• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 71
  • 25
  • 10
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 149
  • 101
  • 68
  • 39
  • 34
  • 28
  • 26
  • 25
  • 22
  • 20
  • 18
  • 15
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Élaboration de carbures cémentés à gradient de propriétés par procédé d’imbibition réactive : Application aux inserts WC-Co et aux taillants en diamant polycristallin pour le forage pétrolier en conditions sévères / Functionally graded cemented carbides elaboration by reactive imbibition process : Application for WC-Co inserts and PDC cutters for oil drilling in harsh conditions

Ther, Olivier 16 December 2014 (has links)
Dans l'industrie du forage pétrolier, les conditions de travail de plus en plus sévères requièrent sans cesse de nouveaux outils plus résistants à l'usure abrasive et à l'impact. Afin de répondre à ce défi, les travaux présentés ici, ont pour but l'élaboration de matériaux en carbure cémenté à gradient de composition par le procédé d'imbibition réactive. Ce procédé peut être décomposé en deux procédés de gradation, à savoir : l'imbibition et le revêtement réactif. L'imbibition a pour rôle d'enrichir graduellement, en phase liante, le coeur d'une pièce en carbure cémenté dense et repose sur le principe de migration de phase liquide dans un corps solide-liquide. Le revêtement réactif est un procédé qui s'applique également sur un carbure cémenté dense sur lequel est déposé un revêtement de nitrure de bore. Après avoir atteint le liquidus de la phase liante du carbure cémenté, une précipitation de borures ternaires prend place à la surface du matériau et s'étend graduellement sur des distances millimétriques. Dans le cas de pièces industrielles (inserts tricône et supports de taillants PDC (Polycrystalline Diamond Compact)), le traitement d'imbibition réactive permet de générer des gradients de dureté pouvant atteindre 450 HV sur 25 mm. L'élaboration de tels gradients a nécessité une meilleure compréhension des cinétiques ainsi que des phénomènes mis en jeu durant l'imbibition et le revêtement réactif. Dans le cas des taillants PDC, l'influence des paramètres du procédé HPHT de synthèse de la plaquette diamantée, sur le gradient de composition présent dans le support WC-Co après imbibition réactive, a été étudiée. Ces travaux se sont également intéressés à l'effet de ces gradients de composition sur les propriétés des plaquettes diamantées ainsi obtenues. A la suite d'essais mécaniques, les inserts WC-Co et taillants PDC gradués montrent une augmentation significative de leur résistance à l'abrasion (de 30 à 100%) et de leur tenue à l'impact (de 20 à 40%). / In oil drilling industry, harsher working conditions require ever new and more abrasive wear and impact resistant tools. To meet this challenge, the work presented here, is to develop graded cemented carbide materials by reactive imbibition process. This method can be divided into two gradation processes, namely, reactive coating and imbibition. Imbibition gradually enriches the core of dense cemented carbide with binder phase and is based on the principle of liquid phase migration in a solid-liquid body. Reactive coating also takes place in dense cemented carbide on which a boron nitride coating is deposited. After reaction with the WC-Co liquid binder, some ternary boride precipitations take place from surface to several millimeters deep. For industrial parts (inserts for roller cone bits and PDC (Polycrystalline Diamond Compact) cutters substrates), hardness gradients obtained can reach 450 HV on 25 mm. Such gradients development is passed through a better understanding of kinetics and phenomena occurring during imbibition and reactive coating. In case of PDC cutters, influence of HPHT process parameters, allowing diamond table synthesis, on the WC-Co substrate gradient, generated by reactive imbibition, was studied. This work was also interested in gradient effect on the obtained diamond tables properties. After mechanical tests, graded WC-Co inserts and graded PDC cutters show a significant increase of both wear resistance (from 30 to 100%) and impact resistance (from 20 to 40%).
122

[en] THE SIMPLIFIED HYBRID BOUNDARY ELEMENT METHOD APPLIED TO TIME DEPENDENT PROBLEMS / [pt] O MÉTODO HÍBRIDO SIMPLIFICADO DOS ELEMENTOS DE CONTORNO APLICADO A PROBLEMAS DEPENDENTES DO TEMPO

RICARDO ALEXANDRE PASSOS CHAVES 22 March 2004 (has links)
[pt] O Método Híbrido dos Elementos de Contorno foi introduzido em 1987. Desde então, o método foi aplicado com sucesso a diferentes tipos de problemas de elasticidade e potencial, inclusive problemas dependentes do tempo. Esta Tese apresenta uma tentativa para consolidar a formulação simplificada do Método Híbrido dos Elementos de Contorno para a análise geral da resposta dinâmica de sistemas elásticos. Baseado em um método de superposição modal, um conjunto acoplado de equações diferenciais de movimento de alta ordem é transformado em um conjunto desacoplado de equações diferenciais de segunda ordem que podem ser integradas normalmente por meio de procedimentos conhecidos. Este método também é uma extensão de uma formulação introduzida por J. S. Przemieniecki, para a análise de vibração livre de barras e elementos de viga baseada em uma série de freqüências. O método trata estruturas restringidas, com condições iniciais não homogêneas dadas como valores nodais e também através de campos prescritos no domínio, assim como forças genéricas de massa (além de forças inerciais). Esta tese também tem por objetivo estabelecer a consolidação conceitual da aplicação da versão simplificada do Método Híbrido dos Elementos de Contorno a materiais com gradação funcional. São obtidas várias classes de soluções fundamentais para problemas de potencial dependentes e independentes do tempo, para a análise no domínio da freqüência combinada com uma técnica avançada (mencionada acima) de superposição modal baseada em séries de freqüências. Com isso, consegue- se a utilização de integrais somente no contorno mesmo para materiais heterogêneos. Apresenta-se um grande número de resultados numéricos de problemas bidimensionais, para validação dos desenvolvimentos teóricos realizados. / [en] The hybrid boundary element method was introduced in 1987. Since then, the method has been successfully applied to different problems of elasticity and potential, including time-dependent problems. This thesis presents an attempt to consolidate a formulation for the general analysis of the dynamic response of elastic systems. Based on a mode- superposition technique, a set of coupled, higher-order differential equations of motion is transformed into a set of uncoupled second order differential equations, which may be integrated by means of standard procedures. The first motivation for these theoretical developments is the hybrid boundary element method, a generalization of T. H. H. Pian`s previous achievements for finite elements, which, requiring only boundary integrals, yields a stiffness matrix for arbitrary domain shapes and any number of degrees of freedom. The method is also an extension of a formulation introduced by J. S. Przemieniecki, for the free vibration analysis of bar and beam elements based on a power series of frequencies. It handles constrained and unconstrained structures, non-homogeneous initial conditions given as nodal values as well as prescribed domain fields and general domain forces (other than inertial forces). This thesis also focuses on establishing the conceptual framework for applying the simplified version of the hybrid boundary element method to functionally graded materials. Several classes of fundamental solutions for steady-state and time-dependent problems of potential are derived for a frequency-domain analysis combined with an advanced mode superposition technique based on a power series of frequencies. Thus, the boundary-only feature of the method is preserved even with such spatially varying material property.Several numerical examples are given in terms of an efficient patch test for irregular bounded, unbounded and multiply connected regions submitted to high gradients.
123

ADDITIVE MANUFACTURING OF VISCOUS MATERIALS: DEVELOPMENT AND CHARACTERIZATION OF 3D PRINTED ENERGETIC STRUCTURES

Monique McClain (9178199) 28 July 2020 (has links)
<p>The performance of solid rocket motors (SRMs) is extremely dependent on propellant formulation, operating pressure, and initial grain geometry. Traditionally, propellant grains are cast into molds, but it is difficult to remove the grains without damage if the geometry is too complex. Cracks or voids in propellant can lead to erratic burning that can break the grain apart and/or potentially overpressurize the motor. Not only is this dangerous, but the payload could be destroyed or lost. Some geometries (i.e. internal voids or intricate structures) cannot be cast and there is no consistent nor economical way to functionally grade grains made of multiple propellant formulations at fines scales (~ mm) without the risk of delamination between layers or the use of adhesives, which significantly lower performance. If one could manufacture grains in such a way, then one would have more control and flexibility over the design and performance of a SRM. However, new manufacturing techniques are required to enable innovation of new propellant grains and new analysis techniques are necessary to understand the driving forces behind the combustion of non-traditionally manufactured propellant.</p> <p>Additive manufacturing (AM) has been used in many industries to enable rapid prototyping and the construction of complex hierarchal structures. AM of propellant is an emerging research area, but it is still in its infancy since there are some large challenges to overcome. Namely, high performance propellant requires a minimum solids loading in order to combust properly and this translates into mixtures with high viscosities that are difficult to 3D print. In addition, it is important to be able to manufacture realistic propellant formulations into grains that do not deform and can be precisely functionally graded without the presence of defects from the printing process. The research presented in this dissertation identifies the effect of a specific AM process called Vibration Assisted Printing (VAP) on the combustion of propellant, as well as the development of binders that enable UV-curing to improve the final resolution of 3D printed structures. In addition, the combustion dynamics of additively manufactured layered propellant is studied with computational and experimental methods. The work presented in this dissertation lays the foundation for progress in the developing research area of additively manufactured energetic materials. </p> <p>The appendices of this dissertation presents some additional data that could also be useful for researchers. A more detailed description of the methods necessary to support the VAP process, additional viscosity measurements and micro-CT images of propellant, the combustion of Al/PVDF filament in windowed propellant at pressure, and microexplosions of propellant with an Al/Zr additive are all provided in this section. </p>
124

Analisis de vibracion de vigas funcionalmente graduadas aplicando el metodo de elemento finitos

Marquina Chamorro, Benjamín Flaviano, Dominguez Chávez, Juan Pablo 22 October 2020 (has links)
El presente trabajo, tiene como objetivo el estudio de la vibración libre de vigas Timoshenko aplicados a materiales funcionalmente graduados; esto se resuelve utilizando el método de elementos finitos (MEF) , al implementarlo en el software MATLAB, con el fin de obtener las frecuencias fundamentales y las gráficas de los modos de vibración para cada caso. Se define el campo de desplazamientos según la teoría Timoshenko considerando tres variables fundamentales; asimismo, se utiliza el Principio de Hamilton para obtener las vibraciones libres del elemento. Para el desarrollo de las relaciones constitutivas se usa la La ley de potencia, el cual describe como varían las propiedades de un material heterogéneo e isotrópico FGM (FGM por sus siglas en inglés) en el peralte de la viga. Los resultados obtenidos se compararon con otros estudios de la literatura validados por revistas como SCOPUS y SPRINGER, demostrando que el modelo es bastante preciso y satisfactorio. / The present work aims to study the free vibration of Timoshenko beams applied to functionally graduated materials; This is solved using the finite element method (FEM), when implemented in the MATLAB software, in order to obtain the fundamental frequencies and the graphs of the vibration modes for each case. The field of displacements is defined according to the Timoshenko theory considering three fundamental variables; likewise, the Hamilton Principle is used to obtain the free vibrations of the element. For the development of the constitutive relationships, the power law is used, which describes how the properties of a heterogeneous and isotropic material FGM vary in the heightn of the beam. The results obtained were compared with other literature studies validated by journals such as SCOPUS and SPRINGER, showing that the model is quite accurate and satisfactory. / Tesis
125

Mechanical behaviors of bio-inspired composite materials with functionally graded reinforcement orientation and architectural motifs

Di Wang (8782580) 01 May 2020 (has links)
<p>Naturally-occurring biological materials with stiff mineralized reinforcement embedded in a ductile matrix are commonly known to achieve excellent balance between stiffness, strength and ductility. Interestingly, nature offers a broad diversity of architectural motifs, exemplify the multitude of ways in which exceptional mechanical properties can be achieved. Such diversity is the source of bio-inspiration and its translation to synthetic material systems. In particular, the helicoid and the “brick and mortar” architectured materials are two key architectural motifs we are going to study and to synthesize new bio-inspired materials. </p> <p>Due to geometry mismatch(misorientation) and incompatibilities of mechanical properties between fiber and matrix materials, it is acknowledged that misoriented stiff fibers would rotate in compliant matrix beneath uniaxial deformation. However, the role of fiber reorientation inside the flexible matrix of helicoid composites on their mechanical behaviors have not yet been extensively investigated. In the present project, fiber reorientation values of single misoriented laminae, mono-balanced laminates and helicoid architectures under uniaxial tensile are calculated and compared. In the present work, we introduce a Discontinuous Fiber Helicoid (DFH) composite inspired by both the helicoid microstructure in the cuticle of mantis shrimp and the nacreous architecture of the red abalone shell. We employ 3D printed specimens, analytical models and finite element models to analyze and quantify in-plane fiber reorientation in helicoid architectures with different geometrical features. We also introduce additional architectures, i.e., single unidirectional lamina and mono-balanced architectures, for comparison purposes. Compared with associated mono-balanced architectures, helicoid architectures exhibit less fiber reorientation values and lower values of strain stiffening. The explanation for this difference is addressed in terms of the measured in-plane deformation, due to uniaxial tensile of the laminae, correlated to lamina misorientation with respect to the loading direction and lay-up sequence.</p> <p>In addition to fiber, rod-like, reinforced laminate, platelet reinforced composite materials, “brick and mortar” architectures, are going to be discussed as well, since it can provide in-plane isotropic behavior on elastic modulus that helicoid architecture can offer as well, but with different geometries of reinforcement. Previous “brick and mortar” models available in the literature have provided insightful information on how these structures promote certain mechanisms that lead to significant improvement in toughness without sacrificing strength. In this work, we present a detailed comparative analysis that looks at the three-dimensional geometries of the platelet-like and rod-like structures. However, most of these previous analyses have been focused on two-dimensional representations. We 3D print and test rod-like and tablet-like architectures and analyze the results employing a computational and analytical micromechanical model under a dimensional analysis framework. In particular, we focus on the stiffness, strength and toughness of the resulting structures. It is revealed that besides volume fraction and aspect ratio of reinforcement, the effective shear and tension area in the matrix governs the mechanical behavior as well. In turns, this leads to the conclusion that rod-like microstructures exhibit better performance than tablet-like microstructures when the architecture is subjected to uniaxial load. However, rod-like microstructures tend to be much weaker and brittle in the transverse direction. On the other hand, tablet-like architectures tend to be a much better choice for situations where biaxial load is expected.</p> <p>Through varying the geometry of reinforcement and changing the orientation of reinforcement, different architectural motifs can promote in-plane mechanical properties, such as strain stiffening under uniaxial tensile, strength and toughness under biaxial tensile loading. On the other hand, the various out-of-plane orientation of the reinforcement leads to functionally graded effective indentation stiffness. The external layer of nacre shell is composed of calcite prisms with graded orientation from surface to interior. This orientation gradient leads to functionally graded Young’s modulus, which is confirmed to have higher fracture resistance than homogenous materials under mode I fracture loading act.</p> <p>Similar as graded prism orientation in calcite layer of nacre, the helicoid architecture found in nature exhibits gradients on geometrical parameters as well. The pitch distance of helicoid architecture is found to be functionally graded through the thickness of biological materials, including the dactyl club of mantis shrimp and the fish scale of coelacanth. This can be partially explained by the long-term evolution and selection of living organisms to create high performance biological materials from limited physical, chemical and geometrical elements. This naturally “design” procedure can provide us a spectrum of design motifs on architectural materials. </p> <p>In the present work, linear gradient on pitch distance of helicoid architectures, denoted by functionally graded helicoid (FGH), is chose to be the initial pathway to understand the functionality of graded pitch distance, associated with changing pitch angle. Three-point bending on short beam and low-velocity impact tests are employed in FEA to analyze the mechanical properties of composite materials simultaneously. Both static(three-point bending) and dynamic(low-velocity impact) tests reveal that FGH with pitch angle increasing from surface to interior can provide multiple superior properties at the same time, such as peak load and toughness, while the helicoid architectures with constant pitch angle can only provide one competitive property at one time. Specifically, helicoid architectures with smaller pitch angle, such as 15-degree, show higher values on toughness, but less competitive peak load under static three-point bending loading condition, while helicoid architectures with middle pitch angle, larger than or equal to 22.5-degree and smaller than 45-degree, exhibit less value of toughness, but higher peak load. The explanation on this trend and the benefits of FGH is addressed by analyzing the transverse shear stresses distribution through the thickness in FEA, combined with analytical prediction. In low-velocity impact tests, the projected delamination area of helicoid architectures is observed to increase when the pitch angle is decreasing. Besides, laminates with specific pitch angles, such as 45-degree, classical quasi-isotropic laminate, 60-degree, specific angle ply, and 90-degree, cross-ply, are designed to compare with helicoid architectures and FGH.</p>
126

Referenční vokalizace papouška žako kongo (Psittacus erithacus) / Reference vocalization in African grey parrot (Psittacus erithacus)

Brojerová, Jana January 2013 (has links)
The ability to communicate referentially has been historically viewed as being uniquelly human. However, with the increasing amount of studies discussing the communicative faculty of animals in the context of the evolution of human language, there is now growing evidence that this ability is present in many animal species, too. Although we know a lot about mimetic abilities of domesticated African grey parrots' (Psittacus erithacus) and their competence to use human words in a referential way, we know very little about the elements of referentiality in their natural vocalization. Our goal in this work was to find, whether and in which context is functionally referential vocalization in this species of birds present. We were determining its presence by the experiment, in which we have exposed four captured African grey parrot, in the ownership of FHS UK Prague, to stimuli that in other animal species usually elicit functionally referential vocalization: predators and prefered type of food. We analysed the behaviour and vocalizations of the tested birds by analytic softwares Interact, respectively Soundforge 0.8. We find out, that despite the fact that birds reaponded to our experimental objects appropriatelly (i.e. "predators" caused more fear and the like), they give the major amout of...
127

[pt] DESENVOLVIMENTO DE ELEMENTOS FINITOS HÍBRIDOS PARA A ANÁLISE DE PROBLEMAS DINÂMICOS USANDO SUPERPOSIÇÃO MODAL AVANÇADA / [en] DEVELOPMENT OF HYBRID FINITE ELEMENTS FOR ANALYSIS OF DYNAMICS PROBLEMS USING ADVANCED MODE SUPERPOSITION

PLINIO GLAUBER CARVALHO DOS PRAZERES 02 January 2006 (has links)
[pt] O método híbrido de elementos finitos, proposto por Pian com base no potencial de Hellinger-Reissner, provou ser um avanço conceitual entre as formulações de discretização, tendo sido explorado extensivamente desde então por códigos acadêmicos e comerciais, também levando em conta uma série independente dos mais recentes desenvolvimentos chamados métodos de Trefftz. O método híbrido de elementos de contorno é uma generalização bem sucedida da formulação original de Pian, em que funções de Green são usadas como funções de interpolação no domínio, possibilitando assim a modelagem robusta e precisa de formas arbitrárias submetidas a vários tipos de ações.Mais recentemente, uma proposição de Przemieniecki - para a análise geral de vibração livre de elementos de treliça e viga - foi incorporada à formulação de elementos híbridos de contorno e estendida para a análise de problemas dependentes do tempo fazendo uso de um processo de superposição modal avançada que leva em conta condições iniciais gerais assim como ações de corpo gerais, além de efeitos inerciais. A presente contribuição pretende trazer para elementos finitos os melhoramentos conceituais obtidos no contexto do método híbrido de elementos de contorno. Uma grande família de macro elementos finitos híbridos é introduzida para o tratamento unificado em 2D e 3D, de problemas estáticos e transientes de elasticidade e potencial com base nas soluções fundamentais não-singulares. É também mostrado que materiais nãohomogêneos, como os novos materiais com gradação funcional, podem ser tratados consistentemente, pelo menos para problemas de potencial. Alguns exemplos numéricos simples são apresentados como ilustração dos desenvolvimentos teóricos. / [en] The hybrid finite element method, proposed by Pian on the basis of the Hellinger-Reissner potential, has proved itself a conceptual breakthrough among the discretization formulations, and has been extensively explored both academically and in commercial codes also taking into account an independent series of more recent developments called Trefftz methods. The hybrid boundary element method is a successful generalization of Pian´s original formulation, in which Green´s functions are taken as interpolation functions in the domain, thus enabling the robust and accurate modeling of arbitrarily shaped bodies submitted to several types of actions. More recently, a proposition by Przemieniecki - for the generalized free vibration analysis of truss and beam elements - was incorporated into the hybrid boundary element formulation and extended to the analysis of time-dependent problems by making use of an advanced mode superposition procedure that takes into account general initial conditions as well as general body actions, besides the inertial effect. The present contribution aims to bring to finite elements the conceptual improvements obtained in the frame of the hybrid boundary element method. A large family of hybrid, macro finite elements is introduced for the unified treatment of 2D and 3D, static and transient problems of elasticity and potential on the basis of nonsingular fundamental solutions. It is also shown that nonhomogeneous materials, as the novel functionally graded materials, may be dealt with consistently, at least for potential problems. Some simple numerical examples are shown to illustrate the theoretical developments.
128

Development of Novel Green’s Functions and Their Applications to Multiphase and Multilayered Structures

Han, Feng 05 October 2006 (has links)
No description available.
129

Strategies for the Characterization and Virtual Testing of SLM 316L Stainless Steel

Hendrickson, Michael Paul 02 August 2023 (has links)
The selective laser melting (SLM) process allows for the control of unique part form and function characteristics not achievable with conventional manufacturing methods and has thus gained interest in several industries such as the aerospace and biomedical fields. The fabrication processing parameters selected to manufacture a given part influence the created material microstructure and the final mechanical performance of the part. Understanding the process-structure and structure-performance relationships is very important for the design and quality assurance of SLM parts. Image based analysis methods are commonly used to characterize material microstructures, but are very time consuming, traditionally requiring manual segmentation of imaged features. Two Python-based image analysis tools are developed here to automate the instance segmentation of manufacturing defects and subgranular cell features commonly found in SLM 316L stainless steel (SS) for quantitative analysis. A custom trained mask region-based convolution neural network (Mask R-CNN) model is used to segment cell features from scanning electron microscopy (SEM) images with an instance segmentation accuracy nearly identical to that of a human researcher, but about four orders of magnitude faster. The defect segmentation tool uses techniques from the OpenCV Python library to identify and segment defect instances from optical images. A melt pool structure generation tool is also developed to create custom melt-pool geometries based on a few user inputs with the ability to create functionally graded structures for use in a virtual testing framework. This tool allows for the study of complex melt-pool geometries and graded structures commonly seen in SLM parts and is applied to three finite element analyses to investigate the effects of different melt-pool geometries on part stress concentrations. / Master of Science / Recent advancements in additive manufacturing (AM) processes like the selective laser melting (SLM) process are revolutionizing the way many products are manufactured. The geometric form and material microstructure of SLM parts can be controlled by manufacturing settings, referred to as fabrication processing parameters, in ways not previously possible via conventional manufacturing techniques such as machining and casting. The improved geometric control of SLM parts has enabled more complex part geometries as well as significant manufacturing cost savings for some parts. With improved control over the material microstructure, the mechanical performance of SLM parts can be finely tailored and optimized for a particular application. Complex functionally graded materials (FGM) can also easily be created with the SLM process by varying the fabrication processing parameters spatially within the manufactured part to improve mechanical performance for a desired application. The added control offered by the SLM process has created a need for understanding how changes in the fabrication processing parameters affect the material structure, and in turn, how the produced structure affects the mechanical properties of the part. This study presents three different tools developed for the automated characterization of SLM 316L stainless steel (SS) material structures and the generation of realistic material structures for numerical simulation of mechanical performance. A defect content tool is presented to automatically identify and create binary segmentations of defects in SLM parts, consisting of small air pockets within the volume of the parts, from digital optical images. A machine learning based instance segmentation tool is also trained on a custom data set and used to measure the size of nanoscale cell features unique to 316L (SS) and some other metal alloys processed with SLM from scanning electron microscopy (SEM) images. Both these tools automate the laborious process of segmenting individual objects of interest from hundreds or thousands of images and are shown to have an accuracy very close to that of manually produced results from a human. The results are also used to analyze three different samples produced with different fabrication processing parameters which showed similar process-structure relationships with other studies. The SLM structure generation tool is developed to create melt pool structures similar to those seen in SLM parts from the successive melting and solidification of material from the laser scanning path. This structural feature is unique to AM processes such as SLM, and the example test cases investigated in this study shows that changes in the melt pool structure geometry have a measurable effect, slightly above 10% difference, on the stress and strain response of the material when a tensile load is applied. The melt pool structure generation tool can create complex geometries capable of varying spatially to create FGMs from a few user inputs, and when applied to existing simulation methods for SLM parts, offers improved estimates for the mechanical response of SLM parts.
130

Schalentragwerke mit funktionaler Gradierung

Illguth, Sandy, Lowke, Dirk, Kränkel, Thomas, Gehlen, Christoph 21 July 2022 (has links)
Betone für schlanke Schalentragwerke weisen zur Sicherstellung ausreichender Zugfestigkeiten oft einen hohen Stahlfasergehalt auf. Dies ist mit hohen ökologischen und monetären Kosten verbunden. Das Ziel war es daher, die Voraussetzungen für die Herstellung effizienter Schalentragwerke aus funktional fasergradierten Betonfertigteilen zu schaffen. / Concrete for slender load-bearing shell structures often has a high steel fibre content to ensure sufficient tensile strength. This is associated with high ecological and financial costs. Thus, the aim of this project was to create the prerequisites for the production of efficient shell structures made of functional fibre-graded precast concrete elements.

Page generated in 0.1159 seconds