• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 125
  • 23
  • 14
  • 12
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 212
  • 212
  • 80
  • 47
  • 41
  • 36
  • 32
  • 30
  • 26
  • 26
  • 22
  • 22
  • 21
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Trophic interactions of ants, birds and bats affecting crop yield along shade gradients in tropical agroforestry

Gras, Pierre 10 December 2014 (has links)
No description available.
152

Experimental Studies on the Regulation of Pigment Dynamics in Phytoplankton and Copepods by Dissolved Inorganic Nutrients

Van Nieuwerburgh, Lies January 2004 (has links)
This thesis examines the role of dissolved inorganic nutrients in generating changes in phytoplankton community and pigment composition and if such changes can affect the production of the antioxidant astaxanthin in the ecosystem via pelagic copepods. The background of my studies is the possible relationship between eutrophication and a reproductive disturbance in Baltic populations of Atlantic salmon (M74), which is associated with astaxanthin and thiamine deficiencies and oxidative stress. In the southern Baltic Sea, changes in nutrient loads correlate with observed trends of flagellates replacing diatoms in the phytoplankton. Copepods are the main producers of astaxanthin and a major link between phytoplankton and higher trophic levels. In laboratory and field experiments in the Baltic Sea proper and the Norwegian Sea, I show that astaxanthin synthesis in copepods is fast and depends on pigment composition of the phytoplankton diet. Among single-species diets, a diatom and a green algal cyst yielded the highest astaxanthin levels in copepods, and another diatom species, a green alga and a cyanobacterium the lowest. In nutrient-generated phytoplankton blooms in mesocosms, copepods grazing on diverse communities dominated by weakly silicified diatoms produced more astaxanthin compared with copepods grazing on communities dominated by strongly silicified diatoms. This suggests that diatoms invested in defence mechanisms and escaped grazing at surplus Si. A nutrient-starved diatom culture subjected to intraspecific competition exhibited decreased pigment levels, increased thiamine levels and increased oxidative stress. My results suggest that diatoms are beneficial for astaxanthin and thiamine production compared to other phytoplankton groups, but not under all circumstances. Copepod growth and development also responded to inorganic nutrient availability and affected total astaxanthin production per volume seawater, with highest production when the copepods grazed on diatoms. From an ecosystem perspective, increased N and P loads seem to promote high astaxanthin production, but not when diatoms disappear completely.
153

Pelagic microorganisms in the northern Baltic Sea : Ecology, diversity and food web dynamics

Berglund, Johnny January 2005 (has links)
Heterotrophic microorganisms are important for the flow of carbon and nutrients in the sea. Bacteria, nanoflagellates and ciliates are relevant components of the pelagic food web. In order to be able to predict the outcome of e.g. eutrophication or climate change we need to know how the different components of the pelagic food web are regulated. With the focus on the northern Baltic Sea food web, this thesis deals with limitation and control of heterotrophic protists, the effect of resource heterogeneity on food web efficiency and diversity of nanoflagellates. In-situ microcosm experiments showed that the net growth of heterotrophic flagellates were resource limited throughout the year. Field data confirmed that the abundance of flagellates was bottom-up controlled. Furthermore, field data also showed that the annual average biomass of protists, flagellates and ciliates increased with primary productivity. On a smaller seasonal scale temperature and bacterial biomass were able to explain most of the variation in flagellate biovolume. The temporal variation in ciliate biovolume could not be explained by any bottom-up factors like bacterial biomass, flagellate biomass or chlorophyll a. This and an in-situ microcosm experiment implied that the seasonal dynamics of ciliates were more regulated by predators like mesozooplankton. The food web efficiency i.e. how much of production at the resource level is converted to production at the top trophic level, may be affected by specific size or type of resource. Indoor mesocosms revealed that the food web efficiency was 11 times lower when heterotrophic bacteria dominated basal production instead of nano- and micro-sized phytoplankton. This was due to a lengthening of the food web when pico-sized bacteria constituted the main resource. The PCR-DGGE molecular biological method was used to study the diversity of heterotrophic or mixotrophic chrysomonads. The focus was set on chrysomonads due to their relatively large contribution to the nanoflagellate community. Group-specific PCR primers were optimized for the target group. A field survey in the northern Baltic Sea showed that a handful of chrysomonad sequences were present throughout the year. Significantly more chrysomonads were recorded in the basin with higher primary productive and salinity. In total 15-16 different chrysomonad sequences were recorded. Most of them matched uncultured chrysomonad clones.
154

Molecular Analysis of Centipede Predation

Eitzinger, Bernhard 19 July 2013 (has links)
No description available.
155

Changes in trophic structure of decomposer communities with land use in Central European temperate forests

Klarner, Bernhard 20 January 2014 (has links)
No description available.
156

Ecosystem functioning in streams : Disentangling the roles of biodiversity, stoichiometry, and anthropogenic drivers

Frainer, André January 2013 (has links)
What will happen to ecosystems if species continue to go extinct at the high rates seen today? Although ecosystems are often threatened by a myriad of physical or chemical stressors, recent evidence has suggested that the loss of species may have impacts on the functions and services of ecosystems that equal or exceed other major environmental disturbances. The underlying causes that link species diversity to ecosystem functioning include species niche complementarity, facilitative interactions, or selection effects, which cause process rates to be enhanced in more diverse communities. Interference competition, antagonistic interactions, or negative selection effects may otherwise reduce the efficiency or resource processing in diverse communities. While several of these mechanisms have been investigated in controlled experiments, there is an urgent need to understand how species diversity affects ecosystem functioning in nature, where variability of both biotic and abiotic factors is usually high. Species functional traits provide an important conceptual link between the effects of disturbances on community composition and diversity, and their ultimate outcomes for ecosystem functioning. Within this framework, I investigated relationships between the decomposition of leaf litter, a fundamental ecosystem process in stream ecosystems, and the composition and diversity of functional traits within the detritivore feeding guild. These include traits related to species habitat and resource preferences, phenology, and size. I focused on disentangling the biotic and abiotic drivers, including functional diversity, regulating ecosystem functioning in streams in a series of field experiments that captured real-world environmental gradients. Leaf decomposition rates were assessed using litter-bags of 0.5 and 10 mm opening size which allow the quantification of microbial and invertebrate + microbial contributions, respectively, to litter decomposition. I also used PVC chambers where leaf litter and a fixed number of invertebrate detritivores were enclosed in the field for a set time-period. The chemical characterisation of stream detritivores and leaf litter, by means of their nitrogen, phosphorus, and carbon concentration, was used to investigate how stoichiometric imbalance between detritivores and leaf litter may affect consumer growth and resource consumption. I found that the diversity and composition of functional traits within the stream detritivore feeding guild sometimes had effects on ecosystem functioning as strong as those of other major biotic factors (e.g. detritivore density and biomass), and abiotic factors (e.g. habitat complexity and agricultural stressors). However, the occurrence of diversity-functioning relationships was patchy in space and time, highlighting ongoing challenges in predicting the role of diversity a priori. The stoichiometric imbalance between consumers and resource was also identified as an important driver of functioning, affecting consumer growth rates, but not leaf decomposition rates. Overall, these results shed light on the understanding of species functional diversity effect on ecosystems, and indicate that the shifts in the functional diversity and composition of consumer guilds can have important outcomes for the functioning of stream ecosystems.
157

Habitat selection and food-web relations of Horned Grebes (Podiceps auritus) and other aquatic birds on constructed wetlands in the Peace Parkland, Alberta, Canada

Kuczynski, Eva C Unknown Date
No description available.
158

The ecology of Arctic cod (Boreogadus saida) and interactions with seabirds, seals, and whales in the Canadian Arctic

Matley, Jordan January 2012 (has links)
This thesis investigates the foraging of Arctic cod (Boreogadus saida) and its predators during the summer in the Canadian Arctic. Findings included the identification of Arctic cod, ringed seal (Pusa hispida), beluga (Delphinapterus leucas), and narwhal (Monodon monoceros) diet shifts in response to seasonal prey availability; calculation of isotopic diet-tissue discrimination factors for Arctic cod, ringed seals, and whales based on local tissue and stomach content sampling; and determination of predatory cues to optimize foraging, such as the presence of schools. Additionally, I quantified seabird feeding and interspecific interactions such kleptoparasitism and found that black-legged kittiwakes (Rissa tridactyla) and northern fulmars (Fulmarus glacialis) captured cod directly but lost many to parasitic jaegers (Stercorarius parasiticus) and glaucous gulls (Larus hyperboreus). Finally, I determined that schools of cod were important prey sources for northern fulmars, glaucous gulls, and whales however non-schooling cod were a significant source for black-legged kittiwakes and ringed seals.
159

Summer cyanobacterial blooms in the Baltic Sea - implications for copepod recruitment

Hogfors, Hedvig January 2012 (has links)
During summer, the Baltic Sea is subjected to the world’s largest cyanobacterial blooms. These blooms are linked to eutrophication and raise many questions concerning their effects on the ecosystem. To understand their impacts on the food web dynamics, it is essential to assess growth responses of grazers to these cyanobacteria. In the northern Baltic proper, copepods are the most important herbivores providing an essential link between the primary producers and higher trophic levels. In this Thesis, Papers I &amp; II evaluate methods to estimate copepod growth in response to feeding conditions in situ. The most conspicuous diazotrophic filamentous cyanobacterium in the Baltic Sea is Nodularia spumigena, a producer of nodularin which is highly toxic to vertebrates, yet its ecological role is largely unknown. In Paper III, reciprocal interactions between cyanobacteria, sympatric algae and copepods are studied. The results suggest that nodularin is likely involved in allelopathic interactions, but it is not an inducible defense against grazers. Furthermore, the results of Papers IV &amp; V, indicate that natural assemblages of N. spumigena and Anabaena spp. may support copepod reproduction and that total diazotrophic filamentous cyanobacteria appear to provide a beneficial feeding environment for the feeding stages of copepod nauplii, most probably by stimulating the microbial communities that nauplii feed upon. Since cyanobacterial blooms are projected to increase due to global climate change, the combined effects of toxic cyanobacteria, ocean acidification and global warming predicted for year 2100 are further investigated on copepods in Paper IV. Taken together, these studies indicate that filamentous diazotrophic cyanobacteria contribute to sustaining secondary productivity and have potential implications of management practices with respect to combating eutrophication, global climate change and sustaining fish feeding conditions. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: Manuscript. Paper 5: Manuscript.</p>
160

Ecological segregation inferred using chemical tracers and contamination assessment of five toothed whales in the Northwest Iberian Peninsula

Mendez Fernandez, Paula 30 November 2012 (has links) (PDF)
The first objective of this PhD was to determine the degree of ecological segregation between five sympatric species of toothed whales (i.e. common dolphin Delphinus delphis, harbour porpoise Phocoena phocoena, bottlenose dolphin Tursiops truncatus, striped dolphin Stenella coeruleoalba and long finned pilot whale Globicephala melas) inhabiting a restricted and highly productive area, the North West Iberian Peninsula (NWIP). To this end, chemical parameters analyses were used as an "alternative method" of assessing diet and habitat of these animals over different periods of integration, complementing the information given by traditional methods of investigation such as stomach contents, faeces analyses and field observations. The second objective was to evaluate the contamination status of these species in order to estimate the toxicological risk these populations face and to complete the existing database. In this context, trace elements, carbon and nitrogen stable isotopes, as well as persistent organic pollutants (POPs) were selected as chemical parameters for our investigations.Firstly, the chemical parameters were used as ecological tracers of populations (or parts of populations) by drawing an image of the diet and habitat of the species at different time scales. We estimated that the food web has five trophic levels, with toothed whales occupying the top positions, with no significant difference in trophic positions among them, ranging from 4.3 to 5.3. While the analysis of a single chemical parameter did not completely segregate between the five species, the information gained by combining the analyses of several long-term ecological tracers (i.e. nitrogen and carbon stable isotopes in teeth and renal cadmium concentrations) revealed ecological niche segregation in two dimensions of this niche (the trophic and the spatial dimensions). However, year-to-year or seasonal variations could not be investigated, except for in common dolphin, and thus temporary overlap cannot be excluded. Additionally, we showed that polychlorinated biphenyls (PCBs) profiles could be a relevant tracer of the foraging ecology of taxonomically close species, allowing a fine separation of the species as result of their different patterns. This was particularly clear for the harbour porpoise and striped dolphin.Secondly, the contamination status of the species in this area was evaluated, with concentrations interpreted in the light of biological and ecological factors. But the bioaccumulation of trace elements appeared to be less predictable than that of POPs. Bottlenose dolphins and harbour porpoises were found to have higher PCBs concentrations than the rest of the analysed NWIP toothed whales, as well as those of adjacent NE Atlantic waters.The main results of this PhD highlight the relevance of exploiting these chemical parameters as ecological tracers, as well as their usefulness in the comprehensive study of structure and function of ecosystems through the role of top predators. Combined with the information on anthropogenic activities, this work can also contribute to the development and implementation of management plans and mitigation measures for these five species of toothed whales in the NWIP.

Page generated in 0.0538 seconds