Spelling suggestions: "subject:"crc"" "subject:"rrc""
11 |
Endexspiratorisches Volumen und ventilatorische Inhomogenität eines bikompartimentellen Lungenmodelles berechnet mit Hilfe der FaltungsmethodeHinz, José Dr. 22 April 1999 (has links)
No description available.
|
12 |
Engineered Fibre-reinforced Concrete Systems for Bridge Deck Link Slab ApplicationsCameron, James January 2014 (has links)
Rehabilitation and maintenance of the aging transportation infrastructure are of major concern in the Province of Ontario. A large portion of this work is related to the durability of highway bridges around the province. One of the weakest points in a bridge structure from a durability aspect is the expansion joints that can allow harmful elements, such as road salts and contaminants to leak down from the road surface and attack the supporting structure of the bridge. Although expansion joints can be eliminated in the design of a new bridge, such as in an integral abutment bridge, this requires major changes to the supports and structure of the bridge, making it impractical for retrofitting existing bridges. One effective alternative is the replacement of a traditional expansion joint with a link slab. A link slab is a concrete slab used in place of an expansion joint to make the bridge deck continuous while keeping the supporting girders simply supported [1]. Link slabs must be able to resist large force effects both in bending and direct tension while minimizing cracking [2], one solution is to use the high tensile and flexural strength properties of an ultra-high performance fibre-reinforced concrete (UHPFRC) [3]. The UHPFRC mixtures are often proprietary and expensive. The purpose of this research was to evaluate the potential of using common fibre types with standard concrete ingredients in a fibre-reinforced concrete (FRC) as an alternative to UHPFRC in a link slab. Using a selection of macro fibres commonly used in slab on grade applications for crack control, an optimized FRC mixture was developed following the principals established by Rossi and Harrouche [4]. This mixture was then used with a variety of fibre types to evaluate the structural and durability properties of the FRC. Testing was conducted for fresh mixture properties, compressive, tensile and flexural strength as well as freezing and thawing resistance, linear shrinkage, environmental and salt exposure along with other durability tests. Results showed that the concrete mixture used for an FRC link slab should consist of; an equal ratio of fine and coarse aggregate by weight and a higher than normal percentage of cement paste, for optimal workability and a dosage of 1.5% by volume of macro steel fibres. Hooked-end steel fibres resulted in the best performance increase to the FRC of the six fibre types tested. Results also showed that reinforcing cage for an FRC link slab should be designed to ensure that fibres can evenly reach all areas of the link slab form to give homogeneous fibre distribution. Although the FRCs created did not perform to the high level of a UHPFRC, these results show a consistent and effective FRC can be created, for use in a link slab with common fibres and standard concrete materials to provide a less expensive and more widely available FRC link slab than UHPFRC.
|
13 |
Versagensprognose von Faser-Kunststoff-Verbunden basierend auf einer MehrskalenbetrachtungHühn, Dominic 21 February 2017 (has links) (PDF)
Diese Arbeit untersucht das Versagen von Faser-Kunststoff-Verbunden an dem Material Glasfaser/Epoidharz. Die mechanischen Eigenschaften des Epoxidharzes werden mitteln Zug-, Druck, und Torsionsversuch ermittelt und mittels eines eigen entwickelten Werkstoffmodells abgebildet.
Das Versagen innerhalb eines Rovings wird mithilfe von Mikromodellen bestimmt, in denen das Werkstoffmodell der Matrix eingesetzt wird. Der Fokus liegt dabei auf der Ermittlung eines geeigneten repräsentativen Volumenelementes (RVE) für die Mikrostruktur und die Ausarbeitung der Effekte aufgrund des Skalenübergangs.
Mit diesem RVE der Mikrostruktur wird das Bruchkriterium nach A. Puck. anhand virtueller Experimente kalibriert und in einem Mesomodell eingesetzt. Das Mesomodell bildet einen auf Druck beanspruchten Rohrprüfkörper ab und wird mit dem entsprechenden Experiment verglichen, um das Bruchverhalten des Rovings zu validieren.
|
14 |
Modeling of Strain-Hardening Cement-based Composites (SHCC): A Finite Element Method using the Strong Discontinuity Approach (SDA) with Explicit Representation of FibersShehni, Alaleh 15 March 2021 (has links)
Concrete is a predominant construction material due to several advantages; however, the pure cementitious composites have shown quasi-brittle behavior with undesirable typical large cracks under tensile loading conditions. Thus, the addition of a small volume of short fibers is a well-known strategy to increase the ductility and toughness of cementitious matrices besides optimization of the crack opening. Strain-hardening cement-based composites (SHCCs) is a particular class of fiber-reinforced concretes (FRCC) that can develop controlled multiple cracks while subjected to incremental tensile loading conditions. However, a proper composition design, especially concerning fiber and bond properties, still follows a trial and error approach.
This work presents a newly developed model to simulate SHCC at the meso-scale level. This model is based on Finite-Element-Method and allows for nonlinear behavior for cement matrix, fiber material, and bond laws. Concerning three complexities of target FRCC, i.e., crack formation in the cement matrix, a large number of explicit fibers with arbitrary random distribution, and fibers’ interaction with the cement matrix via the bond, extra features are added to standard FE consist of:
• Further development of the Strong Discontinuity Approach (SDA) to model discrete cracking of continuum elements on the element level
• Discretization of single fibers by truss elements with truss nodes independently placed of continuum nodes
• Connecting SDA elements to explicit truss elements by particular bond elements.
In this research study, first, theoretical basics and special implementation issues were described. Later, this newly developed model was calibrated with several simple configurations. The bond law utilized in the simulation was derived from single fiber pullout test and calibrated with several analyses. In the next step, 2D SHCC dumbbell specimens under tensile loading condition were simulated, and a series of numerical case studies were performed to assess the quality, credibility, and limitations of the numerical model. It should be noted that cracking patterns could not be directly compared to experimental cracking patterns as the simulation model’s current state is deterministic by random material properties that influence the experimental specimen behavior. Taking the effect of random field and other simplifying assumptions into account, the simulation model seems to describe enumerated SHCC behavior at an acceptable level.
In summary, a further base is given for the target-oriented design of FRCC material composition to reach the given objectives of material properties. The concepts and methods presented in this study can simulate short and thin polymer fibers in a random position and steel fibers and structures with long reinforcement in a regular arrangement.
|
15 |
Factors in Word-Final /t/ Reduction and Deletion in GermanBusath, Kellie C. 09 June 2022 (has links)
Sound reduction and deletion have been studied across many languages for some time. Usage-based approaches suggest that the more often a word is used, the more likely it is that some of the sounds are reduced. Phonetic environment, stress, and speech rate have all been studied as reasons for sound reduction or deletion. Most recently, frequency in reducing context (FRC) has been included when studying sound reduction and deletion. FRC in this thesis measures the portion of word tokens of a given word type that are followed by a reducing context. This thesis focuses on word-final /t/ reduction and deletion in German. Audio and transcriptions of six native German speakers were time aligned with the Montreal Forced Aligner for the analysis. Word frequency, phonetic environment, stress, and FRC were analyzed as factors that condition reduction and deletion. A linear mixed-effects regression model with the dependent variable of word-final /t/ duration found significance between a shorter /t/ duration and (1) a shorter duration of the preceding sound and (2) a consonant preceding the reduced /t/. A logistic mixed-effects regression model with the dependent variable of word-final /t/ deletion found significance between deletion and (1) a consonant preceding the deleted /t/ and (2) word frequency. Though FRC was not found to be significant in this study, perhaps measuring FRC with a different reducing context would be significant in a future study.
|
16 |
Audit tendering in the UK: a review of stakeholders' viewsAllam, A., Ghattas, N., Kotb, A., Eldaly, Mohamed K.A. 10 October 2016 (has links)
Yes / Despite the importance of the ongoing debate on audit tendering and its possible implications for the audit profession including audit market structure, audit quality, and auditor independence, there is an apparent lack of research into this area. Using content analysis, this study reports the results of an examination of the comment letters sent to the UK Financial Reporting Council (FRC) in response to its consultation document on the 2012 revisions of the UK Corporate Governance Code. The results indicate a general support for the FRC’s proposals with a number of key concerns related to audit quality, audit cost and auditor independence. There is also clear conflict of interests among some groups such as audit firms and companies on one side and institutional investors on the other side. There is evidence of conflict of interest between Big 4 and non-Big 4 audit firms. The findings could influence future revisions of the Code with regard to tendering and enhance policy makers’ understanding of the position taken by each group of stakeholder.
|
17 |
Construction in in-situ cast flat slabs using steel fibre reinforced concreteJarrat, Robert 12 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2011. / ENGLISH ABSTRACT: Fibre reinforced concrete (FRC) transforms concrete from a characteristically brittle material to one with a post-crack tensile residual capacity. Its application in industry has varied over the past of which the tensile properties have generally been used in the form of crack mitigation. More recently, the introduction of steel fibres has broadened this scope to structural applications in which the resisting tensile stresses that develop within a steel FRC (SFRC) element can be rather significant. This thesis reviews the existing practices and design models associated with SFRC and the suitability of its implementation as the sole form of reinforcement in in-situ cast flat slab systems. As a material SFRC is dependent on a number of factors which include the fibre type and volume, fibre distributions, element size, as well as the support and applied load conditions. Thus, its performance can be considered rather variable in comparison to conventional concrete should the incorrect practices be implemented. In order to adequately define the material characteristics, it is necessary to use test procedures that accurately reflect on the intended structural application. As a result a number of test procedures have been developed. In addition to this, the post-crack material performance is associated with a non-linear behaviour. This attribute makes the design of structural SFRC elements rather difficult. In an attempt to simplify this, existing design models define stress-strain or stress-crack width relations in which assumptions are made regarding the cross-sectional stress distribution at specified load states. This thesis takes on two parts in defining the suitability of SFRC as the sole form of reinforcement in flat slab systems. The first is a theoretical investigation regarding the micro and macro scale material performance of SFRC, the practices that exist in defining the material properties and its application in structural systems (particularly suspended slab systems), and a breakdown of the existing design models applicable to strain softening deflection hardening SFRC materials. The second part is an experimental program in which the fresh state and hardened state material properties of specified SFRC mix designs defined
through flow and beam testing respectively. These properties are then implemented in the
design and construction of full scale flexural and punching shear test slabs in an attempt to
verify the theory applied.
The investigation reveals that the use of SFRC significantly improves the ductility of
concrete systems in the post-crack state through fibre crack bridging. This ductility can result
in deflection hardening of flat slab systems in which the redistribution of stresses increases
the load carrying capacity once cracking has taken place. However, the performance of large
scale test specimens is significantly influenced by the construction practices implemented in
which the material variability increases as a result of non-uniform fibre distributions. The
results indicate that the load prediction models applied have potential to adequately predict
the ultimate failure loads of SFRC flat slab systems but however cannot account for possible
non-uniform fibre distributions which could result in premature failure of the system. / AFRIKAANSE OPSOMMING: Vesel versterkte beton (VVB) verander beton van die kenmerkende uiters bros material na ‘n material met ‘n residuele post-kraak trekkapasiteit. Die toepassing daarvan in die bedryf het
in die verlede gewissel en die trek eienskappe is oor die algemeen gebruik vir kraak
vermindering. Meer onlangs het die bekenstelling van staal vesel hierdie omvang verbreed
na die strukturele toepassings waar trekspannings wat ‘n VVB element kan weerstaan
noemenswaardig kan wees. Hierdie tesis ondersoek bestaande praktyke en ontwerpmodelle
met die oog op staalvesel versterkte beton (SVVB) en die geskiktheid van die
implementering daarvan as die enigste vorm van bekisting in in-situ gegiete plat blad stelsels.
As ‘n materiaal, is SVVB afhanklik van ‘n aantal faktore wat die tipe vesel en volume, vesel
verspreiding, element grootte, sowel as die randvoorwaardes tipe aangewende las insluit. As
gevolg hiervan, kan die gedrag van SVVB, wat korrek geïmplimenteer word, as redelik
varieerbaar beskou word wanneer dit met konvensionele beton vergelyk word. Ten einde die
materiaaleienskappe voldoende te definieer, is dit noodsaaklik dat prosedures wat die
strukturele toepassing akuraat voorstel, getoets word en daarom is ‘n aantal toets prosedures
ontwikkel. Verder het die post-kraak materiaalgedrag ‘n nie-lineêre verband wat
struktuurontwerp met SVVB redelik moeilik maak. Om dit te vereenvoudig, definieer
bestaande ontwerpmodelle spanning-vervorming of spanning-kraakwydte verhoudings
waarin aannames gemaak word ten opsigte van die spanningsverdeling oor ‘n snit, gegewe
sekere lastoestande.
Hierdie studie bestaan uit twee dele wat die geskiktheid van SVVB as die enigste vorm van
bikisting in plat blad stelsels definieer. Die eerste deel bestaan uit ‘n teoretiese ondersoek
wat handel oor die mikro- en makro-skaal materiaalgedrag van SVVB, die praktyke wat
bestaan om die materiaaleienskappe en toepassing in strukturele sisteme (spesifiek opgelegde
blad stelsels) te definieer, en ‘n uiteensetting van die bestaande ontwerpmodelle wat van toepassing is vir defleksie as gevolg van vervormingsversagting wat SVVB material verhard.
Die tweede deel bestaan uit ‘n eksperimentele program waarin die materiaaleienskappe van
gespesifiseerde SVVB meng-ontwerpe in die vars toestand en in die verharde toestand
gedefinieer word deur middel van vloei- en balktoetse onderskeidelik. Hierdie eienskappe
word dan toegepas vir die ontwerp en konstruksie van volskaalse buig- en ponsskuif
toetsblaaie ten einde die modelle en teorie wat toegepas is, te bevestig.
Die ondersoek toon dat die gebruik van SVVB die duktiliteit van beton sisteme
noemenswaardig verbeter in die post-kraak toestand deur kraak oorbrugging. Hierdie
duktiliteit kan defleksie verharding van plat blad stelsels veroorsaak waarin die herverdeling
van spannings, nadat kraking plaasgevind het, die lasdraende kapasiteit verhoog. Die gedrag
van die grootskaalse toetsmonsters word egter noemenswaardig beïnvloed deur die
konstruksiemetodes wat geïmplementeer word waarin die materialveranderlikheid toeneem as
‘n gevolg van nie-uniforme vesel verdelings. Die resultate dui daarop dat die modelle wat
toegepas is om die laste te voorspel, die potensiaal het om die grens falingslas van SVVB plat
blad stelsel voldoende te voorspel, maar neem nie moontlike nie-uniforme veselverdelings
wat kan lei tot vroeë faling van die stelsel in ag nie.
|
18 |
Development of Design Procedures for Fiber Reinforced Concrete (FRC) & Ultra-High-Performance Concrete (UHPC) Based on Experimental EvaluationsJanuary 2018 (has links)
abstract: A comprehensive study was performed on non-proprietary ultra-high-performance concrete (UHPC) material and several design methods were suggested based on numerous experimental results. Several sets of compression tests, direct tensile tests, and flexural tests were performed on UHPC to provide a better understanding of the mechanisms involved in the mechanical behavior of the fiber reinforced material. In addition to compressive tests, flexural tests, based on ASTM C1609 and EN 14651, were performed. The effect of the strain rate on the UHPC material was also investigated through the high-speed tensile tests at different strain rates. Alongside the usual measurement tools such as linear variable differential transformers (LVDT) and clip gages, digital image correlation (DIC) method was also used to capture the full-range deformations in the samples and localized crack propagations. Analytical approaches were suggested, based on the experimental results of the current research and other research groups, to provide design solutions for different applications and design approaches for UHPC and hybrid reinforced concrete (HRC) sections. The suggested methods can be used both in the ultimate limit state (ULS) and the serviceability limit state (SLS) design methods. Closed form relationships, based on the non-linear design of reinforced concrete, were used in the calculation of the load-deflection response of UHPC. The procedures were used in obtaining material properties from the flexural data using procedures that are based on back-calculation of material properties from the experimental results. Model simulations were compared with other results available in the literature. Performance of flexural reinforced UHPC concrete beam sections tested under different types of loading was addressed using a combination of fibers and rebars. The same analytical approach was suggested for the fiber reinforced concrete (FRC) sections strengthened (rehabilitated) by fiber reinforced polymers (FRP) and textile reinforced concrete (TRC). The objective is to validate the proper design procedures for flexural members as well as connection elements. The proposed solutions can be used to reduce total reinforcement by means of increasing the ductility of the FRC, HRC, and UHPC members in order to meet the required flexural reinforcement, which in some cases leads to total elimination of rebars. / Dissertation/Thesis / Masters Thesis Civil, Environmental and Sustainable Engineering 2018
|
19 |
Versagensprognose von Faser-Kunststoff-Verbunden basierend auf einer MehrskalenbetrachtungHühn, Dominic 26 October 2016 (has links)
Diese Arbeit untersucht das Versagen von Faser-Kunststoff-Verbunden an dem Material Glasfaser/Epoidharz. Die mechanischen Eigenschaften des Epoxidharzes werden mitteln Zug-, Druck, und Torsionsversuch ermittelt und mittels eines eigen entwickelten Werkstoffmodells abgebildet.
Das Versagen innerhalb eines Rovings wird mithilfe von Mikromodellen bestimmt, in denen das Werkstoffmodell der Matrix eingesetzt wird. Der Fokus liegt dabei auf der Ermittlung eines geeigneten repräsentativen Volumenelementes (RVE) für die Mikrostruktur und die Ausarbeitung der Effekte aufgrund des Skalenübergangs.
Mit diesem RVE der Mikrostruktur wird das Bruchkriterium nach A. Puck. anhand virtueller Experimente kalibriert und in einem Mesomodell eingesetzt. Das Mesomodell bildet einen auf Druck beanspruchten Rohrprüfkörper ab und wird mit dem entsprechenden Experiment verglichen, um das Bruchverhalten des Rovings zu validieren.
|
20 |
Desenvolvimento de fibras metálicas espaciais e avaliação experimental do comportamento de compósitos de concretos com adições híbridas de fibrasSchneider, Diego 22 December 2016 (has links)
Submitted by JOSIANE SANTOS DE OLIVEIRA (josianeso) on 2017-05-18T15:31:46Z
No. of bitstreams: 1
Diego Schneider_.pdf: 6006786 bytes, checksum: 39919f3d2ca8c2885f4d2e54af8bbb06 (MD5) / Made available in DSpace on 2017-05-18T15:31:46Z (GMT). No. of bitstreams: 1
Diego Schneider_.pdf: 6006786 bytes, checksum: 39919f3d2ca8c2885f4d2e54af8bbb06 (MD5)
Previous issue date: 2016-12-22 / Nenhuma / A adição de fibras a uma matriz cimentícia proporciona vários benefícios para o desempenho do compósito, podendo-se citar o controle da fissuração, ganho de tenacidade, aumento da resistência à tração, entre outros. Diante disto, busca-se uma distribuição aleatória e mais homogênea possível das fibras ao longo da matriz. É esperado que a proposição de um elemento de reforço definido a partir da união ortogonal de filamentos – fibra espacial – venha contribuir para uma distribuição mais uniforme e homogênea do reforço da matriz, evitando imperfeições no compósito e maximizando a eficiência do reforço. Este trabalho tem por objetivo criar um modelo de fibra espacial e adicioná-la em uma matriz de concreto convencional, tanto isoladamente como combinada com macrofibras monofilamentos de aço e microfibras de polipropileno, avaliando o desempenho dos compósitos resultantes em termos de trabalhabilidade, resistência à compressão, resistência à tração indireta e tenacidade. Ademais, avaliou-se a distribuição das fibras no interior da matriz de concreto e sua influência no desempenho final do compósito. Para tal, foi realizado um programa experimental com 18 compósitos, cada um com uma combinação diferente de fibras espaciais, fibras de aço monofilamento e microfibras de polipropileno. Foram executados ensaios de compressão axial, segundo a ABNT NBR 5739:2007, resistência à tração na flexão, conforme a norma JSCE-SF4 (1984) e ABNT NBR 12142:2010, e tenacidade, de acordo com a JSCE-SF4 (1984). Em virtude dos resultados obtidos, concluiu-se que as fibras espaciais apresentaram desempenho satisfatório, tanto isoladamente como hibridizada pois, além de não afetar a resistência à compressão, melhorou o comportamento à tração em 37,6% e atingiu um Fator de Tenacidade de 3,4 MPa . Ainda, observou-se que a trabalhabilidade diminuiu em relação ao concreto sem fibras, mas a capacidade de compactação não foi prejudicada. / The addition of fibers to a cementitious matrix provides several benefits to the performance of the composite, including the control of cracking, tenacity gain, increased tensile strength, among others. In view of this, a random and more homogeneous distribution of the fibers along the matrix is sought. It's expected that the proposition of a reinforcement element defined from the orthogonal union of filaments - spatial fiber - will contribute to a more uniform and homogeneous distribution of the matrix reinforcement, avoiding imperfections in the composite and maximizing the reinforcement efficiency. This dissertation aims to create a spatial fiber model and add it in a conventional concrete matrix, either alone or in combination with steel macro fibers monofilaments and polypropylene microfibers, evaluating the performance of the resulting composites in terms of workability, compressive strength, indirect tensile strength and tenacity. In addition, the distribution of the fibers inside the concrete matrix and their influence in the final performance of the composite were evaluated. For this, an experimental program was carried out with 18 composites, each with a different combination of spatial fibers, steel macro fibers monofilaments and polypropylene microfibers. It was performed the axial compression tests according to ABNT NBR 5739: 2007, the flexural tensile strength tests according JSCE-SF4 (1984) and ABNT NBR 12142:2010, and the tenacity tests according to JSCE-SF4 (1984). Based on the results obtained, it was concluded that the spatial fibers presented satisfactory performance, both alone and hybridization, because they didn't affect the compressive strength, improved the tensile behavior in 37,6% and reached a tenacity factor of 3,4 MPa. Also, it was observed that the workability decreased in relation to the concrete without fibers, but the capacity of compaction was not impaired.
|
Page generated in 0.0443 seconds