• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 125
  • 23
  • 14
  • 12
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 212
  • 212
  • 80
  • 47
  • 41
  • 36
  • 32
  • 30
  • 26
  • 26
  • 22
  • 22
  • 21
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Food web dynamics in open and closed systems

Lövgren, Johan January 2004 (has links)
<p>This thesis is a summary of enclosure and microcosm experiments that aimed to study the impact of allochtonous subsidies on food web dynamics in a heterogeneous food web. In the enclosure studies, a three trophic level littoral food web was used. The food web consisted of two growth forms of primary producers: phytoplankton and periphyton and their associated herbivores: scraping and filtering herbivores. The predator used, YOY perch, affects both pathways in the food web. Manipulation of the openness for the different trophic levels showed that the inflow of phytoplankton and cross-habitat foraging by the herbivore level reinforced the compensatory response between the two growth forms of primary producers </p><p>In the microcosm experiment, the response of an herbivore food web and a microbial community to inflow of resources and food web configuration was studied, using a model food web. The model food web consisted of two forms of primary producers, i.e. phytoplankton and periphyton, and two herbivores, i.e. <i>Daphnia pulex</i> feeding on phytoplankton, and <i>Chydorus sphaericus</i> feeding on both periphyton and phytoplankton. Three different food web configurations, all having the phytoplankton and periphyton, but either one of the herbivores, or both, were set up. The flow regimes consisted of an open treatment receiving a constant supply of phytoplankton, and a closed treatment with an initial resource pool. The effect of the inflow of phytoplankton was affected by the food web configuration. In the presence of <i>D. pulex</i>, the inflow of phytoplankton was made accessible to periphyton, and indirectly to <i>C. sphaericus</i>, which increased to such high densities that <i>D. pulex</i> was negatively affected. The inflow of phytoplankton had an indirect negative effect on the microbial community, since the biomass of herbivores increased, which imposed a higher grazing pressure on all parts of the microbial community.</p>
142

Stabilizing factors in spatially structured food webs

Gudmundson, Sara January 2009 (has links)
<p>Ecological models have problems showing the positive relationship between diversity and stability found in nature. Theory states that complex food webs have high extinction risks and low stability. However, persistent food webs found in nature are large and complex containing many interconnections between species. There are many possible mechanisms enabling persistent food webs such as; complex interaction patterns, asynchronous fluctuations of species densities, environmental fluctuations and spatial distribution. These factors have not been used in classical models. In this study, coloured environmental 1/f noise and dispersal between subpopulations were incorporated into a diamond shaped food web based on a model by Vasseur and Fox 2007. Contradictions between theoretical and empirical results regarding food webs can be resolved by detailed analyses of models, withholding stabilizing mechanisms. Weak environmental 1/f noise generated an increased coefficient of stability but the stabilizing effect of noise can be questioned because of a decreased mean food web biomass and reduced stabilizing effect when reddened. However, detailed studies of the food web revealed that noise can redistribute density proportions between species, evading lowest species density and thereby increase food web resistance to demographic stochasticity and catastrophes. Noise induced density proportion shifts imply that large population sizes are no insurance towards future increase in environmental variance. Synchrony of species environmental responses and dispersal between subpopulations can both have major influences on stability and extinction risk of smaller food webs indicating that spatial structure could be one of the dominating factors stabilizing complex food webs found in nature.</p>
143

Pelagic microorganisms in the northern Baltic Sea : Ecology, diversity and food web dynamics

Berglund, Johnny January 2005 (has links)
<p>Heterotrophic microorganisms are important for the flow of carbon and nutrients in the sea. Bacteria, nanoflagellates and ciliates are relevant components of the pelagic food web. In order to be able to predict the outcome of e.g. eutrophication or climate change we need to know how the different components of the pelagic food web are regulated. With the focus on the northern Baltic Sea food web, this thesis deals with limitation and control of heterotrophic protists, the effect of resource heterogeneity on food web efficiency and diversity of nanoflagellates.</p><p>In-situ microcosm experiments showed that the net growth of heterotrophic flagellates were resource limited throughout the year. Field data confirmed that the abundance of flagellates was bottom-up controlled. Furthermore, field data also showed that the annual average biomass of protists, flagellates and ciliates increased with primary productivity. On a smaller seasonal scale temperature and bacterial biomass were able to explain most of the variation in flagellate biovolume. The temporal variation in ciliate biovolume could not be explained by any bottom-up factors like bacterial biomass, flagellate biomass or chlorophyll a. This and an in-situ microcosm experiment implied that the seasonal dynamics of ciliates were more regulated by predators like mesozooplankton.</p><p>The food web efficiency i.e. how much of production at the resource level is converted to production at the top trophic level, may be affected by specific size or type of resource. Indoor mesocosms revealed that the food web efficiency was 11 times lower when heterotrophic bacteria dominated basal production instead of nano- and micro-sized phytoplankton. This was due to a lengthening of the food web when pico-sized bacteria constituted the main resource.</p><p>The PCR-DGGE molecular biological method was used to study the diversity of heterotrophic or mixotrophic chrysomonads. The focus was set on chrysomonads due to their relatively large contribution to the nanoflagellate community. Group-specific PCR primers were optimized for the target group. A field survey in the northern Baltic Sea showed that a handful of chrysomonad sequences were present throughout the year. Significantly more chrysomonads were recorded in the basin with higher primary productive and salinity. In total 15-16 different chrysomonad sequences were recorded. Most of them matched uncultured chrysomonad clones.</p>
144

Experimental Studies on the Regulation of Pigment Dynamics in Phytoplankton and Copepods by Dissolved Inorganic Nutrients

Van Nieuwerburgh, Lies January 2004 (has links)
<p>This thesis examines the role of dissolved inorganic nutrients in generating changes in phytoplankton community and pigment composition and if such changes can affect the production of the antioxidant astaxanthin in the ecosystem via pelagic copepods. The background of my studies is the possible relationship between eutrophication and a reproductive disturbance in Baltic populations of Atlantic salmon (M74), which is associated with astaxanthin and thiamine deficiencies and oxidative stress. In the southern Baltic Sea, changes in nutrient loads correlate with observed trends of flagellates replacing diatoms in the phytoplankton. Copepods are the main producers of astaxanthin and a major link between phytoplankton and higher trophic levels. In laboratory and field experiments in the Baltic Sea proper and the Norwegian Sea, I show that astaxanthin synthesis in copepods is fast and depends on pigment composition of the phytoplankton diet. Among single-species diets, a diatom and a green algal cyst yielded the highest astaxanthin levels in copepods, and another diatom species, a green alga and a cyanobacterium the lowest. In nutrient-generated phytoplankton blooms in mesocosms, copepods grazing on diverse communities dominated by weakly silicified diatoms produced more astaxanthin compared with copepods grazing on communities dominated by strongly silicified diatoms. This suggests that diatoms invested in defence mechanisms and escaped grazing at surplus Si. A nutrient-starved diatom culture subjected to intraspecific competition exhibited decreased pigment levels, increased thiamine levels and increased oxidative stress. </p><p>My results suggest that diatoms are beneficial for astaxanthin and thiamine production compared to other phytoplankton groups, but not under all circumstances. Copepod growth and development also responded to inorganic nutrient availability and affected total astaxanthin production per volume seawater, with highest production when the copepods grazed on diatoms. From an ecosystem perspective, increased N and P loads seem to promote high astaxanthin production, but not when diatoms disappear completely.</p>
145

Zooplankton growth and trophic linkages : Implications for fish feeding conditions in the Baltic Sea

Holmborn, Towe January 2009 (has links)
The aim of this Thesis was to improve our understanding and assessment of feeding conditions for zooplanktivorous fish in the Baltic Sea. We investigated (papers I, II) the usefulness of biochemical proxies for assessments of growth and metabolic rates in the dominant Baltic copepod Acartia bifilosa. A predictive model (paper I) for egg production rate (EPR), based on body size, RNA content, and water temperature, was established using females of different geographical origin. This model demonstrates the usefulness of RNA content as a proxy for growth in zooplankton and, together with abundance data, it could be used to evaluate fish feeding conditions. Further (paper II), using A. bifilosa exposed to a food gradient, we evaluated responses of physiological rates and other biochemical proxies for growth and established correlations between physiological and biochemical variables. EPR and ingestion rate were most significantly correlated with RNA content. As assayed variables saturated at different food concentrations, food availability may affect assessments of physiological rates using proxies. In paper III, we explored the effect of high EPR and ingestion rate on astaxanthin content in A. bifilosa. We found that the astaxanthin content decreased at high feeding rates, most likely due to decreased assimilation efficiency. This may impact the quality of zooplankton as prey. The invasion of Cercopagis pengoi, a zooplanktivorous cladoceran, has altered the trophic linkages in the Baltic Sea food web. In paper IV, we evaluated the feeding of zooplanktivorous fish on C. pengoi and found that irrespective of size both herring and sprat feed on it, with large herring being more selective. In turn, C. pengoi feeds mainly on older copepods (paper V), which are acknowledged important in fish nutrition. These results indicate that C. pengoi may compete with fish due to the diet overlap. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: In progress. Paper 3: Submitted</p>
146

Mechanisms structuring the pelagic microbial food web : Importance of resource and predation

Samuelsson, Kristina January 2003 (has links)
Temporal and spatial variations of pelagic microorganisms in the northern Baltic Sea were studied, as well as factors influencing their abundance and growth rates. Three main questions were asked 1) How does increased productivity influence the structure of the microbial food web? 2) Does predation limitation vary between trophic levels? 3) What is the relative importance of resource and predation limitation at different trophic levels? A field study in the northern Baltic Sea showed that dominating protozoa, flagellates and ciliates, increased with increasing primary productivity from north to south. Furthermore, relatively small protozoan cells dominated in the low productive north, while larger cells became more dominant in the south. The relationship between plankton size structure and productivity was further studied in an experimental system. In agreement with present theories regarding nutrient status of pelagic food webs, increased productivity caused a lengthening of the food chain as well as a change in plankton size structure. While microplankton dominated in nutrient rich treatments pico- and nanoplankton dominated during nutrient poor treament. The flagellate community was dominated by a potentially mixotroph, Chrysochromulina sp., at low nutrient concentrations. To our knowledge this is the first experimental study showing that Chrysochromulina sp. in resemblance with other mixotrophs is favoured by nutrient poor conditions compared to strict autotrophs and heterotrophs. During a stratified summer period autotrophic microorganisms in the northern Baltic Sea did not respond to removal of potential predators, indicating that they were primarily limited by inorganic nutrients. An exception was small eucaryotic picoplankton that showed a large response to predator removal. Among the heterotrophic microorganisms direct effect of predation seemed to increase from ciliates, heterotrophic bacteria, small heterotrophic flagellates, medium flagellates to large flagellates. No quick indirect effect was observed, but after four days trophic cascades were detected. The relative importance of resource and predation limitation was studied among heterotrophic bacteria, flagellates and ciliates in the northern Baltic Sea. For all these groups, resource limitation seemed to prevail during the summer period. The results also indicated that the relative importance of predation increased with the productivity of the system. To our knowledge there are no earlier measurements on the relative importance of resource and predation limitation for micoorganisms in the pelagic environment.
147

Food web dynamics in open and closed systems

Lövgren, Johan January 2004 (has links)
This thesis is a summary of enclosure and microcosm experiments that aimed to study the impact of allochtonous subsidies on food web dynamics in a heterogeneous food web. In the enclosure studies, a three trophic level littoral food web was used. The food web consisted of two growth forms of primary producers: phytoplankton and periphyton and their associated herbivores: scraping and filtering herbivores. The predator used, YOY perch, affects both pathways in the food web. Manipulation of the openness for the different trophic levels showed that the inflow of phytoplankton and cross-habitat foraging by the herbivore level reinforced the compensatory response between the two growth forms of primary producers In the microcosm experiment, the response of an herbivore food web and a microbial community to inflow of resources and food web configuration was studied, using a model food web. The model food web consisted of two forms of primary producers, i.e. phytoplankton and periphyton, and two herbivores, i.e. Daphnia pulex feeding on phytoplankton, and Chydorus sphaericus feeding on both periphyton and phytoplankton. Three different food web configurations, all having the phytoplankton and periphyton, but either one of the herbivores, or both, were set up. The flow regimes consisted of an open treatment receiving a constant supply of phytoplankton, and a closed treatment with an initial resource pool. The effect of the inflow of phytoplankton was affected by the food web configuration. In the presence of D. pulex, the inflow of phytoplankton was made accessible to periphyton, and indirectly to C. sphaericus, which increased to such high densities that D. pulex was negatively affected. The inflow of phytoplankton had an indirect negative effect on the microbial community, since the biomass of herbivores increased, which imposed a higher grazing pressure on all parts of the microbial community.
148

Complexity and Change in a Simple Food Web : Studies in the Baltic Sea (FAO Area 27.IIId)

Österblom, Henrik January 2006 (has links)
An influence at one trophic level can result in dynamic impacts also on other components of a food web. These dynamics are known as trophic cascades, and can be both top-down and bottom-up. After a near-collapse of the Baltic cod Gadus morhua stock in the 1980s, its main prey sprat Sprattus sprattus increased dramatically. The main food of sprat, marine copepods, decreased during the same time period, likely a combined effect of increased predation pressure from sprat and decreasing salinities. This shortage of food for sprat resulted in decreasing quality of sprat as a food source for common guillemots Uria aalge. However, a recent increase in fishing for sprat has again resulted in better feeding conditions for guillemots. Human impacts on this simple food web can be complex. In the early 20th century, marine mammals were abundant and nutrient levels were low in the Baltic Sea. This thesis illustrate that this situation corresponded to lower fish biomass. A reduction of seals early in the century led to reduced top-down control, which resulted in increasing fish stocks. Later, in the 1950s, the largest inflow of salt water during the century mobilized accumulated phosphorus from the deep sediments, which stimulated nitrogen fixation. Combined with increasing anthropogenic nutrient loads, this led to increased primary production and a rapid change from an oligotrophic to a eutrophicated state. This change can be termed a regime shift, which also stimulated fish production. Subsequent over-fishing of cod likely caused a second regime shift, from a cod- to a clupeid- dominated state, which led to the described effects on the common guillemots. Several factors affect the life-history of this long-lived seabird. Bycatches in gillnet fisheries is one factor directly affecting guillemot survival, and the proportion of bycatches increased during a period of increasing fishing effort. Surprisingly, avian cholera, a previously undocumented disease in common guillemots, was found at times to cause considerable adult mortality. Common guillemot life-history information can communicate the diversity of factors influencing marine ecosystems – hopefully this can increase our understanding of how complex even "simple" food webs are.
149

Effects of morphometric isolation and vegetation on the macroinvertebrate community in shallow Baltic Sea land-uplift bays

Hansen, Joakim January 2010 (has links)
Shallow sheltered Baltic Sea bays are ecologically important habitats that harbour a unique vegetation community and constitute vital reproduction areas for many coastal fish species. Knowledge about the invertebrate community in these bays is, however, limited. This thesis examines the macroinvertebrate community in shallow sheltered Baltic Sea bays and how it is affected by: (1) the natural morphometric isolation of bays from the sea due to post-glacial land uplift; and (2) differences in vegetation types. The invertebrate biomass and number of taxa was found to decrease with increased bay isolation. The taxon composition changed from dominance by bivalves and gastropods in open bays to a community composed of a larger proportion of insects in isolated bays. Stable isotope analysis indicated epiphytes and periphyton as the major energy resources for most of the examined consumers, but the relative importance of these in relation to larger plants decreased for some consumers with increased bay isolation. A comparison of invertebrate abundance between plants revealed a close relationship with morphological complexity of the plants. More complexly structured plants had higher invertebrate abundance than plants with simpler morphology. The results suggest that management of these coastal habitats should be dynamic and take into consideration the natural change in invertebrate community resulting from the slow bay isolation process. In addition, the results imply that changes in the aquatic vegetation due to anthropogenic influences could induce changes in the invertebrate community as the plant habitat structure is altered. A changed invertebrate community may in turn affect higher trophic levels since invertebrates are important food for many fish and waterfowl species. / At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Submitted. Paper 4: In press.
150

Stabilizing factors in spatially structured food webs

Gudmundson, Sara January 2009 (has links)
Ecological models have problems showing the positive relationship between diversity and stability found in nature. Theory states that complex food webs have high extinction risks and low stability. However, persistent food webs found in nature are large and complex containing many interconnections between species. There are many possible mechanisms enabling persistent food webs such as; complex interaction patterns, asynchronous fluctuations of species densities, environmental fluctuations and spatial distribution. These factors have not been used in classical models. In this study, coloured environmental 1/f noise and dispersal between subpopulations were incorporated into a diamond shaped food web based on a model by Vasseur and Fox 2007. Contradictions between theoretical and empirical results regarding food webs can be resolved by detailed analyses of models, withholding stabilizing mechanisms. Weak environmental 1/f noise generated an increased coefficient of stability but the stabilizing effect of noise can be questioned because of a decreased mean food web biomass and reduced stabilizing effect when reddened. However, detailed studies of the food web revealed that noise can redistribute density proportions between species, evading lowest species density and thereby increase food web resistance to demographic stochasticity and catastrophes. Noise induced density proportion shifts imply that large population sizes are no insurance towards future increase in environmental variance. Synchrony of species environmental responses and dispersal between subpopulations can both have major influences on stability and extinction risk of smaller food webs indicating that spatial structure could be one of the dominating factors stabilizing complex food webs found in nature.

Page generated in 0.0481 seconds