• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 109
  • 51
  • 24
  • 17
  • 7
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 295
  • 295
  • 226
  • 97
  • 68
  • 63
  • 63
  • 52
  • 47
  • 42
  • 41
  • 40
  • 39
  • 37
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

Spot Welding of Advanced High Strength Steels (AHSS)

Khan, Mohammad Ibraheem 20 April 2007 (has links)
Efforts to reduce vehicle weight and improve crash performance have resulted in increased application of advanced high strength steels (AHSS) and a recent focus on the weldability of these alloys. Resistance spot welding (RSW) is the primary sheet metal welding process in the manufacture of automotive assemblies. Integration of AHSS into the automotive architecture has brought renewed challenges for achieving acceptable welds. The varying alloying content and processing techniques has further complicated this initiative. The current study examines resistance spot welding of high strength and advance high strength steels including high strength low alloy (HSLA), dual phase (DP) and a ferritic-bainitic steel (590R). The mechanical properties and microstructure of these RSW welded steel alloys are detailed. Furthermore a relationship between chemistries and hardness is produced. The effect of strain rate on the joint strength and failure mode is also an important consideration in the design of welded structures. Current literature, however, does not explain the effects of weld microstructure and there are no comprehensive comparisons of steels. This work details the relationship between the joint microstructure and impact performance of spot welded AHSS. Quasi-static and impact tests were conducted using a universal tensile tester and an instrumented drop tower, respectively. Results for elongation, failure load and energy absorption for each material are presented. Failure modes are detailed by observing weld fracture surfaces. In addition, cross-sections of partially fractured weldments were examined to detail fracture paths during static loading. Correlations between the fracture path and mechanical properties are developed using observed microstructures in the fusion zone and heat-affected-zone. Friction stir spot welding (FSSW) has proven to be a potential candidate for spot welding AHSS. A comparative study of RSW and FSSW on spot welding AHSS has also been completed. The objective of this work is to compare the microstructure and mechanical properties of Zn-coated DP600 AHSS (1.2mm thick) spot welds conducted using both processes. This was accomplished by examining the metallurgical cross-sections and local hardnesses of various spot weld regions. High speed data acquisition was also used to monitor process parameters and attain energy outputs for each process.
282

Spot Welding of Advanced High Strength Steels (AHSS)

Khan, Mohammad Ibraheem 20 April 2007 (has links)
Efforts to reduce vehicle weight and improve crash performance have resulted in increased application of advanced high strength steels (AHSS) and a recent focus on the weldability of these alloys. Resistance spot welding (RSW) is the primary sheet metal welding process in the manufacture of automotive assemblies. Integration of AHSS into the automotive architecture has brought renewed challenges for achieving acceptable welds. The varying alloying content and processing techniques has further complicated this initiative. The current study examines resistance spot welding of high strength and advance high strength steels including high strength low alloy (HSLA), dual phase (DP) and a ferritic-bainitic steel (590R). The mechanical properties and microstructure of these RSW welded steel alloys are detailed. Furthermore a relationship between chemistries and hardness is produced. The effect of strain rate on the joint strength and failure mode is also an important consideration in the design of welded structures. Current literature, however, does not explain the effects of weld microstructure and there are no comprehensive comparisons of steels. This work details the relationship between the joint microstructure and impact performance of spot welded AHSS. Quasi-static and impact tests were conducted using a universal tensile tester and an instrumented drop tower, respectively. Results for elongation, failure load and energy absorption for each material are presented. Failure modes are detailed by observing weld fracture surfaces. In addition, cross-sections of partially fractured weldments were examined to detail fracture paths during static loading. Correlations between the fracture path and mechanical properties are developed using observed microstructures in the fusion zone and heat-affected-zone. Friction stir spot welding (FSSW) has proven to be a potential candidate for spot welding AHSS. A comparative study of RSW and FSSW on spot welding AHSS has also been completed. The objective of this work is to compare the microstructure and mechanical properties of Zn-coated DP600 AHSS (1.2mm thick) spot welds conducted using both processes. This was accomplished by examining the metallurgical cross-sections and local hardnesses of various spot weld regions. High speed data acquisition was also used to monitor process parameters and attain energy outputs for each process.
283

Θερμομηχανική προσομοίωση των προηγμένων διεργασιών συγκόλλησης με τριβή-ανάμιξη και με ακτίνα λέιζερ

Μωραΐτης, Γεράσιμος 11 January 2011 (has links)
Τα κριτήρια σχεδιασμού στις σύγχρονες κατασκευές και κυρίως στην αεροναυπηγική και ναυπηγική βιομηχανία, στοχεύουν στην παραγωγή δομικών στοιχείων με μειωμένο βάρος και χαμηλότερο κόστος, ενώ ταυτόχρονα, απαιτείται να παρουσιάζουν υψηλότερες επιδόσεις και ικανοποιητική δομική ασφάλεια. Οι στόχοι αυτοί έχουν διαμορφώσει μια σχεδιαστική τάση η οποία οδηγεί στην αντικατάσταση των ‘παραδοσιακών’ διαφορικών δομών (differential structures) με ‘σύγχρονες’ ολοκληρωμένες δομές (integral structures). Η τάση αυτή βρίσκει εφαρμογή κατά κύριο λόγο στην αεροναυπηγική, όπου η μείωση του βάρους χωρίς υποβάθμιση της ασφαλούς λειτουργίας αποτελεί βασικό και μόνιμο στόχο. Η αυξημένη παραγωγή δομικών στοιχείων ολοκληρωμένων δομών έχει οδηγήσει σε συνεχή αύξηση της εφαρμογής διεργασιών συνένωσης με έμφαση στις προηγμένες διεργασίες συγκόλλησης. Οι διεργασίας συγκόλλησης οι οποίες, λόγω των πλεονεκτημάτων τους, βρίσκονται στην αιχμή της τεχνολογίας είναι η Συγκόλληση με Τριβή και Ανάμιξη (Friction Stir Welding – FSW) και η Συγκόλληση με Ακτίνα Λέιζερ (Laser Beam Welding – LBW). Η εφαρμογή συγκολλήσεων στην παραγωγή ολοκληρωμένων δομών έχει πολλά τεχνολογικά πλεονεκτήματα έναντι των άλλων τύπων σύνδεσης, ωστόσο, συνοδεύονται από την ανάπτυξη Παραμενουσών Τάσεων και στρεβλώσεων στο τελικό προϊόν, κάτι το οποίο, ανάλογα με την εφαρμογή, μπορεί να προκαλέσει σημαντικά προβλήματα. Συγκεκριμένα, οι στρεβλώσεις επηρεάζουν τη λειτουργικότητα του δομικού στοιχείου, αφού μεταβάλλουν την γεωμετρία του, ενώ οι παραμένουσες τάσεις, αναπροσαρμόζοντας το εσωτερικό εντατικό πεδίο, επιδρούν στη δομική τους ακεραιότητα. Όπως είναι γνωστό με κατάλληλη επιλογή των παραμέτρων της διεργασίας (π.χ. ταχύτητα συγκόλλησης, ισχύς κτλ) μπορεί να επιτευχθεί μείωση των αναπτυσσόμενων παραμενουσών τάσεων και στρεβλώσεων. Επίσης, τα τελευταία χρόνια έχει αποδειχθεί ότι η προσομοίωση μιας διεργασίας συγκόλλησης μπορεί να βοηθήσει σημαντικά στην επιλογή του βέλτιστου συνδυασμού των παραμέτρων της. Για το λόγο αυτό, μεγάλο μέρος της ερευνητικής δραστηριότητας στην περιοχή των προηγμένων διεργασιών συγκόλλησης έχει στραφεί προς την ανάπτυξη αξιόπιστων μεθοδολογιών προσομοίωσης, οι οποίες με δεδομένο (input data) τις παραμέτρους της διεργασίας μπορούν να δώσουν σαν αποτέλεσμα (output data) κρίσιμες απαντήσεις όσον αφορά στις τεχνολογικές ιδιότητες της συγκόλλησης. Βάσει των ανωτέρω, σκοπός της παρούσης διατριβής είναι η ανάπτυξη ολοκληρωμένων μεθόδων θερμομηχανικής προσομοίωσης των προηγμένων διεργασιών συγκόλλησης FSW και LBW με κύριο στόχο την πρόβλεψη των παραμενουσών τάσεων και των στρεβλώσεων καθώς και τη μελέτη της επίδρασης τους στη δομική ακεραιότητα των παραγόμενων δομικών στοιχείων. Ένα από τα σημαντικότερα και ίσως το κρισιμότερο στάδιο κατά την προσομοίωση μιας θερμομηχανικής διεργασίας είναι η εξομοίωση της θερμικής πηγής και ο υπολογισμός του θερμικού φορτίου, γιατί μια εσφαλμένη εκτίμηση του θερμικού φορτίου προκαλεί λανθασμένη πρόβλεψη της θερμοκρασιακής κατανομής και κατά συνέπεια εισάγει σφάλματα στον υπολογισμό των παραμενουσών τάσεων και των στρεβλώσεων. Στη βάση αυτή, τόσο για την περίπτωση της FSW όσο και για την LBW αναπτύχθηκαν μεθοδολογίες για τον προσδιορισμό των θερμικών πηγών τους και συνοδεύτηκαν από θερμικά μοντέλα για την πρόβλεψη του θερμοκρασιακού ιστορικού. Ακολούθως, το θερμοκρασιακό ιστορικό ασκείται υπό τη μορφή εξωτερικού φορτίου σε ένα θερμομηχανικό μοντέλο από όπου υπολογίζονται οι παραμένουσες τάσεις και οι στρεβλώσεις της διεργασίας. Τέλος, η εσωτερική εντατική κατάσταση του συγκολλημένου δομικού στοιχείου συνυπολογίζεται στο εντατικό πεδίο λόγω της φόρτισης λειτουργίας της κατασκευής και γίνεται πρόβλεψη των συντελεστών έντασης τάσης (Stress Intensity Factors - SIFs ) έτσι ώστε να εκτιμηθεί η επίδρασης της συγκόλλησης στη δομική ακεραιότητα. Τόσο το θερμομηχανικό όσο και το θραυστομηχανικό μοντέλο μπορούν να προσαρμοσθούν σε πολλούς διαφορετικούς τύπους σύνδεσης και ρηγμάτωσης, αντίστοιχα. / The design criteria in modern structures aim to the production of components with reduced weight and low cost, as well as, with higher performance and increased safety. The above goals lead to a tendency of replacing traditional differential structures with more modern integral structure, mainly in aeronautic sector where the weight and cost reduction, without decrease of safety, comprises the main target of the current research effort. The production of integral structures requires the adaptation of existing forming processes as well as the development and optimization of advanced welding processes. The most promising welding processes in aeronautics and maritime industries currently are the Friction Stir Welding–FSW and Laser Beam Welding-LBW. Despite of the many technological advantages of FSW and LBW process, their application in the production of integral structures leads to the development of Residual Stress (RS) and distortion fields which can cause significant problems. Specifically, distortions can effect on the components assembly, while, RS affect the structural integrity. However, an appropriate selection of process parameters can significantly reduce the RS and distortions levels. The usual way to optimize process parameters is experimental trial and error approach; recently, process simulation has been proven efficient, too. The present work aims to the development of efficient methodologies for the thermomechanical simulation of FSW and LBW processes in order to predict temperature history, as wells as RS and distortion fields. Consequently, the RS field is used for the determination of the welding effects on the structural integrity of the welded component. Generally, the reliability of a simulation methodology of any thermo-mechanical process, such as welding, is seriously affected by many parameters; two of them are very base, namely, the accurate determination of the heat input introduced to the material (thermal load) and the accurate representation of thermal and mechanical boundary conditions. As the boundary conditions determined by the welder and it is usually easy to transfer in a numerical model, one of the most difficult simulation issues is the appropriate determination of the heat input which will lead to an accurate prediction of the material temperature history. For this reason, one of the main objectives of the present work is to develop methodologies for the accurate thermal load calculation in both FSW and LBW processes. After the validation of the developed methodologies with respect to experimental measurements, the defined heat sources are used in global thermal models in order to predict the temperature histories which, thereinafter, are introduced in the thermo-mechanical models to predict the developed RS and distortion fields. Finally, the structural integrity of the welded component, under the effect of both RS field and service loading is studied; different possible ‘fracture scenarios’ are investigated based on the Stress Intensity Factor concept and the Elastic Fracture Mechanics principles.
284

Soldagem por fricção e mistura mecânica de aço austenítico alto manganês com efeito TRIP / Friction stir welding of an austenitic high manganese TRIP steel

Roberto Ramon Mendonça 08 August 2014 (has links)
O desenvolvimento e utilização de novos materiais, mais leves e com propriedades mecânicas superiores aos atuais, se mostram extremamente importantes devido à redução de peso e consequentemente redução na emissão de gases poluentes que poderiam gerar. As ligas de Fe-Mn-C com elevados teores de Mn (20-30%) representam um desenvolvimento muito recente de aços austeníticos, que, através dos seus mecanismos diferenciados de deformação reúnem elevada resistência mecânica com grande ductilidade. Essa nova classe de materiais estruturais possibilita uma efetiva redução de custos na produção através do reduzido tempo de processamento (sem a necessidade de tratamentos térmicos especiais e de processamentos termomecânicos controlados). A soldagem é, atualmente, o mais importante processo de união de metais usado no setor industrial. Dentro da variada gama de processos de soldagem existentes, a soldagem por fricção e mistura mecânica (SFMM, em inglês: Friction Stir Welding - FSW) se destaca por ser um processo de união no estado sólido que apresenta uma série de vantagens sobre as tecnologias convencionais de soldagem por fusão. Do ponto de vista metalúrgico, uma das suas principais vantagens se manifesta justamente na junção de materiais dissimilares, visto que o grau de mistura de composições e as transformações de fases entre materiais incompatíveis podem ser minimizados. Outra vantagem é que há um refino de grão no cordão de solda comparado com a microestrutura fundida que se forma nos processos convencionais. Este trabalho teve como objetivo produzir em escala laboratorial os aços de alta liga ao manganês com efeito TRIP, avaliar o impacto da velocidade de rotação da ferramenta na soldagem por fricção e mistura mecânica e avaliar a microestrutura e propriedades mecânicas das juntas soldadas. A microestrutura das juntas soldadas caracterizou-se pela presença apenas da zona de mistura e do metal base, além da formação de \'anéis de cebola\' na zona de mistura, esta não mostrou sinais de transformação martensítica induzida por deformação e sofreu recristalização dinâmica para todas as velocidades de rotação investigadas com a formação de grãos refinados e com morfologia equiaxial. Os corpos de tração fraturaram todos nos metais de base, mostrando que as propriedades mecânicas da zona de mistura foram superiores à do metal base e que a variação de aporte térmico alcançada com a velocidade de rotação da ferramenta não comprometeu a qualidade das juntas soldadas. / The development and application of new light materials with superior mechanical properties is extremely important to weight reduction in vehicles and consequently reduction of greenhouse gases emission. The Fe-Mn-C steels with high Mn (20-30%) are a recent development of austenitic steels, which, due to their different mechanisms of deformation, possesses high strength and high ductility as well. In addition, this new type of structural steel allows an effective reduction of manufacturing costs due to its reduced processing time (it does not require special heat treatments and controlled thermo mechanical processing). Welding has been one of the most important processes for joining metals. Among the available welding processes, friction stir welding (FSW) is notable for being a solid state process with great advantages over the conventional welding methods. In the mettalurgical point of view, welding dissimilar materials is a significant advantage of FSW over the other process. The main reason is the reduction of mixture of material and phase transformations between the incompatible materials in the weld. Moreover, grain refinement is another advantage from the process. The present study aimed to produce laboratorial scale high Mn steels with TRIP effect, investigate the impact of tool speed ont the microstructure and mechanical properties of friction stir welded joints. The microstructure of the welded joints exhibited only the stirred zone (SZ) and the base material (BM), besides the presence of ´onion rings´ within the stirred zone. The SZ exhibited no signs of martensite suggesting that dynamic recrystallization have occurred for all the speed tested. Moreover, the grains in the SZ had equiaxial morphology and were significantly refined. The fracture of the tensile specimens occurred in the base material, bringing to light that the welding process was beneficial to the mechanical properties. Furthermore, the variation of heat input achieved with the speed did not compromise the quality of welded joints.
285

Modificação microestrutural da liga de magnésio AZ31 por fricção e mistura a altas velocidades / Microstructure modification by high speed friction stir processing of magnesium AZ31 alloy

Valio, Gustavo Trindade 03 July 2015 (has links)
Submitted by Caroline Periotto (carol@ufscar.br) on 2016-09-26T15:05:24Z No. of bitstreams: 1 DissGTV.pdf: 1872903 bytes, checksum: 8df6b2f211cfc4236fc723147c24d9bf (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-26T20:50:51Z (GMT) No. of bitstreams: 1 DissGTV.pdf: 1872903 bytes, checksum: 8df6b2f211cfc4236fc723147c24d9bf (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-26T20:50:56Z (GMT) No. of bitstreams: 1 DissGTV.pdf: 1872903 bytes, checksum: 8df6b2f211cfc4236fc723147c24d9bf (MD5) / Made available in DSpace on 2016-09-26T20:51:03Z (GMT). No. of bitstreams: 1 DissGTV.pdf: 1872903 bytes, checksum: 8df6b2f211cfc4236fc723147c24d9bf (MD5) Previous issue date: 2015-07-03 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Due to the current growth in the fossil fuels consumption, there is a great concern about the increase in pollutant emissions. In order to reduce these emissions, research indicates that the decrease in vehicle weight can be one of the solutions to reduce these gas emissions. One possible way to reduce the car weight is the replacement of parts that uses high density metals by Magnesium alloys. The major problem with this replacement is the lack of ductility that this material has at room temperature, being necessary to heat the plates before the conformation. This heating process has a high production costs and it is unfeasible to use in the automotive industry today. In view of this problem, this work aims to study this lack of conformity to room temperature using a microstructure modification technique located in the regions of conformation. The technic used was Friction Stir Processing (FSP) at high speed. This processing is similar to Friction Stir Welding (FSW), but without joining materials. The FSP is just a localized microstructural modification. The analysis performed in this study after processing at 1, 7 and 10 m/min show that the microstructure and mechanical properties undergoes various changes at for every processing speed output different. The results showed that the material after processing improves the ductility at room temperature as grain size decreases. / Com o atual crescimento do consumo de combustíveis fosseis, existe uma grande preocupação com o aumento de emissões de gases poluente. Para redução dessas emissões, pesquisas apontam que a diminuição do peso de veículos pode ser uma das soluções para reduzir as emissões de gases poluentes pelo aumento da eficiência energética. Uma forma possível de diminuir o peso de automóveis é pela substituição de partes que utilizam metais com alta densidade por ligas de Magnésio. O grande problema desta substituição é a falta de dutilidade que este material possui a temperatura ambiente, sendo necessário aquecer as chapas antes da conformação. Atualmente este processo de aquecimento gera um alto custo de produção dificultando sua utilização na indústria automotiva. Tendo em vista este problema, o presente trabalho tem como objetivo entender esta dificuldade na conformação a temperatura ambiente e propor uma solução utilizando uma técnica de modificação microestrutural localizada nas regiões de conformação. Esta técnica é o Processamento por Fricção e Mistura (FSP – Friction Stir Processing) à altas velocidade. Este processamento é semelhante ao de Soldagem por Fricção e Mistura (FSW – Friction Stir Welding), mas sem a formação de uma região de união entre materiais. O FSP é apenas uma modificação microestrutural localizada. As análises realizadas neste estudo após o processamento à 1, 7 e 10m/min apontam que a microestrutura e as propriedades mecânicas sofrem variações diferentes a cada velocidade de processamento. Os resultados mostraram que o material obteve uma melhora na dutilidade à temperatura ambiente devido à diminuição do tamanho de grão.
286

Friction Stir Welding of Precipitation Strengthened Aluminum 7449 Alloys

Martinez, Nelson Y 08 1900 (has links)
The Al-Zn-Mg-Cu (7XXX series) alloys are amongst the strongest aluminum available. However, they are considered unweldable with conventional fusion techniques due to the negative effects that arise with conventional welding, including hydrogen porosity, hot cracking, and stress corrosion cracking. For this reason, friction stir welding has emerged as the preferred technique to weld 7XXX series alloys. Aluminum 7449 is one of the highest strength 7XXX series aluminum alloy. This is due to its higher zinc content, which leads to a higher volume fraction of eta' precipitates. It is typically used in a slight overaged condition since it exhibits better corrosion resistance. In this work, the welds of friction stir welded aluminum 7449 were studied extensively. Specific focus was placed in the heat affected zone (HAZ) and nugget. Thermocouples were used in the heat affected zone for three different depths to obtain thermal profiles as well as cooling/heating profiles. Vicker microhardness testing, transmission electron microscope (TEM), and differential scanning calorimeter (DSC) were used to characterize the welds. Two different tempers of the alloy were used, a low overaged temper and a high overaged temper. A thorough comparison of the two different tempers was done. It was found that highly overaged aluminum 7449 tempers show better properties for friction stir welding. A heat gradient along with a high conducting plate (Cu) used at the bottom of the run, resulted in welds with two separate microstructures in the nugget. Due to the microstructure at the bottom of the nugget, higher strength than the base metal is observed. Furthermore, the effects of natural aging and artificial aging were studied to understand re-precipitation. Large improvements in strength are observed after natural aging throughout the welds, including improvements in the HAZ.
287

Wirkung von Leistungsultraschall auf das Prozessverhalten und die Bindungsmechanismen beim Rührreibschweißen von Aluminium/Stahl-Verbunden

Thomä, Marco 10 May 2021 (has links)
Das ultraschallunterstützte Rührreibschweißen (USE-FSW) als innovatives Hybrid-Pressschweißverfahren zeichnet sich durch eine Reihe von Vorteilen aus, welche es für die Kombination artfremder metallischer Werkstoffe mit deutlich unterschiedlichem Schmelzpunkt ermöglichen, qualitativ hochwertigere Verbunde zu realisieren. Die vorliegende Arbeit thematisiert experimentelle Untersuchungen der Auswirkungen des zusätzlich eingekoppelten Leistungsultraschalls auf das Prozessverhalten und die Bindungsmechanismen sowie daraus resultierender mechanischer Verbundeigenschaften beim ultraschallunterstützten Rührreibschweißen von Aluminium/Stahl-Verbunden. Im Anschluss an die Ermittlung geeigneter Parameter für das konventionelle Rührreibschweißen erfolgen grundlegende Betrachtungen des Einflusses des Leistungsultraschalls auf das Schwingungsverhalten, das thermische Verhalten und das insitu- Prozesskraftverhalten, aus denen bestmögliche Ultraschallparameter abgeleitet werden. Nachfolgende detaillierte, vergleichende Untersuchungen des konventionellen und des ultraschallunterstützten Rührreibschweißprozesses belegen unter anderem eine Reduktion der Dicke spröder, aluminiumreicher intermetallischer Phasen am Verbund-Interface des USE-FSW-Verbundes, was in einer Erhöhung der Zugfestigkeit und der Duktilität resultiert. / The ultrasound enhanced friction stir welding (USE-FSW) as an innovative hybrid solid state joining process is characterized by a number of advantages that enable the realization of higher quality joints for the combination of dissimilar, metallic material combinations with strongly differing melting points. The present work addresses the impact of the additional power ultra- sound transmission on the process behavior and the bonding mechanisms as well as resulting mechanical joint properties for the ultrasound enhanced friction stir welding of aluminum/steel joints via experimental investigations. Subsequent to the determination of suitable parameters for the conventional friction stir welding basic considerations of the power ultrasound influence on the oscillation behavior, the thermal behavior and the in-situ process force behavior take place for deriving a best possible set of ultrasound parameters. Moreover, the conventional and the ultrasound enhanced friction stir welding process are investigated comparatively in detail, proving a reduction in thickness for brittle, aluminum-rich intermetallic phases at the USE-FSW joint interface among other things, resulting in an improved tensile strength and ductility.
288

Microstructure Evolution in 304L Stainless Steel Subjected to Hot Torsion at Elevated Temperature

Lu, Jian 19 September 2011 (has links) (PDF)
The current study focus on investigating a relationship between processing variables and microstructure evolution mechanism in 304L stainless steel subjected to hot torsion. The Gleeble 3800 with Mobile Torsion Unit (MTU) is utilized in the current study to conduct hot torsion test of 304L stainless steel. Samples are rotated at 1100℃ in the shear strain rate range of 0.02s-1 to 4.70s-1 and the shear strain range of 0.5 to 4. Orientation imaging microscopy (OIM) technique is used to collect and analyze the microstructure. At low strains (≤1) and strain rate (0.02s-1), average grain size remains relatively constant, but the lengths of DSs and LABs increase within grains. These are characteristics of the dynamic recovery (DRV). With increasing strain and strain rate, the lengths of DSs, LABs and HABs increase, accompanied by the decrease of average grain size. Subgrains with HAB segments are observed. These are characteristics of continuous dynamic recrystallization (CDRX). At strain rates greater than or equal to 0.94s-1, the fraction of deformation texture is about 3 times higher than that of rotated cube texture. The average grain size increases relative to that at a strain rate of 0.20s-1, accompanied by the increase of twin length per area. This indicates that grain growth take place after CDRX. Sigma phase is not observed in the current study due to the lack of static recrystallization (SRX) and the higher cooling rate.
289

Development and Characterization of Friction Bit Joining: A New Solid State Spot Joining Technology Applied to Dissimilar Al/Steel Joints

Siemssen, Brandon Raymond 18 June 2008 (has links) (PDF)
Friction bit joining (FBJ) is a new solid-state spot joining technology developed in cooperation between Brigham Young University of Provo Utah, and MegaStir Technologies of West Bountiful Utah. Although capable of joining several different material combinations, this research focuses on the application of FBJ to joining 5754 aluminum to DP 980 steel, two alloys commonly used in automotive applications. The thicknesses of the materials used were 0.070 inches (1.78 mm) and 0.065 inches (1.65 mm), respectively. The FBJ process employs a consumable 4140 steel bit and is carried out on a purpose built research machine. In the first stage of the weld cycle the bit is used to drill through the aluminum top sheet to be joined. After this, spindle speed is increased so that the bit tip effectively forms a friction weld to the steel bottom sheet. Momentary stoppage of the spindle facilitates weld cooling before the spindle is restarted, shearing the bit tip from the bit shank, and retracted. Incorporated into the bit tip geometry is a flange that securely holds the aluminum in place after joint formation is complete. This research consists of several developmental steps since the technology only recently began to be formally studied. Initial joint strengths observed in lapshear tensile testing averaged only 978.5 pounds (4.35 kN), with a relatively high standard deviation for the data set. Final lapshear tensile test results were improved to an average of 1421.8 pounds (6.32 kN), with a significantly lower, and acceptable, standard deviation for the data set. Similar improvements were realized during the development work in cross tension tensile test results, as average strengths increased from 255.8 pounds (1.14 kN) to 566.3 pounds (2.52 kN). Improvements were also observed in the standard deviation values of cross tension data sets from initial evaluation to the final data set presented in this work.
290

An Analysis of Microstructure and Corrosion Resistance in Underwater Friction Stir Welded 304L Stainless Steel

Clark, Tad Dee 30 June 2005 (has links) (PDF)
An effective procedure and parameter window was developed for underwater friction stir welding (UWFSW) 304L stainless steel with a PCBN tool. UWFSW produced statistically significant: increases in yield strengths, decreases in percent elongation. The ultimate tensile strength was found to be significantly higher at certain parameters. Although sigma was identified in the UWFSWs, a significant reduction of sigma was found in UWFSWs compared to ambient FSWs. The degree of sensitization in UWFSWs was evaluated using double loop EPR testing and oxalic acid electro-etched metallography. Results were compared to base metal, ambient FSW, and arc welds. Upper and lower sensitization localization bands were identified in the UWFSWs. Although higher sensitization levels were present in UWFSWs compared to the arc weld, ambient FSW, and heat treated base metals, the UWFSWs were found less susceptible to corrosion than arc welds due to the subsurface location of the sensitization bands. A SCC analysis of UWFSWs relative to base metal and arc weldments was performed. U-bends were exposed to two 3.5% NaCl cyclic immersion experiments at 21 °C and 63 °C for 1000 hours each. A tertiary test was conducted in a 25% NaCl boiling solution. The UWFSW u-bends were no more susceptible to SCC than base metal in the cyclic immersion tests. In the boiling NaCl test, the SCC of the UWFSWs showed significant improvement over the SCC of arc welds. Arc u-bends cracked entirely within the weld bead and HAZ, while SCC in the UWFSWs showed no cracking localization.

Page generated in 0.0856 seconds