Spelling suggestions: "subject:"frobenius"" "subject:"fröbenius""
21 |
Sobre a existência de medidas invariantes para aplicações monótonas por partesAraujo, Jorge Paulo de January 1988 (has links)
A proposta principal desta. dissertação é provar a existência de medidas invariante absolutamente contínuas para uma clas$e de funções monótonas por partes com um número finito de descontinuidade mas o resultado pode ser estedido para funções monótonas por partes com um número infini to de descontinuidades. O método de prova explora a existência de pontos fixos para o operador de Perron- Frobenius e utiliza o Teorema de Helly e o Teorema Ergódico de Kakutani-Yosida. / The main purpose of this dissertation is to prove the existence of invariant absolutely continuous measures for a class of piecewise monotonic functions with a finite number of descontinuities but it can be extended to piecewise monotonic functions with infinite numbers of descontinuities. The method of the proof explores the existence of fixe·d points to Perron-Frobenius operator and employs the Helly's Theorem and the Kakutani - Yosida ergodic Theorem.
|
22 |
Hessenberg Patch Ideals of Codimension 1Atar, Busra January 2023 (has links)
A Hessenberg variety is a subvariety of the flag variety parametrized by two maps: a Hessenberg function on $[n]$ and a linear map on $\C^n$. We study regular nilpotent Hessenberg varieties in Lie type A by focusing on the Hessenberg function $h=(n-1,n,\ldots,n)$. We first state a formula for the $f^w_{n,1}$ which generates the local defining ideal $J_{w,h}$ for any $w\in\Ss_n$. Second, we prove that there exists a convenient monomial order so that $\lead(J_{w,h})$ is squarefree. As a consequence, we conclude that each codimension-1 regular nilpotent Hessenberg variety is locally Frobenius split (in positive characteristic). / Thesis / Master of Science (MSc)
|
23 |
Webs and Foams of Simple Lie AlgebrasThatte, Mrudul Madhav January 2023 (has links)
In the first part of the dissertation, we construct two-dimensional TQFTs which categorify the evaluations of circles in Kuperberg’s 𝐵₂ spider. We give a purely combinatorial evaluation formula for these TQFTs and show that it is compatible with the trace map on the corresponding commutative Frobenius algebras. Furthermore, we develop a theory of Θ-foams and their combinatorial evaluations to lift the ungraded evaluation of the Θ-web, thus paving a way for categorifying 𝐵₂ webs to 𝐵₂ foams.
In the second part of the dissertation, we study the calculus of unoriented 𝔰𝔩₃ webs and foams. We focus on webs with a small number of boundary points. We obtain reducible collections and consider bilinear forms on these collections given by pairings of webs. We give web categories stable under the action of certain endofunctors and derive relations between compositions of these endofunctors.
|
24 |
ON REPRESENTATION THEORY OF FINITE-DIMENSIONAL HOPF ALGEBRASJacoby, Adam Michael January 2017 (has links)
Representation theory is a field of study within abstract algebra that originated around the turn of the 19th century in the work of Frobenius on representations of finite groups. More recently, Hopf algebras -- a class of algebras that includes group algebras, enveloping algebras of Lie algebras, and many other interesting algebras that are often referred to under the collective name of ``quantum groups'' -- have come to the fore. This dissertation will discuss generalizations of certain results from group representation theory to the setting of Hopf algebras. Specifically, our focus is on the following two areas: Frobenius divisibility and Kaplansky's sixth conjecture, and the adjoint representation and the Chevalley property. / Mathematics
|
25 |
Special Cases of Density Theorems in Algebraic Number TheoryGaertner, Nathaniel Allen 24 August 2006 (has links)
This paper discusses the concepts in algebraic and analytic number theory used in the proofs of Dirichlet's and Cheboterev's density theorems. It presents special cases of results due to the latter theorem for which greatly simplified proofs exist. / Master of Science
|
26 |
Equações diferenciais, separação de variáveis e o problema de forças centrais / Differential equations, separating variables and the central forces problemNakamura, Márcia Mayumi 17 August 2018 (has links)
Orientador: Edmundo Capelas de Oliveira / Dissertação (mestrado profissional) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-17T12:38:24Z (GMT). No. of bitstreams: 1
Nakamura_MarciaMayumi_M.pdf: 683963 bytes, checksum: 0fbcfd687c511e4845ba13501415f91e (MD5)
Previous issue date: 2011 / Resumo: Efetuamos um estudo sistemático envolvendo o caso geral de uma equação diferencial parcial, linear, de segunda ordem, com n variáveis independentes. Particularizamos para o caso bidimensional, n = 2, duas variáveis independentes. Utilizamos o método de separação de variáveis para conduzir esta equação diferencial parcial a um conjunto de duas equações diferenciais ordinárias. Introduzimos o método de Frobenius a partir de uma particular equação diferencial ordinária, a chamada equação de Bessel. Como aplicação, apresentamos e discutimos o chamado problema de forcas centrais, em particular, estudamos o problema de Kepler de onde emerge naturalmente o problema de classificação de uma cônica, onde a elipse merece tratamento destacado / Abstract: We develop a systematic study involving the general case of a second order linear partial differential equation with n independent variables. We particularize to the bidimensional case, n = 2, involving two independent variables. In this case, we present the method of separating variables to develop the partial differential equation into a set of two differential ordinary equations. We introduce the Frobenius method using a particular ordinary di1'l'erential equation, the so-called Bessel equation. As an application, we present and discuss the so-called central forces and as particular case, we study the Kepler problem from which naturally emerges the problem of the classification of a conic, where ellipse deserves special treatment / Mestrado / Equação Diferenciais / Mestre em Matemática
|
27 |
AplicaÃÃes de cÃlculo diferencial exterior a teoria econÃmica / Applications of differential calculus outside the economic theoryJosà Tiago Nogueira Cruz 29 August 2008 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico / O trabalho consiste em decompor uma forma diferencial, sob algumas condiÃÃes iniciais, para conseguirmos resolvermos problemas na economia. / O trabalho consiste em decompor uma forma diferencial, sob algumas condiÃÃes iniciais, para conseguirmos resolvermos problemas na economia.
|
28 |
New Computational Techniques in FJRW Theory with Applications to Landau Ginzburg Mirror SymmetryFrancis, Amanda 14 June 2012 (has links) (PDF)
Mirror symmetry is a phenomenon from physics that has inspired a lot of interesting mathematics. In the Landau-Ginzburg setting, we have two constructions, the A and B models, which are created based on a choice of an affine singularity with a group of symmetries. Both models are vector spaces equipped with multiplication and a pairing (making them Frobenius algebras), and they are also Frobenius manifolds. We give a result relating stabilization of singularities in classical singularity to its counterpart in the Landau-Ginzburg setting. The A model comes from so-called FJRW theory and can be de fined up to a full cohomological field theory. The structure of this model is determined by a generating function which requires the calculation of certain numbers, which we call correlators. In some cases the their values can be computed using known techniques. Often, there is no known method for finding their values. We give new computational methods for computing concave correlators, including a formula for concave genus-zero, four-point correlators and show how to extend these results to find other correlator values. In many cases these new methods give enough information to compute the A model structure up to the level of Frobenius manifold. We give the FJRW Frobenius manifold structure for various choices of singularities and groups.
|
29 |
The Frobenius Manifold Structure of the Landau-Ginzburg A-model for Sums of An and Dn SingularitiesWebb, Rachel Megan 27 June 2013 (has links) (PDF)
In this thesis we compute the Frobenius manifold of the Landau-Ginzburg A-model (FJRW theory) for certain polynomials. Specifically, our computations apply to polynomials that are sums of An and Dn singularities, paired with the corresponding maximal symmetry group. In particular this computation applies to several K3 surfaces. We compute the necessary correlators using reconstruction, the concavity axiom, and new techniques. We also compute the Frobenius manifold of the D3 singularity.
|
30 |
Sémantique algébrique des ressources pour la logique classique / Algebraic resource semantics for classical logicNovakovic, Novak 08 November 2011 (has links)
Le thème général de cette thèse est l’exploitation de l’interaction entre la sémantique dénotationnelle et la syntaxe. Des sémantiques satisfaisantes ont été découvertes pour les preuves en logique intuitionniste et linéaire, mais dans le cas de la logique classique, la solution du problème est connue pour être particulièrement difficile. Ce travail commence par l’étude d’une interprétation concrète des preuves classiques dans la catégorie des ensembles ordonnés et bimodules, qui mène à l’extraction d’invariants significatifs. Suit une généralisation de cette sémantique concrète, soit l’interprétation des preuves classiques dans une catégorie compacte fermée où chaque objet est doté d’une structure d’algèbre de Frobenius. Ceci nous mène à une définition de réseaux de démonstrations pour la logique classique. Le concept de correction, l’élimination des coupures et le problème de la “full completeness” sont abordés au moyen d’un enrichissement naturel dans les ordres sur la catégorie de Frobenius, produisant une catégorie pour l'élimination des coupures et un concept de ressources pour la logique classique. Revenant sur notre première sémantique concrète, nous montrons que nous avons une représentation fidèle de la catégorie de Frobenius dans la catégorie des ensembles ordonnés et bimodules. / The general theme of this thesis is the exploitation of the fruitful interaction between denotational semantics and syntax. Satisfying semantics have been discovered for proofs in intuitionistic and certain linear logics, but for the classical case, solving the problem is notoriously difficult.This work begins with investigations of concrete interpretations of classical proofs in the category of posets and bimodules, resulting in the definition of meaningful invariants of proofs. Then, generalizing this concrete semantics, classical proofs are interpreted in a free symmetric compact closed category where each object is endowed with the structure of a Frobenius algebra. The generalization paves a way for a theory of proof nets for classical proofs. Correctness, cut elimination and the issue of full completeness are addressed through natural order enrichments defined on the Frobenius category, yielding a category with cut elimination and a concept of resources in classical logic. Revisiting our initial concrete semantics, we show we have a faithful representation of the Frobenius category in the category of posets and bimodules.
|
Page generated in 0.0418 seconds