• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optogénétique bi-photonique / Two-photon optogenetics

Begue, Aurélien 21 November 2012 (has links)
En complément aux méthodes traditionnelles d’observation et de stimulation en neuroscience, l’optogénétique, combinant l’expression ciblée de protéines photosensibles dans les neurones et l’utilisation de nouvelles techniques de microscopies, a connu un essor important ces dernières années. Ce nouveau procédé permet d’enregistrer de manière non invasive les signaux fonctionnels de circuits intacts tels que les changements de potentiel de membrane ou de concentration intracellulaire de calcium mais également de moduler l’excitabilité des neurones. Pour illuminer ces protéines photosensibles, de nouvelles méthodes de microscopie ont été développées. En particulier, afin d’obtenir une résolution spatiale optimale au sein d’un tissu biologique, il devient nécessaire d’utiliser l’illumination bi-photonique et d’utiliser des techniques permettant la mise en forme du faisceau lumineux pour s’adapter à la morphologie des circuits ou même des neurones étudiés.Au cours de ma thèse, j’ai développé une combinaison de méthodes optiques (associant le contraste de phase généralisé avec la focalisation temporelle) afin d’activer le canal cationique channelrhodopsin-2 en excitation bi-photonique. Ce travail a démontré, pour la première fois, l’activation simultanée de potentiels d’action dans plusieurs cellules tout en conservant une résolution axiale à l’échelle cellulaire (~10 μm).La mise en forme du faisceau lumineux semble très avantageuse pour améliorer la spécificité de l’activation. Il restait à démontrer que les faisceaux ainsi modulés conservaient leur intégrité spatiale en se propageant à l’intérieur de tissus biologiques diffusants. J’ai donc étudié la propagation de faisceaux lasers modulés par les techniques du contraste de phase généralisé et de l’holographie numérique en combinaison avec la focalisation temporelle. L’utilisation de la focalisation temporelle permet aux volumes d’excitation de rester confinés sur l’axe de propagation comme observé précédemment, mais aussi de reconstruire un profil d’excitation en profondeur dans le tissu, qui correspond au profile généré sans milieu diffusant. Cet effet est plus important pour le contraste de phase généralisé que pour l’holographie numérique et se dégrade en fonction de la profondeur à laquelle l’activation a lieu. J’ai démontré pour la première fois, l’activation en profondeur (> 200 μm) de neurones grâces à ces méthodes.Enfin, j’ai testé les mêmes techniques d’illumination sur d’autres protéines photosensibles, telles que la C1V1 et l’halorhodopsin. Après avoir établi les spectres d’activation afin de trouver la longueur d’onde optimale pour l’activation bi-photonique, j’ai exprimé ces protéines dans des tranches de cerveaux. Les deux protéines requièrent une activation à 1040 nm à la limite du laser Ti:Sapphire utilisé dans de nombreux laboratoires biologiques. La C1V1 a généré des courants similaires à la ChR2 en terme d’amplitude tout en conservant la lente cinétique de fermeture caractéristique de ce canal. L’halorhodopsin, quant à elle, reste difficile à activer avec de faibles courants et ne permet pas une inhibition sélective de trains de potentiels d’action. Ce problème est probablement dû à un faible taux d’expression observé dans les neurones étudiés et serait peut-être résolu en changeant de construction virale. / Optogenetics relies on the genetically targeted expression of light sensitive proteins in specific cell populations. This novel field has had a large impact in neuroscience, allowing both monitoring and stimulating the activity of specific neuronal populations, in intact brain preparations. Optogenetic tools have been used to record functional signals, such as changes in membrane potential or intracellular calcium concentration, as well as to modulate the excitability of neurons. To fully exploit the potentiality of optogenetics, new microscopy techniques have been developed to optimize illumination of photo-active compounds in situ. In particular, an important effort has been directed towards improving the spatial and temporal resolution of light stimulation, in order to match the dynamics of physiological processes. In this frame, the use of two-photon excitation becomes necessary to ensure penetration of light in scattering biological tissues, as well as confining the excitation volume and improve the specificity of illumination. My thesis was dedicated to the development and use of advanced optical methods for two-photon excitation of optogenetic tools. In a first project, we combined optical approaches (generalized phase contrast and temporal focusing) to perform two-photon activation of neurons expressing the light-sensitive cationic channel channelrhodopsin-2 (ChR2). Our work demonstrated for the first time the simultaneous generation of action potentials in multiple neurons, while maintaining a micrometric axial and lateral resolution. These results pointed out the advantages of light sculpting to increase both the specificity and the flexibility of photo-stimulation.In order to investigate the potential of this technique for efficient in-depth stimulation, we therefore studied the propagation through scattering biological media of laser beams generated by two different light patterning techniques, generalized phase contrast and digital holography in combination with temporal focusing. We demonstrated that temporal focusing enabled the excitation volumes to maintain micrometric axial confinement, as well as to maintain well defined patterns deep inside tissues. We also demonstrated for the first time the activation of ChR2 at depth over 200 μm.Finally, the last part of my PhD was focused on testing light patterning methods for the activation of two other photosensitive proteins, the excitatory channel C1V1 and the inhibitory pump, halorhodopsin.
2

Shaping Green's Functions in Cavities with Tunable Boundary Conditions : From Fundamental Science to Applications / Façonner des fonctions de Green dans des cavités avec des conditions aux limites reconfigurables : de la Science Fondamentale aux Applications

del Hougne, Marc Philipp 14 September 2018 (has links)
Cette thèse étudie le façonnage de champs électromagnétiques micro-ondes dans des cavités présentant des conditions aux limites reconfigurables. Le dispositif expérimental s'appuie sur une metasurface électroniquement reconfigurable qui couvre partialement les parois d'une cavité et qui permet ainsi de contrôler la façon dont les ondes y sont réfléchies. Le premier chapitre explore des aspects fondamentaux. D’abord, une étude paramétrique du façonnage d'un champ d'ondes électromagnétiques monochromatique et stationnaire en cavité est proposée en fonction d'un degré de contrôle introduit. Selon la valeur de ce paramètre, il est possible de concentrer de l'énergie en un endroit donné de la cavité de façon prédictible, de reconfigurer totalement cette cavité, ou bien de décider d'obtenir une résonance à une fréquence qui n'en supportait pas auparavant. Ensuite, l’imposition d’un comportement chaotique à une cavité de géométrie régulière est démontrée et une application au brassage des modes en chambre réverbérante est donnée. Dans la suite, la possibilité d’ajuster le couplage antenne-cavité est abordée, et une adaptation parfaite et dynamiquement configurable de l’impédance est proposée. Le reste du premier chapitre considère des champs transitoires. Dans un premier temps, la focalisation spatio-temporelle d’une impulsion fortement réverbérée dans une cavité en utilisant uniquement le contrôle spatial des ondes offert par la metasurface est démontrée, puis le lien avec le couplage entre les dégrées de liberté spatiaux et temporels du milieu de propagation est fait. Enfin, un dispositif permettant la reconfiguration répétée des conditions aux limites d'une cavité en un laps de temps inférieur au temps de vie des photons est réalisé, et des résultats préliminaires sont montrés. Dans le deuxième chapitre, des applications aux systèmes de communication sans fil multi-utilisateurs sont proposées. D’abord, dans la limite d’un bas facteur de qualité de la cavité, il est montré qu’un formalisme matriciel permet de décrire l’impact de la metasurface sur le champ. Cette matrice, mesurée sans information de phase, permet alors de focaliser le champ sur une ou plusieurs positions simultanément. Ensuite, la possibilité d’obtenir une diversité de canaux optimale (orthogonalité des canaux) en façonnant idéalement le désordre d’un milieu de propagation à l'aide de metasurfaces est établie. Finalement, le formalisme matriciel est utilisé afin d’introduire un concept de calcul analogique réalisé par le milieu désordonné en façonnant le front d’onde incident. Il est dès lors conclu qu’avec une infrastructure standard de Wi-Fi dans une maison, en combinaison avec une metasurface simple, cette idée peut être implémentée. Le concept est enfin transposé au domaine optique avec une fibre multimode. Au cours du troisième chapitre, quelques applications du façonnage d'ondes en milieux réverbérants aux capteurs des environnements connectés sont étudiées. D’abord, la possibilité de concentrer des champs électromagnétiques ambients sur des circuits redresseurs afin d’obtenir des tensions de sortie utiles est démontrée. De plus, grâce aux non-linéarités intrinsèques du redresseur, ceci est possible même sans avoir un retour direct du redresseur sur l’intensité du champ incident. Ensuite, un détecteur de mouvement hors ligne de vue et « intelligent » est proposé, qui profite d’un co-design de sa couche physique et du traitement de données. Enfin, il est démontré que même des objets non-coopératifs dans un environnement complexe peuvent être localisés grâce à leur contribution à la diffusion des ondes dans ledit milieu. L’équivalence d’utiliser la diversité fréquentielle ou bien le façonnage d’ondes dans ce contexte est établie. / In this thesis, the shaping of microwave fields in chaotic cavities with tunable boundary conditions is studied experimentally. The experiments leverage a metasurface reflect-array that partially covers the cavity walls to tune the reverberation of waves inside the cavity. The first chapter explores several fundamental aspects. First, the achievable degree of control over stationary monochromatic wave fields is thoroughly investigated, and various regimes are identified, ranging from partial control over the wave field up to the limiting case of discrete resonances that can be tuned at wish. Next, the possibility to convert a cavity of regular geometry into one displaying chaotic characteristics by modulating the boundary conditions is examined and an application to non-mechanical mode-stirring in reverberation chambers is given. Then, the ability to tune the coupling between an antenna inside a cavity and the cavity itself is studied, revealing the opportunity of achieving (dynamically tunable) perfect impedance matching. The chapter goes on to consider spatio-temporal wave fields, and the re-focusing of such transient fields at a desired instant with the purely spatial control of the metasurface is demonstrated; moreover, the interplay of spatial and temporal degrees of freedom is addressed. Finally, an experimental platform enabling the rapid modulation of cavity boundary conditions within the photon lifetime is presented. The second chapter considers applications to multi-user wireless communication systems. First, it is shown that a matrix formalism to capture the impact of the metasurface on the wave field can be formulated in the regime of low reverberation, and even without access to phase information focusing on a single as well as on multiple targets is demonstrated. Second, it is shown that the channel diversity, which dominates the achievable capacity of information transfer, can be optimized by tweaking the environment’s disorder; perfectly orthogonal channels are obtained without any software or hardware efforts on the transmit or receive side, and the benefits of the implied minimal cross-talk are illustrated for the scenario of wirelessly transmitting a full-color image. Third, the matrix formalism is leveraged to propose a scheme of analog computation that counter-intuitively uses a disordered instead of a carefully tailored propagation medium, by appropriately shaping the incident wave front. A proof-of-concept demonstration suggests that combining ubiquitous Wi-Fi hardware in an indoor environment with a simple metasurface is sufficient to implement the concept. Finally, the concept is also implemented in the optical domain using a multimode fiber. The third chapter outlines a few applications for sensors in context-aware environments. First, it is shown that by shaping ambient wave fields, they may be concentrated on harvesting devices to increase the output voltage available for sensor powering; moreover, the non-linear nature of the harvesting device enables to do so without direct feedback from the target, using indirect feedback from the second harmonic. Second, a smart around-the-corner motion detector for complex environments is presented, enjoying a co-design of hardware and processing software by using a dynamic metasurface aperture; the latter is essentially a small (but still electrically large) disordered cavity with tunable boundaries that leaks tunable random radiation patterns that couple differently to the environment’s modes. Third, it is shown that objects may be precisely localized in complex environments even if they are non-cooperative by establishing signatures of their location that leverage their scattering contribution; this is demonstrated both with a frequency diverse and a wavefront shaping scheme, and the equivalence of the respective degrees of freedom is established.
3

Une nouvelle méthode de décomposition polynomiale d’un front d’onde oculaire / A new polynomial decomposition method for ocular wavefront

Gatinel, Damien 12 July 2017 (has links)
Les défaut de la vision sont analysés et classés à partir des caractéristiques mathématiques du front d’onde de l’oeil considéré. Après avoir présenté la méthode actuelle basée sur la décomposition du front d’onde dans la base orthonormale de Zernike ainsi que certaines de ses limitations, on propose ici une nouvelle base de décomposition. Celle-ci repose sur l’utilisation del’espace des fronts d’onde polynomiaux de valuation supérieure ou égale à L + 1 (où L est un entier naturel) et permet de décomposer de manière unique un front d’onde polynomial en la somme d’un front d’onde polynomial de bas degré (inférieur ou égal à L) et un front d’onde polynomial de haute valuation (supérieure ou égal à L + 1). En choisissant L = 2, une nouvelle décomposition est obtenue, appelée D2V3, où le front d’onde polynomial de haut degré ne comporte pas de termes de degré radial inférieur ou égal à deux. Cette approche permet de dissocier parfaitement les aberrations optiques corrigibles ou non par le port de lunettes. Différents cas cliniques présentés dans la dernière section permettent de mettre en évidence l’intérêt de cette nouvelle base de décomposition. / The eye vision defaults are analyzed and classified by studyingthe corresponding eye wavefront. After presenting the orthogonal basis, called the Zernike basis, that is currently used for the medical diagnosis, a new decomposition basis is built. It is based on the use of the space of polynomials of valuation greater or equal to L+1 (for L a natural integer). It allows to uniquely decompose a polynomial wavefront into the sum of a polynomial of low degree (lesser or equal to L) and a polynomial of high valuation (greater or equal to L +1). By choosing L = 2, a new decomposition, called D2V3, is obtained where the polynomial wavefront of high degree does not include terms of radial degree lesser or equal to 2. In particular, it allows to quantify perfectly the aberrations that can be corrected by eyeglasses or not. Various clinical examples clearly show the interest of this new basis compared to a diagnosis based on the Zernike decomposition.
4

Méthode de rétrovisée pour la caractérisation de surfaces optiques dans une installation solaire à concentration / Backward-gazing Method for Characterizing Optical Surfaces in a Concentrated Solar Power Plant

Coquand, Mathieu 16 March 2018 (has links)
La filière solaire thermodynamique concentrée est une des voies les plus prometteuses pour la production des énergies renouvelables du futur. L’efficacité des surfaces optiques est un des facteurs clés influant sur les performances d’une centrale. Un des défis technologiques restant à résoudre concerne le temps et les efforts nécessaires à l’ajustement et l’orientation de tous ces miroirs, ainsi que la calibration des héliostats pour assurer un suivi précis de la course du soleil et une concentration contrôlée. Le travail présenté dans ce manuscrit propose une réponse à ce problème par le développement d’une méthode de caractérisation des héliostats dite de « rétrovisée », consistant à placer quatre caméras au voisinage du récepteur pour enregistrer les répartitions de luminance occasionnées par la réflexion du soleil sur l’héliostat. La connaissance du profil de luminance solaire, combiné à ces quatre images, permet de reconstruire les pentes des erreurs optiques de l’héliostat.La première étape de l’étude de la méthode a consisté à établir les différentes équations permettant de reconstruire les pentes des surfaces optiques à partir des différents paramètres du système. Ces différents développements théoriques ont ensuite permis la réalisation de simulations numériques pour valider la méthode et définir ses possibilités et ses limites. Enfin, des tests expérimentaux ont été réalisés sur le site de la centrale Thémis. À la suite de ces expériences, des pistes d’améliorations ont été identifiées pour améliorer la précision expérimentale et envisager son déploiement industriel. / Concentrated solar power is a promising way for renewable energy production. Optical efficiency of the mirrors is one of the key factors influencing a power plant performance. Methods which allow the operator to adjust all the heliostat of a plant quickly, in addition of calibration and tracking, are essential for the rise of the technology. The work presented in this thesis is the study of a “backward-gazing” method consisting in placing four cameras near the receiver simultaneously recording brightness images of the sun reflected by the heliostat. The optical errors of the mirrors are retrieved from these four images and the knowledge of the one dimension sun radiance profile.The first step of the study consists in the theoretical description of the method. Then numerical simulations are performed to estimate the general accuracy and the limits of the backward-gazing method. In a third phase, experimental tests have been fulfilled at Themis solar power plant. Finally, ideas of improvement are proposed based on the experiments performed.
5

Phénomènes de transport originaux dans des expériences micro-ondes via la mise en forme spatiale et spectrale / Microwave experiments on atypical transport phenomena induced by spatial and spectral wave shaping

Böhm, Julian 15 September 2016 (has links)
Le transport des ondes joue un rôle majeur dans les systèmes de communication comme le Wifi ou les fibres optiques. Les principaux problèmes rencontrés dans ces systèmes concernent la protection contre les intrusions, la consommation d’énergie et le filtrage modal. Nous proposons différentes expériences micro-ondes mettant toutes en œuvre une mise en forme des ondes, pour traiter ces problèmes. Dans une cavité micro-ondes, des états de diffusion particuliers sont générés en s’appuyant uniquement sur des mesures de transmission et sur le formalisme du temps de retard de Wigner-Smith. Ces états sont capables d’éviter une région déterminée de la cavité, de se concentrer sur un point particulier, ou de suivre une trajectoire d’une particule classique. Le filtrage de mode est mis en œuvre dans un guide d’ondes aux frontières ondulées et en présence de pertes dépendant de la position. Le profil du guide est choisi de façon à ce que les deux modes de Bloch qui se propagent encerclent un point exceptionnel. Cette trajectoire s’accompagne d’une transition non-adiabatique entre les deux modes et d'un filtrage asymétrique de ces modes. La thèse présente également des travaux liés à la problématique des algorithmes de « recherche quantique », notamment l’algorithme de Grover. Cette recherche est mise en œuvre dans un réseau en nid d’abeilles de résonateurs micro-ondes couplés, bien décrits par un modèle de liaisons fortes (le système constitue un analogue micro-ondes du graphène). Une expérience de preuve de principe propose la recherche de deux résonateurs distincts reliés au réseau. La loi d’échelle attendue pour cet algorithme est expérimentalement obtenue dans une chaîne linéaire / Transport of waves plays an important role in modern communication systems like Wi-Fi or optical fibres. Typical problems in such systems concern security against possible intruders, energy consumption, time efficiency and the possibility of mode filtering. Microwave experiments are suited to study this kind of problems, because they offer a good control of the experimental parameters. Thus we can implement the method of wave shaping to investigate atypical transport phenomena, which address the mentioned problems. Wave front shaping solely based on the transmission together with the Wigner-Smith time delay formalism allows me to establish special scattering states in situ. These scattering states avoid a pre-selected region, focus on a specific spot or follow trajectories of classical particles, so called particle-like scattering states. Mode filtering is induced inside a waveguide with wavy boundaries and position dependent loss. The boundary profiles are chosen in such a way that the two propagating modes describe an encircling of an exceptional point in the Bloch picture. The asymmetric mode filtering is found due to the appearing non-adiabatic transitions. Another part of my work deals with Grover’s quantum search. I put such a search into practice in a two-dimensional graphene-lattice using coupled resonators, which form a tight-binding analogue. In this proof of principle experiment we search for different resonators attached to the graphene-lattice. Furthermore, the scaling behaviour of the quantum search is quantified for a linear chain of resonators
6

Quantification 3D d’une surface dynamique par lumière structurée en impulsion nanoseconde. Application à la physique des chocs, du millimètre au décimètre / 3D measurement of a dynamic surface by structured light in nanosecond regime. Application to shock physics, from millimeters to decimeters

Frugier, Pierre Antoine 29 June 2015 (has links)
La technique de reconstruction de forme par lumière structurée (ou projection de motifs) permet d’acquérir la topographie d’une surface objet avec une précision et un échantillonnage de points dense, de manière strictement non invasive. Pour ces raisons, elle fait depuis plusieurs années l’objet d’un fort intérêt. Les travaux présentés ici ont pour objectif d’adapter cette technique aux conditions sévères des expériences de physique des chocs : aspect monocoup, grande brièveté des phénomènes, diversité des échelles d’observation (de quelques millimètres au décimètre). Pour répondre à ces exigences, nous proposons de réaliser un dispositif autour d’un système d’imagerie rapide par éclairage laser nanoseconde, présentant des performances éprouvées et bien adaptées. La première partie des travaux s’intéresse à analyser les phénomènes prépondérants pour la qualité des images. Nous montrons quels sont les contributeurs principaux à la dégradation des signaux, et une technique efficace de lissage du speckle par fibrage est présentée. La deuxième partie donne une formulation projective de la reconstruction de forme ; celle-ci est rigoureuse, ne nécessitant pas de travailler dans l’approximation de faible perspective, ou de contraindre la géométrie de l’instrument. Un protocole d’étalonnage étendant la technique DLT (Direct Linear Transformation) aux systèmes à lumière structurée est proposé. Le modèle permet aussi, pour une expérience donnée, de prédire les performances de l’instrument par l’évaluation a priori des incertitudes de reconstruction. Nous montrons comment elles dépendent des paramètres du positionnement des sous-ensembles et de la forme-même de l’objet. Une démarche d’optimisation de la configuration de l’instrument pour une reconstruction donnée est introduite. La profondeur de champ limitant le champ objet minimal observable, la troisième partie propose de l’étendre par codage pupillaire : une démarche de conception originale est exposée. L’optimisation des composants est réalisée par algorithme génétique, sur la base de critères et de métriques définis dans l’espace de Fourier. Afin d’illustrer les performances de cette approche, un masque binaire annulaire a été conçu, réalisé et testé expérimentalement. Il corrige des défauts de mise au point très significatifs (Ψ≥±40 radians) sans impératif de filtrage de l’image. Nous montrons aussi que ce procédé donne accès à des composants tolérant des défauts de mise au point extrêmes (Ψ≈±100 radians , après filtrage). La dernière partie présente une validation expérimentale de l’instrument dans différents régimes, et à différentes échelles. Il a notamment été mis en œuvre sur l’installation LULI2000, où il a permis de mesurer dynamiquement la déformation et la fragmentation d’un matériau à base de carbone (champs millimétriques). Nous présentons également les mesures obtenues sous sollicitation pyrotechnique sur un revêtement de cuivre cylindrique de dimensions décimétriques. L’apparition et la croissance rapide de déformations radiales submillimétriques est mesurée à la surface du revêtement. / A Structured Light System (SLS) is an efficient means to measure a surface topography, as it features both high accuracy and dense spatial sampling in a strict non-invasive way. For these reasons, it became in the past years a technique of reference. The aim of the PhD is to bring this technique to the field of shock physics. Experiments involving shocks are indeed very specific: they only allow single-shot acquisition of extremely short phenomena occurring under a large range of spatial extensions (from a few mm to decimeters). In order to address these difficulties, we have envisioned the use of a well-known high-speed technique: pulsed laser illumination. The first part of the work deals with the evaluation of the key-parameters that have to be taken into account if one wants to get sharp acquisitions. The extensive study demonstrates that speckle effect and depth of field limitation are of particular importance. In this part, we provide an effective way to smooth speckle in nanosecond regime, leaving 14% of residual contrast. Second part introduces an original projective formulation for object-points reconstruction. This geometric approach is rigorous; it doesn’t involve any weak-perspective assumptions or geometric constraints (like camera-projector crossing of optical axis in object space). From this formulation, a calibration procedure is derived; we demonstrate that calibrating any structured-light system can be done by extending the Direct Linear Transformation (DLT) photogrammetric approach to SLS. Finally, we demonstrate that reconstruction uncertainties can be derived from the proposed model in an a priori manner; the accuracy of the reconstruction depends both on the configuration of the instrument and on the object shape itself. We finally introduce a procedure for optimizing the configuration of the instrument in order to lower the uncertainties for a given object. Since depth of field puts a limitation on the lowest measurable field extension, the third part focuses on extending it through pupil coding. We present an original way of designing phase components, based on criteria and metrics defined in Fourier space. The design of a binary annular phase mask is exhibited theoretically and experimentally. This one tolerates a defocus as high as Ψ≥±40 radians, without the need for image processing. We also demonstrate that masks designed with our method can restore extremely high defoci (Ψ≈±100 radians) after processing, hence extending depth of focus by amounts unseen yet. Finally, the fourth part exhibits experimental measurements obtained with the setup in different high-speed regimes and for different scales. It was embedded on LULI2000 high energy laser facility, and allowed measurements of the deformation and dynamic fragmentation of a sample of carbon. Finally, sub-millimetric deformations measured in ultra-high speed regime, on a cylinder of copper under pyrotechnic solicitation are presented.

Page generated in 0.0661 seconds