• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 9
  • 3
  • 3
  • Tagged with
  • 64
  • 64
  • 29
  • 27
  • 25
  • 18
  • 17
  • 17
  • 16
  • 13
  • 12
  • 12
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Injection Locked Synchronous Oscillators (SOs) and Reference Injected Phase-Locke Loops (PLL-RIs)

Lei, Feiran 25 August 2017 (has links)
No description available.
62

Performance enhancement techniques for low power digital phase locked loops

Elshazly, Amr 16 July 2014 (has links)
Desire for low-power, high performance computing has been at core of the symbiotic union between digital circuits and CMOS scaling. While digital circuit performance improves with device scaling, analog circuits have not gained these benefits. As a result, it has become necessary to leverage increased digital circuit performance to mitigate analog circuit deficiencies in nanometer scale CMOS in order to realize world class analog solutions. In this thesis, both circuit and system enhancement techniques to improve performance of clock generators are discussed. The following techniques were developed: (1) A digital PLL that employs an adaptive and highly efficient way to cancel the effect of supply noise, (2) a supply regulated DPLL that uses low power regulator and improves supply noise rejection, (3) a digital multiplying DLL that obviates the need for high-resolution TDC while achieving sub-picosecond jitter and excellent supply noise immunity, and (4) a high resolution TDC based on a switched ring oscillator, are presented. Measured results obtained from the prototype chips are presented to illustrate the proposed design techniques. / Graduation date: 2013 / Access restricted to the OSU Community at author's request from July 16, 2012 - July 16, 2014
63

Low-cost SiGe circuits for frequency synthesis in millimeter-wave devices

Lauterbach, Adam Peter January 2010 (has links)
"2009" / Thesis (MSc (Hons))--Macquarie University, Faculty of Science, Dept. of Physics and Engineering, 2010. / Bibliography: p. 163-166. / Introduction -- Design theory and process technology -- 15GHz oscillator implementations -- 24GHz oscillator implementation -- Frequency prescaler implementation -- MMIC fabrication and measurement -- Conclusion. / Advances in Silicon Germanium (SiGe) Bipolar Complementary Metal Oxide Semiconductor (BiCMOS) technology has caused a recent revolution in low-cost Monolithic Microwave Integrated Circuit (MMIC) design. -- This thesis presents the design, fabrication and measurement of four MMICs for frequency synthesis, manufactured in a commercially available IBM 0.18μm SiGe BiCMOS technology with ft = 60GHz. The high speed and low-cost features of SiGe Heterojunction Bipolar Transistors (HBTs) were exploited to successfully develop two single-ended injection-lockable 15GHz Voltage Controlled Oscillators (VCOs) for application in an active Ka-Band antenna beam-forming network, and a 24GHz differential cross-coupled VCO and 1/6 synchronous static frequency prescaler for emerging Ultra Wideband (UWB) automotive Short Range Radar (SRR) applications. -- On-wafer measurement techniques were used to precisely characterise the performance of each circuit and compare against expected simulation results and state-of-the-art performance reported in the literature. -- The original contributions of this thesis include the application of negative resistance theory to single-ended and differential SiGe VCO design at 15-24GHz, consideration of manufacturing process variation on 24GHz VCO and prescaler performance, implementation of a fully static multi-stage synchronous divider topology at 24GHz and the use of differential on-wafer measurement techniques. -- Finally, this thesis has llustrated the excellent practicability of SiGe BiCMOS technology in the engineering of high performance, low-cost MMICs for frequency synthesis in millimeterwave (mm-wave) devices. / Mode of access: World Wide Web. / xxii, 166 p. : ill (some col.)
64

Frequency Synthesis for Cognitive Radio Receivers and Other Wideband Applications

Zahir, Zaira January 2017 (has links) (PDF)
The radio frequency (RF) spectrum as a natural resource is severely under-utilized over time and space due to an inefficient licensing framework. As a result, in-creasing cellular and wireless network usage is placing significant demands on the licensed spectrum. This has led to the development of cognitive radios, software defined radios and mm-wave radios. Cognitive radios (CRs) enable more efficient spectrum usage over a wide range of frequencies and hence have emerged as an effective solution to handle huge network demands. They promise versatility, flex-ability and cognition which can revolutionize communications systems. However, they present greater challenges to the design of radio frequency (RF) front-ends. Instead of a narrow-band front-end optimized and tuned to the carrier frequency of interest, cognitive radios demand front-ends which are versatile, configurable, tun-able and capable of transmitting and receiving signals with different bandwidths and modulation schemes. The primary purpose of this thesis is to design a re-configurable, wide-band and low phase-noise fast settling frequency synthesizer for cognitive radio applications. Along with frequency generation, an area efficient multi-band low noise amplifier (LNA) with integrated built-in-self-test (BIST) and a strong immunity to interferers has also been proposed and implemented for these radios. This designed LNA relaxes the specification of harmonic content in the synthesizer output. Finally some preliminary work has also been done for mm-wave (V-band) frequency synthesis. The Key Contributions of this thesis are: A frequency synthesizer, based on a type-2, third-order Phase Locked Loop (PLL), covering a frequency range of 0.1-5.4 GHz, is implemented using a 0.13 µm CMOS technology. The PLL uses three voltage controlled oscillators (VCOs) to cover the whole range. It is capable of switching between any two frequencies in less than 3 µs and has phase noise values, compatible with most communication standards. The settling of the PLL in the desired state is achieved in dynamic multiple steps rather than traditional single step settling. This along with other circuit techniques like a DAC-based discriminator aided charge pump, fast acquisition pulse-clocked based PFD and timing synchro-negation is used to obtain a significantly reduced settling time A single voltage controlled LC-oscillator (LC-VCO) has been designed to cover a wide range of frequencies (2.0-4.1 GHz) using an area efficient and switch-able multi-tap inductor and a capacitor bank. The switching of the multi-tap inductor is done in the most optimal manner so as to get good phase-noise at the output. The multi-tap inductor provides a significant area advantage, and in spite of a degraded Q, provides an acceptable phase noise of -123 dBc/Hz and -113 dBc/Hz at an offset of 1 MHz at carrier frequencies of 2 and 4 GHz, respectively. Implemented in a 0.13 µm CMOS technology, the oscillator with ≈ 69 % tuning range, occupies an active area of only 0.095 mm2. An active inductor based noise-filter has been proposed to improve the phase-noise performance of the oscillator without much increase in the area. A variable gain multi-band low noise amplifier (LNA) is designed to operate over a wide range of frequencies (0.8 GHz to 2.4 GHz) using an area efficient switchable-π network. The LNA can be tuned to different gain and linearity combinations for different band settings. Depending upon the location of the interferers, a specific band can be selected to provide optimum gain and the best signal-to-intermodulation ratio. This is accomplished by the use of an on-chip Built-in-Self-Test (BIST) circuit. The maximum power gain of the amplifier is 19 dB with a return loss better than 10 dB for 7 mW of power consumption. The noise figure is 3.2 dB at 1 GHz and its third-order intercept point (I I P3) ranges from -15 dBm to 0 dBm. Implemented in a 0.13 µm CMOS technology, the LNA occupies an active area of about 0.29 mm2. Three different types of VCOs (stand-alone LC VCO, push-push VCO and a ring oscillator based VCO) for generating mm-wave frequencies have been implemented using 65-nm CMOS technology and their measured results have been analyzed

Page generated in 0.0735 seconds