Spelling suggestions: "subject:"functors"" "subject:"functores""
11 |
Jeux graphiques et théorie de la démonstration / Graphical games and proof theoryHatat, Florian 23 October 2013 (has links)
Ce travail est une contribution à la sémantique de jeux des langages de programmation. Il présente plusieurs méthodes nouvelles pour construire une sémantique de jeux pour un lambda-calcul de continuations.Si les sémantiques de jeux ont été développées à grande échelle pour fournir des modèles de langages fonctionnels avec références, en appel par nom et par valeur, ou pour différents fragments de la logique linéaire, certains de ses aspects demeurent cependant très subtils. Cette thèse s'intéresse spécifiquement à la notion d'innocence et à la combinatoire mise en jeu dans la composition des stratégies innocentes, en donnant pour chacune une interprétation via des constructions catégoriques standards.Nous reformulons la notion d'innocence en terme de préfaisceaux booléens sur une catégorie de vues. Pour cela, nous enrichissons la notion de parties dans notre sémantique de jeux en ajoutant des morphismes entre parties qui vont au-delà du simple ordre préfixe habituel. À partir d'une stratégie, donnée par les vues qu'elle accepte, on calcule son comportement sur toutes les parties en prenant une extension de Kan à droite.La composition des stratégies innocentes s'appuie sur les notions catégoriques habituelles de systèmes de factorisation et de foncteurs polynomiaux. Notre sémantique permet de modéliser l'interaction entre deux stratégies comme une seule stratégie dont il faut parvenir à cacher les coups internes, grâce à une technique d'élimination des coupures~: cette étape est accomplie avec une version affaiblie des systèmes de factorisation. La composition elle-même entre stratégies repose pour sa part sur l'utilisation de la théorie des foncteurs polynomiaux. Les propriétés essentielles, telles que l'associativité ou la correction de la sémantique, proviennent d'une méthode de preuve presque systématique donnée par cette théorie. / This work is a contribution to game semantics for programming languages. We describe new methods used to define a game semantics for a lambda-calculus with continuations.Game semantics have been widely used to provide models for functional programming languages with references, using call-by-name or call-by-value, or for different fragments of linear logic. Yet, some parts of these semantics are still highly subtle. This work mainly deals with the notion of innocence, and with combinatorics involved in composing innocent strategies. We provide both of them with an interpretation which relies on standard categorical constructions.We reformulate innocence in terms of boolean presheaves over a given category of views. We design for this purpose an enriched class of plays, by adding morphisms which do not appear in the traditional preorder of plays. We show how to compute the global behaviour, i.e., on every play, of a strategy given by its class of accepted views by taking a right Kan extension.Our composition of innocent strategies relies on the usual categorial notions of factorisation systems and polynomial functors. In our semantics, the interaction between two strategies is itself a strategy, in which we must hide internal moves with a cut-elimination process. This step is given by a weakened version of factorisations systems. The core of composition of strategies involves material borrowed from polynomial functors theory. This theory yields a systematic proof method for showing essential properties, such as associativity of composition, or correction of our semantics.
|
12 |
Topology Preserving Data Reductions for Computing Persistent HomologySens, Aaron M. 04 October 2021 (has links)
No description available.
|
13 |
Foncteurs de Long-Moody et homologie stable des groupes de difféotopie / Long-Moody functors and stable homology of mapping class groupsSoulié, Arthur 27 June 2018 (has links)
Parmi les représentations linéaires des groupes de tresses, les représentations de Burau peuvent être construites à partir d’une représentation triviale via une construction introduite par Long en 1994, à l’issue d’une collaboration avec Moody. Cette construction, dite de Long-Moody, permet ainsi de construire des représentations de plus en plus complexes des groupes de tresses. Dans cette thèse, on adopte un point de vue fonctoriel sur cette construction, ce qui permet d’en dégager plus aisément des variantes. De plus, le degré de polynomialité d’un foncteur permet d’en mesurer la complexité. On montre ainsi que la construction Long-Moody définit un foncteur LM, qui augmente le degré de très forte polynomialité. Par ailleurs, on définit des foncteurs analogues pour d’autres familles de groupes telles que les groupes de difféotopie des surfaces et des 3-variétés, les groupes symétriques ou les groupes d’automorphismes des groupes libres. Ils vérifient des propriétés similaires sur la polynomialité. Les foncteurs de Long-Moody fournissent ainsi des coefficients tordus entrant dans le cadre des résultats de stabilité homologique de Randal-Williams et Wahl pour les familles de groupes susmentionnées. On donne enfin un résultat de comparaison entre l’homologie stable à coefficient dans un foncteur F et celle à coefficient dans le foncteur LM(F) obtenu en appliquant un foncteur de Long-Moody. Cette thèse se décompose en trois chapitres. Le premier introduit les foncteurs de Long-Moody pour les groupes de tresses et traite de leur effet sur la polynomialité. Le deuxième traite de la généralisation des foncteurs de Long-Moody pour d’autres familles de groupes. Le dernier chapitre concerne des calculs d’homologie stable pour les groupes de difféotopie. / Among the linear representations of braid groups, Burau representations are recovered from a trivial representation using a construction introduced by Long in 1994, following a collaboration with Moody. This construction, called the Long-Moody construction, thus allows to construct more and more complex representations of braid groups. In this thesis, we have a functorial point of view on this construction, which allows find more easily some variants. Moreover, the degree of polynomiality of a functor measures its complexity. We thus show that the Long-Moody construction defines a functor LM, which increases the degree of polynomiality. Furthermore, we define analogous functors for other families of groups such as mapping class groups of surfaces and 3-manifolds, symmetric groups or automorphism groups of free groups. They satisfy similar properties on the polynomiality. Hence, Long-Moody functors provide twisted coefficients fitting into the framework of the homological stability results of Randal-Williams and Wahl for the afore mentioned families of groups. Finally, we give a comparison result for the stable homology with coefficient given by a functor F and the one with coefficient given by the functor LM(F), obtained applying a Long-Moody functor. This thesis has three chapters. The first one introduces Long-Moody functors for braid groups and deals with their effect on the polynomiality. The first one deals with the generalisation of Long-Moody functors for other families of groups. The last chapter touches on stable homology computations for mapping class group.
|
14 |
Torsion Products of Modules Over the Orbit CategoryKeiper, Graham January 2016 (has links)
The goal of this paper is to extend Sanders Mac Lane's formulation of the torsion product as equivalence classes of projective chain complexes in the setting of modules over a ring to the setting of modules over small categories. The motivation to extend the definition was with a specific view to the orbit category. The main difficulty was in defining an appropriate dual for modules over small categories. During the course of our investigation it was discovered that modules over small categories can be formulated as modules over a matrix ring without losing any of the key features. / Thesis / Master of Science (MSc)
|
15 |
Grothendieck Group Decategorifications and Derived Abelian CategoriesMcBride, Aaron January 2015 (has links)
The Grothendieck group is an interesting invariant of an exact category. It induces a decategorication from the category of essentially small exact categories (whose morphisms are exact functors) to the category of abelian groups. Similarly, the triangulated Grothendieck group induces a decategorication from the category of essentially small triangulated categories (whose morphisms are triangulated functors) to the category of abelian groups. In the case of an essentially small abelian category, its Grothendieck group and the triangulated Grothendieck group of its bounded derived category are isomorphic as groups via a natural map. Because of this, homological algebra and derived functors become useful in surprising ways. This thesis is an expository work that provides an overview of the theory of Grothendieck groups with respect to these decategorications.
|
16 |
Spectral sequences for composite functors / Spektralsekvenser för sammansatta funktorerErlandsson, Adam January 2022 (has links)
Spectral sequences were developed during the mid-twentieth century as a way of computing (co)homology, and have wide uses in both algebraic topology and algebraic geometry. Grothendieck introduced in his Tôhoku paper the Grothendieck spectral sequence, which given left exact functors $F$ and $G$ between abelian categories, uses the right-derived functors of $F$ and $G$ as initial data and converges to the right-derived functors of the composition $G\circ F.$ This thesis focuses on instead constructing a spectral sequence that uses the derived functors of $G$ and $G\circ F$ as initial data and converges to the derived functors of $F.$ Our approach takes inspiration from the construction of the Eilenberg-Moore spectral sequence, which given a fibration of topological spaces can calculate the singular cohomology of the fiber from the singular cohomology of the base space and total space. The Eilenberg-Moore spectral sequence can be constructed through the use of differential graded algebras and their bar construction, since this defines a double complex for which the column-wise filtration of the corresponding total complex induces the spectral sequence. The correct analogue of this with respect to composite functors is the bar construction for monads. Specifically, we let $G$ have an exact left adjoint $H$, which makes $G\circ H$ into a monad. Then, we extend our adjunction so that the derived functor $RG$ has left adjoint $RH$ in the corresponding derived categories, making $RG\circ RH$ into a monad. This allows us to apply the bar construction in the derived category, but we show that there emerge issues in obtaining a double complex and subsequent total complex from this construction. Additionally, we present the essential theory of spectral sequences in general, and of the Serre, Eilenberg-Moore and Grothendieck spectral sequences in particular. / Spektralsekvenser utvecklades under mitten av 1900-talet som ett verktyg för att beräkna (ko)homologi, och har många användningsområden inom både algebraisk topologi och algebraisk geometri. Grothendieck introducerade i sin Tôhoku-artikel Grothendieck-spektralsekvensen, som givet vänsterexakta funktorer $F$ och $G$ mellan abelska kategorier använder de högerderiverade funktorerna av $F$ och $G$ som initialdata och som konvergerar till de högerderiverade funktorerna av kompositionen $G\circ F$. Denna masteruppsats fokuserar på att istället konstruera en spektralsekvens som använder de deriverade funktorerna av $G$ och $G\circ F$ som initialdata och konvergerar till de deriverade funktorerna av $F$. Vår metod tar inspiration från konstruktionen av Eilenberg-Moore-spektralsekvensen, som givet en fibrering av topologiska rum kan beräkna den singulära kohomologin av fibern från den singulära kohomologin av basrummet och totalrummet. Eilenberg-Moore spektralsekvensen kan konstrueras genom användningen av graderade differentialalgebror och deras bar-konstruktion, eftersom detta definierar ett dubbelkomplex vars kolumnvisa filtrering av det resulterande totalkomplexet inducerar spektralsekvensen. Vad gäller kompositioner av funktorer så är den korrekta analogin till detta bar-konstruktionen för monader. Specifikt så låter vi $G$ ha en exakt vänsteradjungerad funktor $H$, vilket gör $G\circ H$ till en monad. Sedan utvidgar vi denna adjunktion sådant att den deriverade funktorn $RG$ har vänsteradjunkt $RH$ i den deriverade kategorin, vilket gör $RG\circ RH$ till en monad. Detta ger oss möjligheten att använda bar-konstruktionen i den deriverade kategorin, men vi visar att det uppstår problem när vi ska definiera ett dubbelkomplex och resulterande totalkomplex från denna konstruktion. Utöver detta så innehåller denna uppsats en genomgång av den viktigaste teorin om spektralsekvenser i allmänhet, och om Serre-, Eilenberg-Moore- och Grothendieck-spektralsekvensen i synnerhet.
|
Page generated in 0.0495 seconds