• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 24
  • 24
  • 15
  • 15
  • 12
  • 9
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Evaluation of FMCW Radar Jamming Sensitivity

Snihs, Ludvig January 2023 (has links)
In this work, the interference sensitivity of an FMCW radar has been evaluated by studying the impact on a simulated detection chain. A commercially available FMCW radar was first characterized and its properties then laid the foundation for a simulation model implemented in Matlab. Different interference methods have been studied and a selection was made based on the results of previous research. One method aims to inject a sufficiently large amount of energy in the form of pulsed noise into the receiver. The second method aims to deceive the radar into seeing targets that do not actually exist by repeating the transmitted signal and thus giving the radar a false picture of its surroundings. The results show that if it is possible to synchronize with the transmitted signal then repeater jamming can be effective in misleading the radar. In one scenario the false target even succeeded in hiding the real target by exploiting the Cell-Averaging CFAR detection algorithm. The results suggests that without some smart countermeasures the radar has no way of distinguishing a coherent repeater signal, but just how successful the repeater is in creating a deceptive environment is highly dependent on the detection algorithm used. Pulsed noise also managed to disrupt the radar and with a sufficiently high pulse repetition frequency the detector could not find any targets despite a simulated object in front of the radar. On the other hand, a rather significant effective radiated power level was required for the pulse train to achieve any meaningful effect on the radar, which may be due to an undersampled signal in the simulation. It is therefore difficult based on this work to draw any conclusions about how suitable pulsed noise is in a non-simulated interference context and what parameter values to use.
22

Système de contrôle pour microscope à force atomique basé sur une boucle à verrouillage de phase entièrement numérique

Bouloc, Jeremy 29 May 2012 (has links)
Un microscope à force atomique (AFM) est utilisé pour caractériser des matériaux isolant ou semi-conducteur avec une résolution pouvant atteindre l'échelle atomique. Ce microscope est constitué d'un capteur de force couplé à une électronique de contrôle pour pouvoir correctement caractériser ces matériaux. Parmi les différents modes (statique et dynamique), nous nous focalisons essentiellement sur le mode dynamique et plus particulièrement sur le fonctionnement sans contact à modulation de fréquence (FM-AFM). Dans ce mode, le capteur de force est maintenu comme un oscillateur harmonique par le système d'asservissement. Le projet ANR Pnano2008 intitulé : ”Cantilevers en carbure de silicium à piézorésistivité métallique pour AFM dynamique à très haute fréquence" a pour objectif d'augmenter significativement les performances d'un FM-AFM en développant un nouveau capteur de force très haute fréquence. Le but est d'augmenter la sensibilité du capteur et de diminuer le temps nécessaire à l'obtention d'une image de la surface du matériau. Le système de contrôle associé doit être capable de détecter des variations de fréquence de 100mHz pour une fréquence de résonance de 50MHz. Etant donné que les systèmes présents dans l'état de l'art ne permettent pas d'atteindre ces performances, l'objectif de cette thèse fut de développer un nouveau système de contrôle. Celui-ci est entièrement numérique et il est implémenté sur une carte de prototypage basée sur un FPGA. Dans ce mémoire, nous présentons le fonctionnement global du système ainsi que ses caractéristiques principales. Elles portent sur la détection de l'écart de fréquence de résonance du capteur de force. / An atomic force microscope (AFM) is used to characterize insulating materials or semiconductors with a resolution up to the atomic length scale. The microscope includes a force sensor linked to a control electronic in order to properly characterize these materials. Among the various modes (static and dynamic), we focus mainly on the dynamic mode and especially on the frequency modulation mode (FM-AFM). In this mode, the force sensor is maintained as a harmonic oscillator by the servo system. The research project ANR Pnano2008 entitled: "metal piezoresistivity silicon carbide cantilever for very high frequency dynamic AFM" aims to significantly increase the performance of a FM-AFM by developing new very high frequency force sensors. The goal is to increase the sensitivity of the sensor and to decrease the time necessary to obtain topography images of the material. The control system of this new sensor must be able to detect frequency variations as small as 100mHz for cantilevers with resonance frequencies up to 50MHz. Since the state-of-the-art systems doe not present these performances, the objective of this thesis was to develop a new control system. It is fully digital and it is implemented on a FPGA based prototyping board. In this report, we present the system overall functioning and its main features which are related to the cantilever resonant frequency detection. This detection is managed by a phase locked loop (PLL) which is the key element of the system.
23

Parameters Selection for Optimising Time-Frequency Distributions and Measurements of Time-Frequency Characteristics of Nonstationary Signals

Sucic, Victor January 2004 (has links)
The quadratic class of time-frequency distributions (TFDs) forms a set of tools which allow to effectively extract important information from a nonstationary signal. To determine which TFD best represents the given signal, it is a common practice to visually compare different TFDs' time-frequency plots, and select as best the TFD with the most appealing plot. This visual comparison is not only subjective, but also difficult and unreliable especially when signal components are closely-spaced in the time-frequency plane. To objectively compare TFDs, a quantitative performance measure should be used. Several measures of concentration/complexity have been proposed in the literature. However, those measures by being derived with certain theoretical assumptions about TFDs are generally not suitable for the TFD selection problem encountered in practical applications. The non-existence of practically-valuable measures for TFDs' resolution comparison, and hence the non-existence of methodologies for the signal optimal TFD selection, has significantly limited the use of time-frequency tools in practice. In this thesis, by extending and complementing the concept of spectral resolution to the case of nonstationary signals, and by redefining the set of TFDs' properties desirable for practical applications, we define an objective measure to quantify the quality of TFDs. This local measure of TFDs' resolution performance combines all important signal time-varying parameters, along with TFDs' characteristics that influence their resolution. Methodologies for automatically selecting a TFD which best suits a given signal, including real-life signals, are also developed. The optimisation of the resolution performances of TFDs, by modifying their kernel filter parameters to enhance the TFDs' resolution capabilities, is an important prerequisite in satisfying any additional application-specific requirements by the TFDs. The resolution performance measure and the accompanying TFDs' comparison criteria allow to improve procedures for designing high-resolution quadratic TFDs for practical time-frequency analysis. The separable kernel TFDs, designed in this way, are shown to best resolve closely-spaced components for various classes of synthetic and real-life signals that we have analysed.
24

Reconnaissance Radar Robot

Holm, Kasper, Henrysson, Erik January 2023 (has links)
During the last century, various countries' armed forces have used unmanned aerial vehicles, commonly known as drones. In recent years, strives have been made to develop small commercial drones that have allowed the general public to afford and use them for recreational purposes. The availability of drones has led to immoral applications of the technology. Such applications need to be faced with anti-measures and effective detection methods. Therefore, this thesis aims to develop a mobile reconnaissance robot that can detect commercial drones with radar. It describes integrating radar sensors with single-board computers to detect and localise air-bound objects. The finished product aims to be used for educational and exhibition purposes at the Swedish Armed Forces technical school to increase awareness of the technology. / <p>Försvarsmaktens tekniska skola i Halmstad var intressenter för uppsatsen.</p>

Page generated in 0.1061 seconds