the productivity of the plant community was clearly nutrient- limited. During the eight years of the experiment, on the fertilized areas plant biomass was significantly increased inside the herbivore exclosures In my study mammalian herbivores at comparatively low densities and grazing outside the growing season were sufficient to control the biomass of a heterogeneous plant community. Microtine rodents (Norwegian lemmings and grey-sided voles) preferred the fertilized areas for overwintering. The food plant quality of bilberry for grey-sided voles was improved on the fertilized areas throughout the year. Grazing decreased the nitrogen storage in the aboveground plant biomass. Reindeer and rodents had also important indirect effects on the plant community by decelerating soil nutrient cycling and soil microbial activity. This effect may be accelerated by the impact of herbivore on plant species composition. Graminoids, which contained the highest nitrogen concentrations in their tissues, increased rapidly on the fertilized areas, but their abundance was significantly lower on grazed fertilized areas. The invertebrate community was detritus-based and received their energy indirectly from the litter via soil microbes and detritivores. Fertilization increased the biomass of invertebrate carnivores, but had no effect on the biomass of invertebrate herbivores. Apparent competition between detritivores and invertebrate herbivores, mediated by carnivorous invertebrates predating on both of them, is supposed to keep the densities and grazing pressure of invertebrate herbivores low. Grazing damage by invertebrates was very low and only 0.021 % of the total vascular plant biomass was removed. / <p>Diss. (sammanfattning) Umeå : Umeå universitet, 2001, härtill 6 uppsstser.</p> / digitalisering@umu
108

Modelling the Effects of Seston Food Quality on Zooplankton Growth: Implications for Broader food Web Dynamics

Perhar, Gurbir 19 December 2012 (has links)
An increasing number of contemporary studies in aquatic ecology emphasize the im- portance of highly unsaturated fatty acids (HUFAs) at the plant-animal interface. Studies have demonstrated a wide range of fatty acid profiles in primary producers, forcing her- bivorous zooplankton to differentially retain fatty acids to meet somatic requirements. Herbivores also vary in their somatic fatty acid profiles; cladocerans collect Eicosapen- taenoic Acid (EPA), copepods prefer Docosahexaenoic Acid (DHA). Fatty acid internal reserves can be broken down to meet structural needs (i.e. phospholipid synthesis), fuel reproduction and may play a role in cold weather adaptation. Several authors have noted increases in HUFA concentration with lowering ambient temperatures. Cladoceran membranes form a gel at lower temperatures, while copepod membranes remain fluid and allow active overwintering. Both fish and crustaceans accumulate high concentrations of HUFAs during periods of rapid growth, but colimitation with elemental resources may exist. Recent modeling results suggest food webs with high quality (nutritional and biochemical) primary producers can attain inverted biomass distributions with efficient energy transfer between trophic levels. The adoption rate for this material into man- agement studies remains low, and while other sectors of the scientific community thrive on the potential of HUFAs, planktonic food-web studies are choosing traditional view points over forward thinking. Bearing in mind the emerging hypotheses on the critical factors that drive the energy flow in the plant-animal interface, my dissertation will at- tempt to address the following general questions: What are the distinct signatures of food quality and food quantity on planktonic food web dynamics? How do nutritional and biochemical factors affect the flow of energy at the plant-animal interface? What is our current understanding of the role of highly unsaturated fatty acids (HUFAs) in aquatic food webs? To what extent can the current generation of plankton models reproduce the lower food web patterns when explicitly accounting for HUFAs? Is the integration of the HUFA role into water quality management models feasible? Explicitly accounting for HUFAs requires integrating factors of animal physiology with macro-ecology: what are the ramifications? Finally, what are the evolutionary aspects of animals coping with food quality?
109

Modelling the Effects of Seston Food Quality on Zooplankton Growth: Implications for Broader food Web Dynamics

Perhar, Gurbir 19 December 2012 (has links)
An increasing number of contemporary studies in aquatic ecology emphasize the im- portance of highly unsaturated fatty acids (HUFAs) at the plant-animal interface. Studies have demonstrated a wide range of fatty acid profiles in primary producers, forcing her- bivorous zooplankton to differentially retain fatty acids to meet somatic requirements. Herbivores also vary in their somatic fatty acid profiles; cladocerans collect Eicosapen- taenoic Acid (EPA), copepods prefer Docosahexaenoic Acid (DHA). Fatty acid internal reserves can be broken down to meet structural needs (i.e. phospholipid synthesis), fuel reproduction and may play a role in cold weather adaptation. Several authors have noted increases in HUFA concentration with lowering ambient temperatures. Cladoceran membranes form a gel at lower temperatures, while copepod membranes remain fluid and allow active overwintering. Both fish and crustaceans accumulate high concentrations of HUFAs during periods of rapid growth, but colimitation with elemental resources may exist. Recent modeling results suggest food webs with high quality (nutritional and biochemical) primary producers can attain inverted biomass distributions with efficient energy transfer between trophic levels. The adoption rate for this material into man- agement studies remains low, and while other sectors of the scientific community thrive on the potential of HUFAs, planktonic food-web studies are choosing traditional view points over forward thinking. Bearing in mind the emerging hypotheses on the critical factors that drive the energy flow in the plant-animal interface, my dissertation will at- tempt to address the following general questions: What are the distinct signatures of food quality and food quantity on planktonic food web dynamics? How do nutritional and biochemical factors affect the flow of energy at the plant-animal interface? What is our current understanding of the role of highly unsaturated fatty acids (HUFAs) in aquatic food webs? To what extent can the current generation of plankton models reproduce the lower food web patterns when explicitly accounting for HUFAs? Is the integration of the HUFA role into water quality management models feasible? Explicitly accounting for HUFAs requires integrating factors of animal physiology with macro-ecology: what are the ramifications? Finally, what are the evolutionary aspects of animals coping with food quality?
110

Allochthony of detritivorous fish in Ohio reservoirs, as determined using stable hydrogen isotopes

Babler, Allison L. January 2009 (has links)
Thesis (M.S.)--Miami University, Dept. of Zoology, 2009. / Title from first page of PDF document. Includes bibliographical references (p. 17-21).

Page generated in 0.0541 seconds