• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 66
  • 57
  • 19
  • 7
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 200
  • 200
  • 69
  • 57
  • 47
  • 42
  • 36
  • 32
  • 31
  • 31
  • 30
  • 30
  • 29
  • 29
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Etude expérimentale et modélisation d'écoulement à surface libre en présence de végétation, et transport sédimentaire associé / Experimental study and modeling of free surface flow in the presence of vegetation, and associated sediment transport

Romdhane, Hela 19 March 2019 (has links)
Les rivières forment un système dynamique complexe soumis à des variations de grande ampleur, en effet les précipitations sont jugées comme la cause fondamentale de ces fluctuations. Au cours du temps, la morphologie des rivières évolue sous l’influence de plusieurs paramètres, en particulier les crues, les ouvrages hydrauliques, le transport sédimentaire. Le développement de la végétation dans le lit de la rivière et sur les berges peut affecter les conditions hydrodynamiques et le comportement des cours d'eau, ainsi l'impact de la végétation est une question cruciale pour la gestion des réseaux d'irrigation et des flux naturels. En réduisant la vitesse, la présence de végétation peut augmenter les dépôts de sédiments et modifier le risque d'inondation du fait des effets combinés de l'augmentation de la rugosité et de la diminution de la zone d'écoulement du chenal principal du fleuve. Ces aspects sont mis en avant par l’application de simulations numériques à des cas réels : cas de la Medjerda et du Canal Medjerda Cap Bon en Tunisie. La végétation est une caractéristique commune des eaux côtières et fluviales naturelles, interagissant à la fois avec le débit d'eau et le transport de sédiments. Cependant, les processus physiques qui régissent ces interactions sont encore mal compris, ce qui rend difficile la prévision du transport des sédiments et de la morpho dynamique. L’enjeu de cette thèse est d’améliorer la connaissance des processus physiques régissant les interactions entre végétation, écoulement et transport sédimentaire. Le but final est de pouvoir améliorer la gestion des hydro-systèmes artificiels ou naturels. Ce travail impliquera deux approches complémentaires d’expériences et de modélisation analytique et numérique. Dans un premier temps, on s’attachera à mieux caractériser les processus physiques d’interaction entre végétation et écoulement. Pour cela des expériences sur différents canaux fourniront l’hydrodynamique au-dessus de végétations modèles. On mettra l’accent sur le développement des méthodes expérimentales spécifiques à l’étude de couche limite au-dessus de macro-rugosités. Ces résultats seront dans un second temps analysés à partir de modèles analytiques qui permettent d’avoir les relations hauteur-débits nécessaires pour la gestion. Les caractéristiques et les performances de plusieurs modèles seront évaluées en regard des différents types de végétations. Dans un troisième temps, des expériences avec des sédiments préciseront l’influence de la végétation sur la modification du transport solide. La réduction des contraintes sur les lits engendre une adaptation nécessaire des lois de transport classique. Un modèle d’ajustement de ces lois sera proposé. / Rivers form a complex dynamic system subject to wide variations, in fact precipitation is considered as the fundamental cause of these fluctuations. Over time, the morphology of rivers evolves under the influence of several parameters, especially floods, hydraulic structures, sediment transport. The development of vegetation in the river bed and on the banks can affect the hydrodynamic conditions and the behavior of a watercourse, so the impact of vegetation on sediment transport is a crucial issue for the management of irrigation networks and natural flows. By reducing velocity, the presence of vegetation can increase sediment deposition and modify the risk of flooding due to the combined effects of increasing roughness and decreasing of flowing area of the river main channel. These aspects are highlighted by the application of numerical simulations to real cases: the case of the Medjerda River and the Channel of Medjerda Cap Bon in Tunisia. Vegetation is a common feature of natural coastal and riverine waters, interacting with both water flow and sediment transport. However, the physical processes governing these interactions are still poorly understood, making it difficult to predict sediment transport and morpho dynamics. The aim of this thesis is to improve the knowledge of the physical processes governing the interactions between vegetation, flow and sediment transport on the one hand, and to select the appropriate model that will be applied in the real case of rivers. The ultimate purpose is to improve the management of artificial or natural hydro-systems. This work will involve two complementary approaches to experiments and analytical and numerical modeling. At first, we will focus on better characterizing the physical processes of interaction between vegetation and flow. For this, experiments on different channels will provide hydrodynamics over model vegetation’s. Emphasis will be placed on the development of experimental methods specific to boundary layer studies over macro-roughness. These results will be analyzed in a second time from analytical models that allow the stage-discharge relationships required for management. The characteristics and performances of several models will be evaluated with regard to different types of vegetation. Thirdly, experiments with sediments will specify the influence of vegetation on the modification of solid transport. The reduction of the constraints on the beds generates a necessary adaptation of the classical transport laws. An adjustment model for these laws will be proposed.
142

Modélisation numérique instationnaire pour la simulation du soudage TIG avec couplage plasma / bain de fusion / Unsteady numerical simulation of GTA welding process with plasma / weld pool coupling

Yau, Xavier 15 February 2018 (has links)
Compte tenu de l'importance de maintenir une qualité optimale des cordons de soudure et l'impossibilité d'assurer tout risque de manque de pénétration et de fusion par des contrôles non-destructifs, cette thèse permettra de développer une expertise et des outils numériques pour la simulation numérique tridimensionnelle des procédés de soudage par fusion afin de prédire la géométrie finale du cordon. Pour ce faire, on implémente une méthode de suivi d'interface afin d'améliorer la prise en compte des phénomènes thermophysiques au niveau des surfaces libres déformables. Cela permettra en outre de prendre en compte les forces agissant à la surface du bain métallique telles que la tension de surface, la gravité et la pression d'arc. Puis, il est envisagé d'améliorer l'estimation du transfert thermique entre l'arc et les pièces à assembler via un couplage instationnaire des modèles de plasma et de bain de fusion pour ainsi simuler de façon optimale la forme finale du cordon de soudure. Cette thèse permettra de traiter certaines applications industrielles spécifiques à EDF, en particulier les soudures d'étanchéité de faible épaisseur, permettant des études approfondies sur les opérations de réparations par soudage en corniche. / In order to ensure total safety during maintenance operations within nuclear power plants, it is mandatory to preserve the optimal quality of the internal weld beads. To this end, we use Computational Magnetohydrodynamics to simulate adjacent phenomena within the plasma and the weld pool in order to improve the knowledge of welding operating process. One of the difficulties is to take into account the effects induced by the thermal gradient and the variations of surfactant element concentrations on the weld pool surface known as the Marangoni effect. In order to take into account all the physical phenomena at the plasma / weld pool interface, we use an interface tracking method (Arbitrary Lagrangian-Eulerian) to improve the simulation of weld pool with free surfaces. Subsequently, it enables to capture more precisely the interfacial forces such as the Marangoni effect, the arc pressure and the gravity, and improve vertical welding simulation. Thus, this work is part of the development of a tridimensional unsteady two-way coupling in order to overcome the Gaussian boundary condition used to model the heat transfer from plasma torch towards the work piece surface. Ultimately, we could obtain an unified model for an optimal welding process simulation.
143

Techniques to Improve Application of Smooth Particle Hydrodynamics in Incompressible Flows

Boregowda, Parikshit 04 November 2019 (has links)
No description available.
144

Chiral Induction and Defect Structures in Liquid Crystal Systems

Ferris, Andrew J., PhD 02 September 2020 (has links)
No description available.
145

ELECTROHYDRODYNAMICS OF FREE SURFACE FLOWS OF SIMPLE AND COMPLEX FLUIDS

Brayden W Wagoner (11198988) 29 July 2021 (has links)
<div>For centuries, fluid flows (hydrodynamics) and electromagnetic phenomena have interested scientists and laypeople alike. The earliest recording of the intersection of these two ideas, electro-hydrodynamics, was reported four centuries ago by William Gilbert who observed that static electricity generated from rubbed amber could ``attract" water. Today electrohydrodynamic phenomena are the underlying mechanisms driving the production of nano-fibers through electro-spinning, printing circuitry, and electrospraying, which John Fenn used in his Nobel prize winning work on electrospray ionization mass spectrometry. In all of these applications, a strong electric field is used to deform a liquid-gas interface (free surface) into a sharp conical tip. Unable to sustain these large interfacial stresses, a thin jet of fluid emerges from the tip of the cone and may subsequently break into a stream of smaller droplets. This tip-streaming phenomenon demands fundamental understanding of three canonical problems in fluid mechanics: electrified cones (Taylor cones), jets, and droplets. </div><div>In this thesis, the electrohydrodynamics of free surface flows are examined through both analytical and numerical treatment of the Cauchy momentum equations augmented with Maxwell's equations. Linear oscillations and stability of (inviscid) conducting charged droplets are examined in the presence of a solid ring shaped constraint. Here the constraint gives rise to an additional mode of oscillation---absent in the analysis of a free (unconstrained) droplet. Interestingly, the amount of charge necessary for instability, the Rayleigh charge limit, is unaltered by the constraint, but the mode of oscillation associated with instability changes. While all of the aforementioned applications involve electrified liquid-gas interfaces, recent experiments reveal a previously unknown type of streaming can occur for droplets suspended in another fluid. In these experiments, the suspending fluid is more conductive and an external electric field drives the intially spherical drop to adopt an oblate shape. Based on the viscosity ratio between the drop and suspending fluid, two different types of instability were observed: (i) if the drop is more viscous, then the drop forms a dimple at its poles and ruptures though its center, a phenomenon that is now referred to as dimpling, and (ii) if the suspending fluid is more viscous, then the drop adopts a lens-like shape and emits a sheet from its equator that subsequently breaks into a stream of rings and then tiny droplets, a phenomenon that is now called equatorial streaming. The physics of these two instabilities are far beyond the applicability of linear theory, requiring careful numerical analysis. Here steady-state governing equations are solved using the Galerkin finite element method (GFEM) to reveal the exact nature of these two instabilities and their dependence on the viscosity ratio. The fate of these drops once they succumb to instability is then analyzed by fully transient simulations.</div><div> Lastly, in a growing number of applications, the working fluid is non-Newtonian, and may even contain suspended solid particles. When non-Newtonian rheology is attributable to the presence of polymer, the dynamics is analyzed by means of a DEVSS-TG/SUPGFEM algorithm that is developed for simulating viscoelastic free surface </div><div>flows. When complex fluid rheology is due to the presence of suspended solid spherical particles, both early-time (linear) and asymptotic dynamics are uncovered by coupling the motion of the particles and Newtonian fluid implicitly in a GFEM fluid-structure interaction (FSI) algorithm. These novel algorithms are used to analyze the pinch-off dynamics of liquid jets and drops.</div>
146

An Experimental Spatio-Temporal Analysis of Separated Flows Over Bluff Bodies Using Quantitative Flow Visualization

Vlachos, Pavlos P. 23 August 2000 (has links)
In order to study three-dimensional unsteady turbulent flow fields such as the wakes of bluff bodies, a Digital Particle Image Velocimetry (DPIV) system was developed. This system allows non-intrusive two-dimensional and time varying velocity measurements. Software and hardware modifications necessary to enhance the capabilities of the system were preformed, resulting in increased frequency resolution. However, due to hardware limitations and limitations inherited from the implementation of the method, space resolution is reduced. Subsequently, digital image processing tools to improve the space resolutions were developed. The advantages and limitations of the method for the study of turbulent flows are presented in detail. The developed system is employed in the documentation of time-varying turbulent flow fields. Initially we study the spanwise variation of the near wake of a low-aspect ratio, surface-mounted, circular cylinder piercing a free surface. The asymmetry of the end conditions combined with the natural unsteadiness of the vortex shedding generates a very complex flow filed which is difficult to study with conventional methods. By employing the aforementioned system we are able to reveal a departure of the two-dimensional character of the flow in the form of oblique vortex shedding. The effect of free surface on the vortex formation length and on the vortex reconnection process is documented. Near the free surface the alternate mode of vortex shedding is suppressed, leading to simultaneous shedding of vortices in the wake. Indications of vortex dislocations and change of the vortex axis in order to reconnect to the free surface are observed. Finally, a novel approach of reconstructing the three-dimensional, time -varying volume of the flow field by obtaining simultaneous measurements of Laser Doppler Velocimetry and Particle Image Velocimetry planes is presented. The same field is investigated with focus on the streamwise structures. Three-dimensional streamwise vortical structures are known to exist due to instabilities of plane shear layers. Similar streamwise vortices, also known as braid vortices have been observed in the past in the wake of circular cylinders with symmetric boundary conditions. The present spatio-temporal analysis demonstrated coexistence of two types of streamwise vortices in the wake, bilge and braid type of vortices. These may be due to the three dimensionality introduced by the free surface. In addition, the sufficient time resolution allowed the detection of the primary Von-Karman vortex through a plane of interrogation normal to the free stream, thus revealing the spanwise variation of the vortex shedding and its evolution at different downstream stations. The combination of the effect of the asymmetric boundary conditions with a free surface is investigated by adding one more source of three-dimensionality in terms of inclination of the cylinder axis. Hydrogen-bubble and particle-flow visualizations are preformed in combination with Laser-Doppler Velocimetry measurements. From both qualitative and quantitative results the effects of inclination and Froude number are documented. It is proved that the vortex shedding is suppressed for high values of the Froude number, however the inclination counteracts the vortex suppression and favors the vortex shedding mechanism. In addition, in the region of the no-slip boundary condition the flow is dominated by the effect of the horseshoe vortex. The case of a three-dimensional separated flow over a surface-mounted prism is investigated using a modified version of the system. The character of the separated from the leading edge corner shear layer and the formed separation bubble are documented in space and time along the mid-plane of symmetry of the body. Three different flows corresponding to different Reynolds numbers are studied. The unsteadiness of the flow is presented indicating a pseudo-periodic character. Large-scale, low-frequency oscillations of the shear layer that have been observed in the past using point measurement methods are now confirmed by means of a whole field velocity measurement, technique allowing a holistic view of the flow. In addition, the unsteadiness of the point of reattachment is associated with the flapping of the shear layer and the shedding of vorticity in the wake. Finally, it is demonstrated that the apparent vortex shedding mechanism of such flows is dependent on the interaction of the primary vortex of the separation bubble with a secondary vortex formed by the separation of the reverse flow boundary layer. By performing measurements with such time and space resolution the inadequacy of time averaged or point measurement methods for the treatment of such complex and unsteady flow fields becomes evident. In final case we employ Particle-Image Velocimetry to show the effect of unsteady excitation on two-dimensional separated flow over a sharp edged airfoil. It is proved that such an approach can be used to effectively control and organize the character of the flow, potentially leading to lift increase and drug reduction of bluff bodies / Ph. D.
147

Numerical Investigation of Sloshing Motion Inside Tuned Liquid Dampers With And Without Submerged Screens

Marivani , Morteza 08 1900 (has links)
<p> A numerical algorithm has been developed to solve the sloshing motion of liquid in a Tuned Liquid Damper (TLD) outfitted by slat screens under large and random amplitude of excitation. It is based on the finite-difference method. The free surface has been reconstructed using volume of fluid method. Donor-acceptor technique has been used for tracking the volume fraction field. The effect of slat screen has been included and modeled using the partial cell treatment method. </p> <p> The algorithm is an integrated fluid-structure model where the response of the structure is determined considering the effects of TLD. The structure is assumed as a single degree of freedom system (SDOF) and its response is calculated using the Duhamel integral method. </p> <p> The algorithm has been validated against experimental data for the cases with and without screens. An excellent agreement was obtained between numerical and experimental results. </p> <p> An extensive parametric study has been carried out investigating the effect of slat screens and screen pattern on the TLD performance and on the structure response. A new parameter termed as slat ratio was introduced to characterize the slat screens based on their pattern. Results indicated that screen pattern has a significant effect on the TLD performance and it could lead up to 33 % reduction in structure response. It was found that decreasing the slat ratio will increase the damping effect of a TLD outfitted by slat screen. </p> <p> The validity of the most commonly used approach, Baines and Peterson model, to calculate pressure drop of slat screens has been investigated. A conelation factor as a function of Reynolds number and solidity ratio of screen has been proposed to improve the results of this model. A new concept termed as effective solidity ratio has been proposed to account for the physical significant of screen pattern on TLD performance. </p> / Thesis / Doctor of Philosophy (PhD)
148

Modeling the Dynamics of Liquid Metal in Fusion Liquid Walls Using Maxwell-Navier-Stokes Equations

Murugaiyan, Suresh 23 February 2024 (has links)
The dissertation explores a framework for numerically simulating the deformation of the liquid metal wall's free surface in Z-pinch fusion devices. This research is conducted in the context of utilizing liquid metals as plasma-facing components in fusion reactors. In the Z-pinch fusion process, electric current travels through a plasma column and enters into a pool of liquid metal. The current flowing through the liquid metal generates Lorentz force, which deforms the free surface of the liquid metal. Modeling this phenomenon is essential as it offers insights into the feasibility of using liquid metal as an electrode wall in such fusion devices. The conventional magneto-hydrodynamic (MHD) formulation aims at modeling the situation where an external magnetic field is applied to flows involving electrically conducting liquids, with the initial magnetic field is known and then evolved over time through magnetic induction equation. However, in Z-pinch fusion devices, the electric current is directly injected into a conducting liquid. In these situations, an analytical expression for the magnetic field generated by the applied current is not readily available, necessitating numerical calculations. Moreover, the deformation of the liquid metal surface changes the geometry of the current path over time and the resulting magnetic field. By directly solving the Maxwell equations in combination with Navier-Stokes equations, it becomes possible to predict the magnetic field even when the fluid is in motion. In this dissertation, a numerical framework utilizing the Maxwell-Navier-Stokes system is explored to successfully capture the deformation of the liquid metal's free surface due to applied electric current. / Doctor of Philosophy / In this dissertation, a method is described that uses a computer to simulate how the initially stable, flat surface of liquid metal deforms when subjected to electrical currents in Z-pinch fusion devices, a specific type of nuclear fusion technology. Z-pinch fusion devices generate plasma, a hot fluid-like substance, through the nuclear fusion process, triggered and maintained by strong pulsated current. There's a growing interest in using liquid metal as the first layer of material to isolate the hot plasma from the rest of the nuclear fusion reactor body, rather than solid materials, due to its unique benefits. However, the Z-pinch fusion process, by introducing electric currents through the liquid metal layer, induces a Lorentz force that consequently deforms the surface of the liquid metal. Developing a tool to predict this deformation is vital as it aids in evaluating the potential of using liquid metal as a plasma-facing layer over solid materials in these fusion devices. The simulation tools presented in this dissertation are able to successfully captures the dynamics of how the liquid metal surface deforms under the impact of electrical currents.
149

A B-Spline Geometric Modeling Methodology for Free Surface Simulation

Nandihalli, Sunil S 08 May 2004 (has links)
Modeling the free surface flows is important in order to estimate the total drag of the sea Vessels. It is also necessary to study the effects of various maritime maneuvers. In this work, different ways of approximating an unstructured free surface grid with a B-spline surface are investigated. The Least squares and Galerkin approaches are studied in this regard. B-spline nite element method (BSPFEM) is studied for the solution of the steady-state kinematic free surface equation. The volume grid has to be moved in order to match the free boundary when the surface-tracking approach is adopted for the solution of free surface problem. Inherent smoothness of the B-spline representation of the free surface aids this process. B-spline representation of the free surface aids in building viscous volume grids hose boundaries closely match the steady state free surface. The B-spline approximation algorithm and BSPFEM solution of free surface equation have been tested with hypothetical algebraic testcases and real cases such as Gbody, Wigley hull and David Taylor Model Basin(DTMB) 5415 hull series.
150

Fluid-Structure Interaction Modeling of Epithelial Cell Deformation during Microbubble Flows in Compliant Airways

Chen, Xiaodong 20 June 2012 (has links)
No description available.

Page generated in 0.0924 seconds