• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 67
  • 15
  • 12
  • 1
  • Tagged with
  • 97
  • 65
  • 38
  • 38
  • 37
  • 37
  • 36
  • 30
  • 26
  • 25
  • 21
  • 19
  • 19
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Návrh lávky přes řeku Svratku v Brně / Design of footbridge over the river Svratka in Brno

Konečný, Štěpán January 2020 (has links)
The aim of this diploma thesis is to project and analyze a footbridge for pedestrians and cyclists over the Svratka river in Brno. The footbridge is single- spanned with a span of 64,7 m. Load-bearing structure is made of truss structure with upper deck. The bridge deck consists of floor beams and composite panels. Elements of the structure are made out of steel S355. The structure was designed in Scia Engineer 19.
42

Studie chování konstrukcí dřevěných lávek / Behavior studies of the timber footbridges structures

Vitásková, Petra January 2014 (has links)
Master’s thesis „Behavioral studies of the timber footbridges structures“ deals with static models of timber footbridges. This thesis mainly consists of the behavioral study of historical timber footbridge in the village of Černvír in Vysočina. Based on the actual design of the bridge a three-dimensional beam model was created. This thesis also includes two contemporary alternatives of timber covered bridges. The individual structural elements were assessed according to the applicable standards. To analyze the model FEM program SCIA Engineer 2012 was used.
43

Lávka pro pěší v Kyjově / Footbridge in Kyjov

Maleňák, Jan January 2017 (has links)
The content of diploma thesis is design of the construction of steel footbridge for pedestrians and cyclists. The footbridge is across the railway in Kyjov. The design will be processed in two options of structure. The selected option will be developed in greater detail. The span of footbridge is 35 m and the width is 3 m. The contruction is made by two arched beams which are connected to the bridge deck by suspenders. The stability of the construction is provided by longitudinal bracing under the bridge deck and the bracing between the arched beams. The assessment of the structure was made according to valid standards.
44

Posouzení mostní konstrukce na účinky dynamického zatížení / An assessment of a bridge construction on a dynamic load

Součková, Markéta January 2017 (has links)
Diploma thesis deas with static and dynamic analysis of a steel arch footbridge. The footbridge structure 3D model was created in program ANSYS 12.1 and afterwards were made static and modal analysis on this computational model. Based on the results of~modal analysis was applied to design of dynamic wind loading on the model according to norms ČSN EN. The effects of this burden has been calculated steady response at resonance from harmonic analysis according to ČSN P EN 1991-2-4. To report according to ČSN EN 1991-1-4 was designed substitute quasistatic forces corresponding loads of wind on the construction and for evaluation was used static analysis.
45

Lávka pro pěší / Footbridge

Černoch, Jakub January 2017 (has links)
Master´s thesis deals with design and complex static assessment of steel and timber cable stayed footbridge structural system over the water area. The footbridge is situated into the area of Podyjí National Park near the city of Hnanice. Footbridge span is being used as 52 metres. The structure is formed by flat arched main beams, floor beams, crossbeams, under-deck bracing, pylons and rods. From two variations of footbridge, one was selected and elaborated in more details.
46

Lávka pro pěší / Pedestrian footbridge

Bílek, Radim Unknown Date (has links)
The subject of this diploma’s thesis is design of the footbridge over Radlická street in Prague. Total length of the footbridge is about 90 m. Three variant designs were made with different systems of static construction. Based on the multi-criteria analysis, the most suitable variant was chosen. The variant A, a continuous truss beam, was chosen for detailed design. It is a truss footbridge with a lower orthotropic deck without a wind bracing. The stability of the upper chord is secured by frame stiffness of verticals and stiffness of the floor beam. Detailed static calculation includes assessment of load-bearing parts of the structure and assessment of welds. The structure is made of steel class S335. Assessment and dimensioning were designed according to valid standards ČSN EN 1990-1993.
47

Response of Footbridges equipped with TLD : A numerical and experimental assessment

Luboya, Silhady Tshitende January 2020 (has links)
In recent years, an increase to design slender and aesthetically-pleasing structures have resulted in some structures having a low natural frequency. This is because the design calculation did not meet the requirement of serviceability performance. Structures can experience excessive vibrations when they are subjected to different types of dynamic loading. A device can be installed to prevent these vibrations.In this thesis, we study the response of buildings and lateral vibrations of footbridges equipped with Tuned Liquid Damper. The aim is to mitigate the first mode of vibration. Tuned Liquid Damper consists of a container in rectangular, cylindrical or arbitrary shape partially filled with shallow liquid, most often water is used as a regulating device system. The design properties of Tuned Liquid Damper is introduced and it is based on the analogyof the most popular damper, Tuned Mass Damper.An experimental study of a building frame model with four floors is conducted to validate the numerical results obtained from the simulation of the model in ANSYS. The linear and non-linear analysis are performed through a system coupling between Ansys mechanical and Fluent solver. The simulation results obtained are in good agreement with the experimental results.A parametric study is conducted with a simply supported steel footbridge. It is a 45 m long span with 3 m width and the flexural rigidity is modified to get the lateral vibration mode. The first lateral natural frequency obtained is 0.713 Hz. The load case for the study considered is according to Sétra guide. The variable parameters studied is the Tuned Liquid Damper water mass ratios: 0.7%, 1.0%, 2.0%, 3.0% and 4.0%. The results show a satisfactory performance of the footbridge model equipped with Tuned Liquid Damper. The accelerations are below 0.1 m/s2 which satisfied the requirement of 0.15 m/s2.
48

Dynamic Analysis of the Skyway Bridge : Assessment and Application of Design Guidelines

Thufvesson, Eric, Andersson, Daniel January 2017 (has links)
In recent years the design of pedestrian bridges has become more slender. As a result the bridges has lower natural frequencies and are more prone to excessive vibrations when subjected to dynamic loads induced by pedestrians. Akademiska Hus are building such a bridge at Nya Karolinska Solna where the bridge will span over Solnavägenconnecting the hospital building, U2, and the research facility BioMedicum. Due to practical reasons, it is not possible to connect one of the bridge ends mechanicallyto the building which increases the risk for lateral modes in the sensitivefrequency range of 0-2.5 Hz. The increased risk of lateral modes of vibrations within the sensitive frequency range as well uncertainties when determining the dynamic response led to this thesis. This thesis covers a frequency analysis of the previously mention bridge and an evaluation of the dynamic response under pedestrian loading by implementation of several design guidelines. A literature review was conducted with the aim of giving a deeper knowledge of human induced vibrations and the relevant guidelines for modelling of pedestrian loading. Furthermore, a parametric study was conducted for parameters which might be prone to uncertainties in data. The investigated parameters were the Young’s modulus for concrete and the surrounding fill materialas well as the stiffness of the connection to BioMedicum. The parametric study yielded a frequency range of 2.20-2.93 Hz for the first lateral mode and 5.96-6.67 Hz for the first vertical mode of vibration. By including nonstructural mass the lower limit for the frequencies were lowered to 2.05 and 5.59 Hzin the first lateral and vertical mode respectively. The parametric study also showed that the largest impact on the natural frequencies were obtained by manipulating the parameters for the supports, both for BioMedicum and the substructure. The implementation of the guidelines resulted in a lateral acceleration between 0.05 and0.599 m/s2. No evaluation was conducted for the dynamic response in the vertical direction due to a natural frequency of 5.59 Hz, which is higher than the evaluation criteria stated in Eurocode 0. The results showed that the design of the Skyway bridge is dynamically sound with regard to pedestrian loading and no remedial actions are necessary.
49

Footbridge Dynamics : Human-Structure Interaction

Zäll, Emma January 2018 (has links)
For aesthetic reasons and due to an increased demand for cost-effective and environmentally friendly civil engineering structures, there is a trend in designing light and slender structures. Consequently, many modern footbridges are susceptible to excessive vibrations caused by human-induced loads. To counteract this, today's design guidelines for footbridges generally require verification of the comfort criteria for footbridges with natural frequencies in the range of pedestrian step frequencies. To ensure that a certain acceleration limit is not exceeded, the guidelines provide simplified methodologies for vibration serviceability assessment. However, shortcomings of these methodologies have been identified. First, for certain footbridges, human-structure interaction (HSI) effects might have a significant impact on the dynamic response. One such effect is that the modal properties of the bridge change in the presence of a crowd; most importantly, the damping of the bridge is increased. If this effect is neglected, predicted acceleration levels might be overestimated. Second, as a running person induces a force of greater amplitude than a walking person, a single runner might cause a footbridge to vibrate excessively. Hence, the running load case is highly relevant. These two aspects have in common that they are disregarded in existing design guidelines. For the stated reasons, the demand for improvements of the guidelines is currently high and, prospectively, it might be necessary to require the consideration of both the HSI effect and running loads. Therefore, this licentiate thesis aims at deepening the understanding of these subjects, with the main focus being placed on the HSI effect and, more precisely, on how it can be accounted for in an efficient way. A numerical investigation of the HSI effect and its impact on the vertical acceleration response of a footbridge was performed. The results show that the HSI effect reduces the peak acceleration and that the greatest reduction is obtained for a crowd to bridge frequency ratio close to unity and a high crowd to bridge mass ratio. Furthermore, the performance of two simplified modelling approaches for consideration of the HSI effect was evaluated. Both simplified models can be easily implemented and proved the ability to predict the change in modal properties as well as the structural response of the bridge. Besides that, the computational cost was reduced, compared to more advanced models. Moreover, a case study comprising field tests and simulations was performed to investigate the effect of runners on footbridges. The acceleration limit given in the design guideline was exceeded for one single person running across the bridge while a group of seven people walking across the bridge did not cause exceedance of the limit. Hence, it was concluded that running loads require consideration in the design of a footbridge. / På grund av estetiska skäl och en ökad efterfrågan på kostnadseffektiva och miljövänliga konstruktioner är merparten av de gångbroar som konstrueras idag förhållandevis lätta och slanka. Med anledning av detta ökar risken för att stora svängningar uppstår på grund av dynamisk belastning från människor på bron. För att motverka att detta inträffar kräver dagens normer att komforten verifieras för gångbroar med egenfrekvenser inom området för människans stegfrekvens. Komforten verifieras genom att säkerställa att ett visst accelerationskriterium inte överskrids. För detta ändamål finns handböcker som tillhandahåller förenklade beräkningsmetoder för uppskattning av accelerationsnivåer. Brister i dessa beräkningsmetoder har emellertid identifierats. För det första kan olika typer av människa-bro-interaktion (HSI) ha en betydande inverkan på responsen hos vissa broar. Exempel på en HSI-effekt är att brons modala egenskaper förändras när människor befinner sig på bron; i huvudsak sker en ökning av brons dämpning. Om denna effekt inte tas i beaktande föreligger stor risk att överskatta förväntade accelerationsnivåer. För det andra är kraften från en löpare större än kraften från en gående person vilket gör att en ensam löpare på en gångbro kan ge upphov till accelerationsnivåer som överskrider gränsvärdena för komfort. Löpande personer är därför ett mycket relevant lastfall. Befintliga normer uttrycker inte explicit att någon av dessa aspekter bör tas i beaktande. Behovet av förbättrade riktlinjer för hur normerna bör tillämpas är därför mycket stort och i framtiden kan det bli nödvändigt att kräva att både HSI-effekter och löparlaster tas i beaktande. Därför syftar denna licentiatavhandling till att bidra till en fördjupad förståelse inom dessa två ämnen, med huvudfokus på ovan nämnda HSI-effekt i allmänhet och hur den kan beaktas på ett enkelt, noggrant och tidseffektivt sätt i synnerhet. En numerisk undersökning av HSI-effekten och dess inverkan på den vertikala responsen hos en gångbro genomfördes. Resultaten visar att HSI-effekten reducerar den maximala accelerationen och att störst reduktion erhålls då folksamlingen och bron har ungefär samma egenfrekvens och då folksamlingens massa är stor i förhållande till brons massa. Vidare utvärderades två förenklade metoder för beaktande av HSI-effekten vilka kan implementeras av konstruktörer med grundläggande kunskaper inom strukturdynamik. Det konstaterades att båda metoderna uppskattar HSI-effekten såväl som brons respons förhållandevis väl samtidigt som de reducerar beräkningstiden något jämfört med mer avancerade metoder. Effekten av löpare på gångbroar studerades genom en fallstudie med fältmätningar. Utifrån resultaten från dessa fältmätningar kunde det konstateras att accelerationsgränsen som anges i normerna överskreds när en ensam löpare sprang över bron men inte när en grupp på sju personer gick i takt över samma bro. Därför drogs slutsatsen att löparlaster bör tas i beaktande vid dimensionering av en gångbro. / <p>QC 20180320</p>
50

A pre-study of the dynamic behavior of a single diagonal timber arch bridge

Wang, Xiaoqi, Ye, Shufan January 2020 (has links)
The aim of this Master’s thesis was to study the dynamic behaviour of a special type ofpedestrian timber bridge with a single diagonal arch - a design proposal made in a previousstudent project. The bridge is intended to be built as a gateway to the Alfred Nobel’s Björkbornin the municipality of Karlskoga. The original plan for this thesis was to build and test adownscaled model in order to verify theoretical investigations. The laboratory testing washowever not possible to be performed, therefore the study was conducted only by means ofanalytical and numerical tools. Both a downscaled model and a full-scale bridge model wereanalysed and compared in order to find proper scale parameters. Different studies wereperformed on the models by means of the finite element method in order to investigate theinfluence of relevant parameters on dynamic behaviour of the bridge. A scale factor wasdetermined which allows for the translation of results from the downscaled model to the fullscale model. Results showed that the dynamic behaviour of this type of bridge is rathercomplicated, and the original design needs to be somewhat modified to meet the comfortcriterion for pedestrians. An increase of the width of the arch, a proper arrangement of thecables, and adoption of longitudinal steel beams under the deck were found to be efficientmethods to improve the dynamic performance of the bridge. Future work should includeexperiments on a downscaled model to validate these theoretical solutions.

Page generated in 0.141 seconds