• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 303
  • 277
  • 65
  • 62
  • 53
  • 40
  • 29
  • 27
  • 14
  • 10
  • 9
  • 8
  • 7
  • 7
  • 7
  • Tagged with
  • 935
  • 184
  • 142
  • 88
  • 87
  • 86
  • 86
  • 83
  • 77
  • 74
  • 69
  • 62
  • 62
  • 62
  • 61
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Design with Uncertain Technology Evolution

Arendt, Jonathan Lee 2012 August 1900 (has links)
Design is an uncertain human activity involving decisions with uncertain outcomes. Sources of uncertainty in product design include uncertainty in modeling methods, market preferences, and performance levels of subsystem technologies, among many others. The performance of a technology evolves over time exhibiting improving performance as research and development efforts continue. As the performance of a technology in the future is uncertain, quantifying the evolution of these technologies poses a challenge in making design decisions. Designing systems involving evolving technologies is a poorly understood problem. The objective of this research is to create a computational method allowing designers to make decisions encompassing the evolution of technology. Techniques for modeling evolution of a technology that has multiple performance attributes are developed. An S-curve technology evolution model is used. The performance of a technology develops slowly at first, quickly during heavy R&D effort, and slowly again as the performance approaches its limits. Pareto frontiers represent the set of optimal solutions that the decision maker can select from. As the performance of a technology develops, the Pareto frontier shifts to a new location. The assumed S-curve form of technology development allows the designer to apply the uncertainty of technology development directly to the S-curve evolution model rather than applying the uncertainty to the performance, giving a more focused application of uncertainty in the problem. Monte Carlo simulations are used to the propagate uncertainty through the decision. The decision-making methods give designers greater insight when making long-term decisions regarding evolving technologies. The scenario of an automotive manufacturing firm entering the electric vehicle market deciding which battery technology to include in their new line of electric cars is used to demonstrate the decision-making method. Another scenario of a wind turbine energy company deciding which technology to invest in demonstrates a more sophisticated technology evolution modeling technique and the decision making under uncertainty method.
132

A Prediction of Antibiotic Resistance with Regard to Urinary and Respiratory Tract Infections

Bella, Sinclair, Felicia, Wallnäs, Stella, Belin, Erik, Olby, Hampus, Söderberg January 2018 (has links)
In this project we set out to find when the resistance level against first line antibiotics would reach 20%. This was executed by first defining relevant bacteria and antibiotics for urinary and respiratory tract infections (UTI's, RTI's). The data was collected from the European Center for Disease Control (ECDC) and the Center for Disease Dynamics, Economics & Policy (CDDEP). The data included the level of resistance for specific years for countries in Europe, as well as for the USA. A prediction model was made using the programming language R. A linear model was used to make a five and ten year prediction. The accuracy was tested. The results were then visualized using R and MATLAB. The results show a big variation between different bacteria and antibiotic combinations. For the two E. coli combinations the resistance is already near 20% for many countries and the resistance is increasing. For the three K. pneumoniae combinations the resistance is high in Southern Europe, meaning many countries have reached or are near 20%. For the two P. aeruginosa combinations there is also a higher resistance in Southern Europe but the resistance is decreasing in most countries. The resistance for E. faecalis is also decreasing and is generally very low in all of Europe. For the only RTI relevant combination, S. pneumoniae and penicillins, the resistance is low and many countries except for Sweden show a decrease in resistance. The USA did not have data for the same time span as Europe and was therefore analyzed separately. For many combinations the USA are near the 20% limit. Only for two combinations the USA showed a decrease in resistance level, and for one of those combinations the prediction is too uncertain to make any assumptions about. For the USA there were two more combinations for RTI than for Europe. For the S. pneumoniae and penicillins combination they have, just as most of Europe, a decreasing resistance. The two combinations with Acinetobacter spp. have a high resistance that is increasing. The main challenge during this project was finding relevant data with a long timespan and with high certainty. The data found is based on invasive isolates which means that the disease which the samples are taken from is not known. The timespan and the certainty of the data affected the accuracy of the prediction model and how long period that could be predicted. The prediction model generated 202 predictions that were visualized. An ethical analysis was made concerning both research ethics and general ethics on the topic of antibiotic resistance. This analysis is meant to acknowledge these questions since we believe they are important when discussing antibiotic resistance. The objective of this project turned out to be more difficult to attain than first believed. This was because of the lack of quality data. Even though we cannot give a clear answer when each country will reach a resistance of 20% this report gives a good understanding of how the situation looks for UTI and RTI relevant bacteria.
133

Usando redes Bayesianas para a previsão da rentabilidade de empresas

L'Astorina, Humberto Carlos January 2009 (has links)
O presente trabalho emprega Redes Bayesianas para a previsão da rentabilidade de empresas. Define-se como rentabilidade superior as empresa que obtiveram retorno para os acionistas classificados acima de 81,5% em relação às demais. Adota-se a metodologia de seleção dos indicadores proposta por Sun e Shenoy (2007), que seleciona as variáveis explicativas segundo suas correlações com a variável classificadora. Obtêm-se, ao final, dois modelos sendo o primeiro com dois estados de classificação de empresas, superior e inferior; o segundo com três estados (superior mediano e inferior). Assim como Sun e Shenoy (2007), tenta-se validar o modelo Bayesiano com a regressão logística. Constata-se que não é possível afirmar que as média das taxas de sucesso dos dois modelos sejam diferentes ao se prever rentabilidade superior, entretanto a regressão tem melhor desempenho ao se prever rentabilidade baixa. A variável mais significativa tanto para o primeiro quanto para o segundo modelos foi a classificação atual da empresa, ou seja, empresas que figuram em um determinado ano no estado de rentabilidade superior são as mais propensas a repetir o resultado do que as demais. Os resultados apontam taxas de acerto que vão de 14,70% em 1999 (ano da crise cambial quando a rentabilidade média das empresas foi de 2,74%) a 52,94% em 1997 (ano cuja rentabilidade média foi de 11,76%) para o primeiro modelo e de 11,76 % (1999) a 56,60 % (2004, rentabilidade média de 10,76%) para o segundo modelo. Apesar dos modelos ainda não conseguirem alcançar uma estabilidade nas previsões os resultados são animadores quando se desenvolve a hipótese de utilidade para um possível investidor e a expectativa de retorno acumulado, ao longo dos dez anos, passa de 70,37%, que é a rentabilidade média acumulada do período, para 357,07% e 410,10 % para o primeiro e o segundo modelo respectivamente. / This work use the knowledge obtained from Bayesian networks studies of bankruptcy prediction and applied it for forecasting companies' profitability. Higher profitability is defined as the company that had returns for shareholders classified over 81.5% compared to the others. Adopting the methodology of selection of the explanatory variables proposed by Sun and SHENOY (2007) based on correlations among them with the classification variable. As a result it is obtained two models, the first one with two classification states for de classification variable, upper and low, and the second one with three states (upper, middle and low). As Sun and SHENOY (2007), the Bayesian model was compared with a logistic regression. It cannot be say that the average success rates of the two models are different for forecasting higher profitability; otherwise, for low profitability forecasts the regression model was superior. The most significant variable for both the first and for the second model was the previous company's return for the shareholders, i.e. companies that are in a given year in the state of upper profitability are more likely to repeat the resulting the next year. The results show success rates ranging from 14.70% in 1999 (year of the currency crisis when the average profitability of the companies was 2.74%) to 52.94% in 1997 (average return rate was 11.76 %) for the first model and from 11.76% (1999) to 56.60% (2004, average return rate was 10.76%) for the second model. Although the models still fail to achieve stability in the estimates the results are encouraging when developing the hypothesis of possible investor profitability when the expectation of return accumulated over the ten years, range from 70.37%, which is the average profitability accumulated in the period to 357.07% and 410.10% respectively for the first and second model.
134

Implementação de dados obtidos com imagens do sensor TM do Landsat 5 e da missão SRTM no modelo atmosférico BRAMS

Marques, Andréa Cury January 2009 (has links)
O estudo e a previsão dos sistemas de tempo, e suas variantes, é cada vez mais uma preocupação constante e difundida no meio cientifico. Esta necessidade torna-se imprescindível, à medida que tais eventos podem causar irreparáveis perdas materiais e humanas, com forte influência no seu desenvolvimento econômico e social. O BRAMS (Brazilian Regional Atmospheric Modeling System), modelo de mesoescala, tem como característica principal o aninhamento de grades, permitindo assim obter o comportamento de escala sinótica e microescala em uma única simulação. Este recebe como informações de entrada, dados de observações de superfície e altitude, subprodutos gerados de satélite ou então resultados de modelos numéricos, e estes dados necessitam estar em arquivo com formato compatível com o código do mesmo, para serem processados posteriormente. O objetivo deste trabalho foi utilizar dados provenientes do Satélite LANDSAT 5 TM (Land Remote Sensing Satellite – Thematic Mapper), para substituição das informações de vegetação e informações de altimetria da missão SRTM (Shutle Radar Topography Mission), utilizando estas informações como dados de entrada no mesmo, melhorando assim a representação das características físicas da região. A Região Metropolitana de Porto Alegre, foi a escolhida como área de estudo e especificamente foi testada a diferença quanto à simulação do modelo sem e com a implementação. Com o intuito de abranger completamente a área de estudo foram utilizadas 2 cenas do sensor TM, para a composição de mosaico de imagens, gerado originalmente com resolução espacial de 30 metros. Este mosaico foi editado, e submetido a uma classificação supervisionada através do Método da Máxima Verossimilhança com uma qualidade final na classificação de 99,7%. Após a classificação o mosaico foi reamostrado para 500 metros de resolução espacial, também foi feita uma adequação da codificação da classificação de acordo com os códigos do BRAMS. As simulações compreenderam às 24 horas do dia 9 de janeiro de 2007. Para a análise da contribuição da topografia e vegetação, foram analisadas as saídas do modelo. O resultado desta interação pode ser observado no campo de algumas variáveis meteorológicas, como direção do vento, temperatura e umidade relativa, que apresentaram comportamento distinto em cada simulação, demonstrando uma diferença qualitativa entre as duas simulações. / The study and attempt to predict weather, systems and its variants, is increasingly a constant concern of science and it is widely disseminated in the scientific field. This requirement becomes imperative, to the extent that such events can cause irreparable human and material losses, with strong influence in their social and economic development. The Brazilian Regional Atmospheric Modeling System – BRAMS, a mesoscale model, which has nesting grids as a main feature, therefore it obtains the scaling synoptic and microscale behavior on just a single simulation. It receives incoming information, surface observations and altitude data, by-products generated by satellite or numerical model results, and these data need to be set into a file format that is compatible to the code, in order to be processed later. The purpose of this work was to utilize satellite data from the LANDSAT 5 TM (Land Remote Sensing Satellite – Thematic Mapper) for the replacement of vegetation and altitude data obtained during the SRTM (Shuttle Radar Topography Mission), using this information as an input data on it, thus improving the representation of the physical features of the chosen region. The metropolitan region of Porto Alegre was chosen as the study area, and the difference as to the simulation of the model was specifically tested, with and without implementation. In order to completely cover the study area, two image scenes were used from the TM sensor for the mosaic composition, originally generated with a 30-meter spatial resolution. The mosaic was edited, and then submitted to a supervised classification through Maximum Likelihood Method with a final quality classification of 99.7%. After submitting the mosaic to sorting, it was resample into a 500-meter spatial resolution, it has been also made an appropriateness of the codification of classification according to BRAMS’ codes. The simulations comprised the 24 hours of January 9th 2007. For the analysis of the contribution of topography and vegetation, the model outputs were analyzed. The result of this interaction may be observed in the field of meteorological variables, such as some wind directions, temperature and relative humidity, which have distinct behavior at each simulation, demonstrating a qualitative difference between the two simulations.
135

Previsão de demanda turística e a acurácia das previsões frente à realização de megaeventos

Bündchen, Cristiane January 2016 (has links)
O turismo entrou em um período de forte expansão após a Segunda Guerra Mundial que perdura até os dias atuais. O aumento da circulação de turistas repercute na geração de renda e empregos para os países visitados, além do enriquecimento adquirido através das trocas culturais. Este crescimento tem despertado o interesse da comunidade científica, bem como profissional, com o intuito de explorar as metodologias para a modelagem e previsão da demanda turística. Estimativas acuradas da demanda servem de apoio para corretas tomadas de decisão por parte dos gestores quanto ao dimensionamento adequado de recursos financeiros, especialmente frente à realização de um evento de grandes proporções. Neste sentido, este trabalho tem por objetivos verificar quais são as técnicas atualmente mais utilizadas para previsão de demandas turísticas através de revisão da literatura, desde 2005 até 2015; utilizar dois métodos de modelagem (ARIMA e RNA) para modelar e prever a demanda turística de duas sedes olímpicas recentes; comparar essas previsões com as previsões obtidas por cinco métodos de combinação de previsões (médias aritmética, harmônica e geométrica, variância mínima e regressão linear) e; aplicar o método mais acurado para prever a demanda turística do Brasil. Os resultados foram avaliados através de três medidas de acurácia. Em virtude da realização dos Jogos Olímpicos em 2016, a demanda brasileira para este período foi modelada e prevista e a previsão foi ajustada segundo um ajuste matemático sazonal, objetivando ganho de acurácia. Foi observado ganho de acurácia quando as previsões foram combinadas e, na série brasileira, o ajuste adotado indicou um acréscimo de 175% na demanda original para agosto de 2016. / Tourism has experienced a strong increase since the end of World War II. The increase in tourist circulation results in income and employment expansion, besides the cultural enrichment involved in such experiences. This growth has attracted attention from the scientific community as well as professional, with the objective of exploring the methodologies for tourism demand modelling and forecasts. Accurate demand estimates serve as support for correct decision making by managers especially considering financial resource scaling for major events. In this sense, this study aims to verify which techniques are more currently used for forecasting tourism demand through review of the literature from 2005 to 2015; using two modeling methods (ARIMA and ANN) to make models and forecasting the tourism demand of two recent Olympic hosts; comparing these forecasts with the forecasts obtained for five methods of combining forecasts (arithmetic, harmonic and geometric means, minimum variance and linear regression) and; applying the most accurated method to forecast the tourism demand in Brazil. The results were evaluated using three different accuracy measurements. By virtue of the 2016 Olympic Games, the Brazilian tourism demand was modeled and the forecast was adjusted by a seasonal mathematical adjustment, designed for better precision. A gain in preciseness was observed when forecasts were combined and, for the Brazilian series, the adopted adjustment indicated an increase of 175% when compared with the original demand for August 2016.
136

Um estudo da implantação do planejamento agregado em uma pequena indústria moveleira para aquisição de materiais

Argenton, Marco Antonio [UNESP] 06 February 2009 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:17Z (GMT). No. of bitstreams: 0 Previous issue date: 2009-02-06Bitstream added on 2014-06-13T19:33:53Z : No. of bitstreams: 1 argenton_ma_me_bauru.pdf: 665367 bytes, checksum: 2aa59399173c193fd861fa254ccfb2ab (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Este trabalho apresenta um estudo de implantação do planejamento agregado para uma pequena indústria moveleira, onde através da análise de dados existentes foi possível definir e utilizar um modelo de previsão de vendas que proporcionou o deenvolvimento do planejamento agregado e permitiu a definição de produção para cada setor da empresa e também visaulizar as necessidades de materiais e insumor. A implantação dessas melhorias tornou possível melhorar a função de compras, diminuir os níveis de estoque e aumentar a eficiência do planejamento e controle de produção. A proposição e contrução do modelo partiram das necessidades percebidas pela empresa em melhorar o seu sistema de gerenciamento da produção para fazer frente ao seu crescimento, expresso por volumes sempre crescentes de venda e produção. Considerando as necessidades gerenciais e as características da empresa, um pequeno empreendimento industrial, foi proposto um modelo que atendesse a duas exigências que se contrapõem: melhoria do sistema de gerenciamento e controle da produção, especialmente compras, e simplicidade do modelo. O modelo desenvolvido contempla os impactos causados pelas oscilações de vendas no setor produtivo e permite uma visualização ampla da programação de produção e consequentemente do consumo de materiais. O cenário criado por previsão de vendas é corrigido com os dados reais, proporcionando dados mais precisos e confiáveis aos setores envolvidos. / This work presents a study of introduction of the projection collected for a small furniture industry, where through the analysis of existent data it was possible to define and to use a model of foresight of sales that provided the development of the collected projection and allowed the definition of production for each of the enterprise and also to visualize the necessities of materials and inputs. The introduction of these improvements returned possibly the function of purchases improved, to reduce the levels of stock and to increase the efficiency of the projection and control of production. The proposition and construction of the model left from the necessities realized by the enterprise in improving his system of management of the production always to do in front of his growth expressed by growing volume from sale and production. Considering the management necessities and the characteristics of the enterprise, a small industrial undertaking, there was proposed a model that was paying attention to two demands that are compared: improvement of the system of management and control of the production, specially you buy, and simplicity of the model. The developed model contemplates the impacts caused by the oscillations of sales in the productive sector and allows a spacious visualization of the planning of production and consequently of the consumption of materials. The scenery created by foresight of sales is corrected by the real data, providing more precise and reliable data to the wrapped sectors.
137

Usando redes Bayesianas para a previsão da rentabilidade de empresas

L'Astorina, Humberto Carlos January 2009 (has links)
O presente trabalho emprega Redes Bayesianas para a previsão da rentabilidade de empresas. Define-se como rentabilidade superior as empresa que obtiveram retorno para os acionistas classificados acima de 81,5% em relação às demais. Adota-se a metodologia de seleção dos indicadores proposta por Sun e Shenoy (2007), que seleciona as variáveis explicativas segundo suas correlações com a variável classificadora. Obtêm-se, ao final, dois modelos sendo o primeiro com dois estados de classificação de empresas, superior e inferior; o segundo com três estados (superior mediano e inferior). Assim como Sun e Shenoy (2007), tenta-se validar o modelo Bayesiano com a regressão logística. Constata-se que não é possível afirmar que as média das taxas de sucesso dos dois modelos sejam diferentes ao se prever rentabilidade superior, entretanto a regressão tem melhor desempenho ao se prever rentabilidade baixa. A variável mais significativa tanto para o primeiro quanto para o segundo modelos foi a classificação atual da empresa, ou seja, empresas que figuram em um determinado ano no estado de rentabilidade superior são as mais propensas a repetir o resultado do que as demais. Os resultados apontam taxas de acerto que vão de 14,70% em 1999 (ano da crise cambial quando a rentabilidade média das empresas foi de 2,74%) a 52,94% em 1997 (ano cuja rentabilidade média foi de 11,76%) para o primeiro modelo e de 11,76 % (1999) a 56,60 % (2004, rentabilidade média de 10,76%) para o segundo modelo. Apesar dos modelos ainda não conseguirem alcançar uma estabilidade nas previsões os resultados são animadores quando se desenvolve a hipótese de utilidade para um possível investidor e a expectativa de retorno acumulado, ao longo dos dez anos, passa de 70,37%, que é a rentabilidade média acumulada do período, para 357,07% e 410,10 % para o primeiro e o segundo modelo respectivamente. / This work use the knowledge obtained from Bayesian networks studies of bankruptcy prediction and applied it for forecasting companies' profitability. Higher profitability is defined as the company that had returns for shareholders classified over 81.5% compared to the others. Adopting the methodology of selection of the explanatory variables proposed by Sun and SHENOY (2007) based on correlations among them with the classification variable. As a result it is obtained two models, the first one with two classification states for de classification variable, upper and low, and the second one with three states (upper, middle and low). As Sun and SHENOY (2007), the Bayesian model was compared with a logistic regression. It cannot be say that the average success rates of the two models are different for forecasting higher profitability; otherwise, for low profitability forecasts the regression model was superior. The most significant variable for both the first and for the second model was the previous company's return for the shareholders, i.e. companies that are in a given year in the state of upper profitability are more likely to repeat the resulting the next year. The results show success rates ranging from 14.70% in 1999 (year of the currency crisis when the average profitability of the companies was 2.74%) to 52.94% in 1997 (average return rate was 11.76 %) for the first model and from 11.76% (1999) to 56.60% (2004, average return rate was 10.76%) for the second model. Although the models still fail to achieve stability in the estimates the results are encouraging when developing the hypothesis of possible investor profitability when the expectation of return accumulated over the ten years, range from 70.37%, which is the average profitability accumulated in the period to 357.07% and 410.10% respectively for the first and second model.
138

Implementação de dados obtidos com imagens do sensor TM do Landsat 5 e da missão SRTM no modelo atmosférico BRAMS

Marques, Andréa Cury January 2009 (has links)
O estudo e a previsão dos sistemas de tempo, e suas variantes, é cada vez mais uma preocupação constante e difundida no meio cientifico. Esta necessidade torna-se imprescindível, à medida que tais eventos podem causar irreparáveis perdas materiais e humanas, com forte influência no seu desenvolvimento econômico e social. O BRAMS (Brazilian Regional Atmospheric Modeling System), modelo de mesoescala, tem como característica principal o aninhamento de grades, permitindo assim obter o comportamento de escala sinótica e microescala em uma única simulação. Este recebe como informações de entrada, dados de observações de superfície e altitude, subprodutos gerados de satélite ou então resultados de modelos numéricos, e estes dados necessitam estar em arquivo com formato compatível com o código do mesmo, para serem processados posteriormente. O objetivo deste trabalho foi utilizar dados provenientes do Satélite LANDSAT 5 TM (Land Remote Sensing Satellite – Thematic Mapper), para substituição das informações de vegetação e informações de altimetria da missão SRTM (Shutle Radar Topography Mission), utilizando estas informações como dados de entrada no mesmo, melhorando assim a representação das características físicas da região. A Região Metropolitana de Porto Alegre, foi a escolhida como área de estudo e especificamente foi testada a diferença quanto à simulação do modelo sem e com a implementação. Com o intuito de abranger completamente a área de estudo foram utilizadas 2 cenas do sensor TM, para a composição de mosaico de imagens, gerado originalmente com resolução espacial de 30 metros. Este mosaico foi editado, e submetido a uma classificação supervisionada através do Método da Máxima Verossimilhança com uma qualidade final na classificação de 99,7%. Após a classificação o mosaico foi reamostrado para 500 metros de resolução espacial, também foi feita uma adequação da codificação da classificação de acordo com os códigos do BRAMS. As simulações compreenderam às 24 horas do dia 9 de janeiro de 2007. Para a análise da contribuição da topografia e vegetação, foram analisadas as saídas do modelo. O resultado desta interação pode ser observado no campo de algumas variáveis meteorológicas, como direção do vento, temperatura e umidade relativa, que apresentaram comportamento distinto em cada simulação, demonstrando uma diferença qualitativa entre as duas simulações. / The study and attempt to predict weather, systems and its variants, is increasingly a constant concern of science and it is widely disseminated in the scientific field. This requirement becomes imperative, to the extent that such events can cause irreparable human and material losses, with strong influence in their social and economic development. The Brazilian Regional Atmospheric Modeling System – BRAMS, a mesoscale model, which has nesting grids as a main feature, therefore it obtains the scaling synoptic and microscale behavior on just a single simulation. It receives incoming information, surface observations and altitude data, by-products generated by satellite or numerical model results, and these data need to be set into a file format that is compatible to the code, in order to be processed later. The purpose of this work was to utilize satellite data from the LANDSAT 5 TM (Land Remote Sensing Satellite – Thematic Mapper) for the replacement of vegetation and altitude data obtained during the SRTM (Shuttle Radar Topography Mission), using this information as an input data on it, thus improving the representation of the physical features of the chosen region. The metropolitan region of Porto Alegre was chosen as the study area, and the difference as to the simulation of the model was specifically tested, with and without implementation. In order to completely cover the study area, two image scenes were used from the TM sensor for the mosaic composition, originally generated with a 30-meter spatial resolution. The mosaic was edited, and then submitted to a supervised classification through Maximum Likelihood Method with a final quality classification of 99.7%. After submitting the mosaic to sorting, it was resample into a 500-meter spatial resolution, it has been also made an appropriateness of the codification of classification according to BRAMS’ codes. The simulations comprised the 24 hours of January 9th 2007. For the analysis of the contribution of topography and vegetation, the model outputs were analyzed. The result of this interaction may be observed in the field of meteorological variables, such as some wind directions, temperature and relative humidity, which have distinct behavior at each simulation, demonstrating a qualitative difference between the two simulations.
139

Analýza uplatňování logistiky ve vybraném podniku / Analysis of aplication of the logistics in the selected company

TESAŘ, Martin January 2008 (has links)
This diploma thesis analyses the production plant Schneider Electric, a. s. Písek both from present and future application of main logistic principles. It includes the analyse of material and information as well as applied methods: Lean Manufacturing, Kanban, Just-in-time, Short Interval Management, Six Sigma. This diploma thesis accents an importance of informational securing of the supplier and customer relationship through the forecast. The forecast is being tested and thereafter the results will be presented as an introduction for the improvement.
140

Previsão de demanda no setor de suplementação animal usando combinação e ajuste de previsões

Silva, Rodolfo Benedito da January 2014 (has links)
A previsão de demanda desempenha um papel de fundamental importância dentro das organizações, pois através dela é possível obter uma declaração antecipada do volume demandado no futuro, permitindo aos gestores a tomarem decisões mais consistentes e alocarem os recursos de modo eficaz para atender esta demanda. Entretanto, a eficiência na tomada de decisões e alocação dos recursos requer previsões cada vez mais acuradas. Diante deste contexto, a combinação de previsões tem sido amplamente utilizada com o intuito de melhorar a acurácia e, consequentemente, a precisão das previsões. Este estudo tem por objetivo fazer a adaptação de um modelo de previsão para estimar a demanda de produtos destinados à suplementação animal através da combinação de previsões, considerando as variáveis que possam impactar na demanda e a opinião de especialistas. O trabalho está estruturado em dois artigos, sendo que no primeiro buscou-se priorizar e selecionar, através do Processo Hierárquico Analítico (AHP), variáveis que possam impactar na demanda para que estas pudessem ser avaliadas na modelagem via regressão do artigo 2. Por sua vez, no segundo artigo, realizou-se a adaptação do modelo composto de previsão idealizado por Werner (2004), buscando uma previsão final mais acurada. Os resultados obtidos reforçam que as previsões, quando combinadas, apresentam desempenhos superiores para as medidas de acurácia MAPE, MAE e MSE, em relação às previsões individuais. / The demand prediction has a role of fundamental importance inside the organizations, because trough it is possible to obtain a previous declaration of the demanded amount in the future, allowing the managers to take more consistent decisions and to allocate the resources in an efficient manner in order to satisfy this demand. However, the efficiency in the support decision and resource allocation demands accurated predictions. So, the combination of predictions have been used with the aim of improving the accuracy and, consequently, the precision of the prediction. This study has as objective to do an adaptation of a prediction model to estimate the demand of products designated to animal supplementation through the combination of prediction, considering the variables that can impact in the demand and in the expert opinion. The work is structured in two papers, considering that the first searches to priorize and select through the Analitic Hierarch Process (AHP), variables that can impact in the demand, so they could be evalute in the regression modelling of the paper 2. By the way, in the second paper, it was done an adaptation of the composed prediction model proposed by Werner (2004), searching for a more accurated final prediction. The obtained results reinforce that the prediction, when combined, present superior performance to the accuracy metrics MAPE, MAE and MSE, in relation to the individual predictions.

Page generated in 0.0659 seconds