• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 7
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 60
  • 60
  • 60
  • 36
  • 34
  • 28
  • 28
  • 24
  • 24
  • 20
  • 11
  • 10
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Tribological and Mechanical Behaviour of 3D Printed Polymeric Bearings

Qazi, Sallar Ali January 2021 (has links)
Plastics contribute 2 GTons to the global carbon footprint, today, several countries have set targets to achieve carbon neutrality. Plastics, being a major contributor to global carbon footprint, would need to be reduced significantly from our daily life to achieve that or a way needs to be devised to recycle them. A big bottleneck in this process is to reduce the consumption of thermosetting plastics or to reduce the emissions associated with plastic and move towards economical and environmentally safe plastics having a longer lifespan and efficient recyclability. Fused filament fabrication (FFF) is the most commonly used 3D printed technology available today. Its applications range from production of prototypes to hollow shafts, and fully functional commercial components. This technology is revolutionary in a sense that it offers advantages such as cheaper raw materials, high degree of customizability, production in smaller batches at lower costs, decrease in material wastage, rapid prototyping, and complex geometry. A number of thermoplastic polymers can be used with FFF technology to produce parts, in addition research is on going to print materials not commonly used for FFF process. Polyoxymethylene (POM) could be a viable option for utilization as FFF basestock for the production of tribologically functional components. POM is an engineering thermoplastic that offers high resistance to wear, low friction, excellent impact resistance, and good chemical resistance. These properties render it suitable for production of gear wheels and low load bearings. It is currently processed using traditional manufacturing methods such as injection and compression moulding, while its printability has received very little attention in the openly available literature. An attempt has been made in this thesis to fill up this research gap by providing insight into POM filament quality, and the thermal, mechanical, and tribological behaviour of POM printed parts. The influence of overfill and layer height on the bulk properties of the printed samples, its play with counterface surface roughness and applied load has also been investigated.
52

Fused deposition modeling of API-loaded mesoporous magnesium carbonate

Abdelki, Andreas January 2020 (has links)
In this thesis, the incorporation of drug loaded mesoporous magnesium carbonate as an excipient for the additive manufacturing of oral tablets by fused deposition modeling was investigated. Cinnarizine, a BCS class II drug, was loaded into the pores of the mesoporous material via a soaking method, corresponding to a drug loading of 8.68 wt%. DSC measurements on the loaded material suggested that the drug was partially crystallized after incorporation, meanwhile the XRD diffractogram implied that the drug was in a state lacking long range order. The drug loaded material was combined with two pharmaceutical polymers, Aquasolve LG and Klucel ELF, and extruded into filaments with a single screw extruder. Filaments of Klucel ELF and drug loaded Upsalite (30:70 wt% ratio) were successfully implemented for the printing oral tablets, in contrast to the Aquasolve LG based filaments which were difficult to print due to thickness variations and non-uniform material distributions. The drug content obtained by TGA suggested drug loadings of 7.71 wt% and 2.23 wt% in the drug loaded Upsalite and tablets respectively. Dissolution studies using an USP II apparatus showed a slower API-release from the tablets in comparison to the crystalline drug, most probably due to slow diffusion of drug species through the polymeric matrix. For future studies, pharmaceutical polymers with higher aqueous solubility should be investigated in order to thoroughly examine the potential of utilizing the immediate release property of Upsalite.
53

Additive manufacturing : Optimization of process parameters for fused filament fabrication

Hayagrivan, Vishal January 2018 (has links)
An obstacle to the wide spread use of additive manufacturing (AM) is the difficulty in estimating the effects of process parameters on the mechanical properties of the manufactured part. The complex relationship between the geometry, parameters and mechanical properties makes it impractical to derive an analytical relationship and calls for the use of a numerical model. An approach to formulate a numerical model in developed in this thesis. The AM technique focused in this thesis is fused filament fabrication (FFF). A numerical model is developed by recreating FFF build process in a simulation environment. Machine instructions generated by a slicer to build a part is used to create a numerical model. The model acts as a basis to determine the effects of process parameters on the stiffness and the strength of a part. Determining the stiffness of the part is done by calculating the response of the model to a uniformly distributed load. The strength of the part depends on it's thermal history. The developed numerical model serves as a basis to implement models describing the relation between thermal history and strength. The developed model is suited to optimize FFF parameters as it encompass effects of all FFF parameters. A genetic algorithm is used to optimize the FFF parameters for minimum weight with a minimum stiffness constraint. / Ett hinder för att additiv tillverkning (AT), eller ”3D-printing”, ska få ett bredare genomslag är svårigheten att uppskatta effekterna av processparametrar på den tillverkade produktens mekaniska prestanda. Det komplexa förhållandet mellan geometri och processparametrar gör det opraktiskt och komplicerat att härleda analytiska uttryck för att förutsäga de mekaniska egenskaperna. Alternativet är att istället använda numeriska modeller. Huvudsyftet med denna avhandling har därför varit att utveckla en numerisk modell som kan användas för att förutsäga de mekaniska egenskaperna för detaljer tillverkade genom AT. AT-tekniken som avses är inriktad på Fused Filament Fabrication (FFF). En numerisk modell har utvecklats genom att återskapa FFF-byggprocessen i en simuleringsmiljö. Instruktioner (skriven i GCode) som används för att bygga en detalj genom FFF har här översatts till en numerisk FE-modell. Modellen används sen för att bestämma effekterna av processparametrar på styvheten och styrkan hos den tillverkade detaljen. I detta arbete har strukturstyvheten hos olika detaljer beräknats genom att utvärdera modellens svar för jämnt fördelade belastningsfall. Styrkan, vilket är starkt beroende på den tillverkade detaljens termiska historia, har inte utvärderats. Den utvecklade numeriska modellen kan dock fungera som underlag för implementering av modeller som beskriver relationen mellan termisk historia och styrka. Den utvecklade modellen är anpassad för optimering av FFF-parametrar då den omfattar effekterna av alla FFF-parametrar. En genetisk algoritm har använts i detta arbete för att optimera parametrarna med avseende på vikt för en given strukturstyvhet.
54

Anisotropy Evolution Due to Surface Treatment on 3D-Printed Fused Deposition Modeling (FDM) of Acrylonitrile Butadiene Styrene (ABS)

Lozinski, Blake E 01 January 2017 (has links)
Purpose: This paper will present insight to the methodology and results of the experimental characterization of Acrylonitrile Butadiene Styrene (ABS) using Fused Deposition Modeling (FDM). The work in this research explored the effects of print orientation, surface treatment, and ultraviolet (UV) light degradation with the utilization of Digital Image Correlation (DIC) on ABS tensile specimens. Design/methodology: ABS specimens were printed at three build orientations (flat (0 degrees), 45 degrees, and up-right (90 degrees)). Each of these specimens were treated with three different surface treatments including a control (acrylic paint, Cyanoacrylate, and Diglycidyl Bisphenol A) followed by exposure to UV light to the respective batches. This experiment design will provide tensile direction properties with the effect of thermoset coatings and UV degradation. Dogbone FDM specimens based on ASTM standard D638 type IV were printed on a Stratasys Dimension SST (Soluble Support Technology) 1200es 3D Printer and loaded into a MTS Landmark Servohydraulic Test Systems. Analysis was preformed on the fracture section of the tensile specimens utilized DIC and comparing Ultimate Tensile Strength (UTS) and Ultimate Fracture Strength (UFS). Findings: From the results UV light did not play a large factor in the strength of the specimens. The print orientation showed the largest anisotropic behavior where some specimens experienced as much as a 54% difference in ultimate tensile strength. Thermoset coated specimens experienced a maximum of 2% increase in strength for the Cyanoacrylate and Diglycidyl Bisphenol A specimens where the acrylic paint and natural did not. Several findings were of value when looking at the stress strain plots. Originality/value: This paper provides knowledge to the limited work on print build orientation, thermoset coatings and, UV light on ABS specimens. Very little to no work has been done on these three properties. This paper can serve as the foundation of future work on external applications on ABS plastics.
55

Physical Models of Biochemicallly Important Molecules Using Rapid Prototyping Techniques

Zubricky, James R., III 28 June 2006 (has links)
No description available.
56

Development of polymer based composite filaments for 3D printing

Åkerlund, Elin January 2019 (has links)
The relatively new and still growing field of 3D-printing has opened up the possibilities to manufacture patient-specific medical devices with high geometrical accuracy in a precise and quick manner. Additionally, biocompatible materials are a demand for all medical applications while biodegradability is of importance when developing scaffolds for tissue growth for instance. With respect to this, this project consisted of developing biocompatible and bioresorbable polymer blend and composite filaments, for fused deposition modeling (FDM) printing. Poly(lactic acid) (PLA) and polycaprolactone (PCL) were used as supporting polymer matrix while hydroxyapatite (HA), a calcium phosphate with similar chemical composition to the mineral phase of human bone, was added to the composites to enhance the biological activity. PLA and PCL content was varied between 90–70 wt% and 10-30 wt%, respectively, while the HA content was 15 wt% in all composites. All materials were characterized in terms of mechanical properties, thermal stability, chemical composition and morphology. An accelerated degradation study of the materials was also executed in order to investigate the degradation behavior as well as the impact of the degradation on the above mentioned properties. The results showed that all processed materials exhibited higher mechanical properties compared to the human trabecular bone, even after degradation with a mass loss of around 30% for the polymer blends and 60% for the composites. It was also apparent that the mineral accelerated the polymer degradation significantly, which can be advantageous for injuries with faster healing time, requiring only support for a shorter time period.
57

Obtenção de scaffolds poliméricos baseados em poli(ácido lático), hidroxiapatita e óxido de grafeno utilizando o método de manufatura aditiva por “fused deposition modeling”

Siqueira, André da Silva 06 February 2018 (has links)
Submitted by Marta Toyoda (1144061@mackenzie.br) on 2018-05-14T18:21:27Z No. of bitstreams: 2 André da Silva Siqueira.pdf: 3776282 bytes, checksum: 6603b366db594cfde0276b33c03a1968 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Paola Damato (repositorio@mackenzie.br) on 2018-05-21T13:34:35Z (GMT) No. of bitstreams: 2 André da Silva Siqueira.pdf: 3776282 bytes, checksum: 6603b366db594cfde0276b33c03a1968 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-05-21T13:34:35Z (GMT). No. of bitstreams: 2 André da Silva Siqueira.pdf: 3776282 bytes, checksum: 6603b366db594cfde0276b33c03a1968 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-02-06 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The present work aims to obtain and characterize a composite filament based on poly (lactic acid) (PLA), hydroxyapatite (HA) and graphene oxide, to process it by fused deposition modeling (FDM), and then make scaffolds for bone tissue growth and order to evaluate the properties of the obtained structure. To achieve these goals composite of PLA/HA, PLA/GO and PLA / HA / GO with concentrations of 0.05 wt %, 0.1 wt % and 0.3 wt % GO and 30 wt % HA were obtained by melt state blending and subsequently processed by FDM. The graphite oxide was obtained by modified Hummers method and characterized by X-ray diffraction (XRD), thermogravimetric analysis and Raman spectroscopy. The PLA and composites were characterized by molar mass measurements, infrared and Raman spectroscopy, tensile strength tests, contact angle measurements (surface energy), differential scanning calorimetry (DSC) and rheological tests. The insertion of GO into PLA and PLA/HA composites led to improvements in the mechanical properties (tensile) and also modified significantly the surface properties of the materials and the composition with 0.05 wt % of GO has shown the better results in both characteristics. These improvements occurred due to the strong interaction of the GO sheets with the PLA matrix that indicates the process of obtaining the composites via the melting state was correctly conducted. All PLA / HA / GO compositions presented rheological characteristics compatible with of scaffolds production process via FDM. The insertion of the GO into the PLA matrix and the PLA / HA composite has been shown to be extremely promising, and possibly to increase the variety of PLA / HA based biomaterials application. / O presente trabalho visa obter e caracterizar um filamento compósito baseado em poli(ácido lático) (PLA), hidroxiapatita (HA) e óxido de grafeno, processá-lo por Fused deposition modeling (FDM), fabricar scaffolds para crescimento de tecido ósseo. Para alcançar esses objetivos fcompósitos de PLA/HA, PLA/GO e PLA/HA/GO com concentrações de 0,05%, 0,1% e 0,3% de GO e 30% de HA (em massa) foram preparados por meio de mistura no estado fundido e posteriormente processados por FDM. Comprovou-se a obtenção do óxido de grafite por técnicas de difração de raios-X (DRX), análise termogravimétrica e espectroscopia Raman. O PLA e os compósitos foram caracterizados por medidas de massa molar da matriz polimérica, espectroscopia no infravermelho e Raman, ensaios mecânicos de tração, medidas de ângulos de contato (energia de superfície), calorimetria exploratória diferencial (DSC) e ensaios reológicos. A inserção do GO no PLA e no compósito PLA/HA conduziu a melhorias das propriedades mecânicas (tração) dos materiais e também modificou significativamente as propriedades de superfície dos materiais estudados, sendo a concentração de 0,05% em massa a que apresentou melhor desempenho em ambas as características. Essas melhorias aconteceram devido à forte interação das folhas de GO com a matriz de PLA, o que indica que o processo de obtenção dos compósitos via estado fundido foi corretamente conduzido. Todas as composições PLA/HA/GO apresentaram características reológicas compatíveis com o processo de produção dos scaffolds via FDM. A inserção do GO na matriz de PLA e no compósito PLA/HA demonstrou-se ser extremamente promissora, e possivelmente aumentarão a variedade de aplicações dos biomateriais baseados em PLA/HA.
58

Towards Topography Characterization of Additive Manufacturing Surfaces

Vedantha Krishna, Amogh January 2020 (has links)
Additive Manufacturing (AM) is on the verge of causing a downfall to conventional manufacturing with its huge potential in part manufacture. With an increase in demand for customized product, on-demand production and sustainable manufacturing, AM is gaining a great deal of attention from different industries in recent years. AM is redefining product design by revolutionizing how products are made. AM is extensively utilized in automotive, aerospace, medical and dental applications for its ability to produce intricate and lightweight structures. Despite their popularity, AM has not fully replaced traditional methods with one of the many reasons being inferior surface quality. Surface texture plays a crucial role in the functionality of a component and can cause serious problems to the manufactured parts if left untreated. Therefore, it is necessary to fully understand the surface behavior concerning the factors affecting it to establish control over the surface quality. The challenge with AM is that it generates surfaces that are different compared to conventional manufacturing techniques and varies with respect to different materials, geometries and process parameters. Therefore, AM surfaces often require novel characterization approaches to fully explain the manufacturing process. Most of the previously published work has been broadly based on two-dimensional parametric measurements. Some researchers have already addressed the AM surfaces with areal surface texture parameters but mostly used average parameters for characterization which is still distant from a full surface and functional interpretation. There has been a continual effort in improving the characterization of AM surfaces using different methods and one such effort is presented in this thesis. The primary focus of this thesis is to get a better understanding of AM surfaces to facilitate process control and optimization. For this purpose, the surface texture of Fused Deposition Modeling (FDM) and Laser-based Powder Bed Fusion of Metals (PBF-LB/M) have been characterized using various tools such as Power Spectral Density (PSD), Scale-sensitive fractal analysis based on area-scale relations, feature-based characterization and quantitative characterization by both profile and areal surface texture parameters. A methodology was developed using a Linear multiple regression and a combination of the above-mentioned characterization techniques to identify the most significant parameters for discriminating different surfaces and also to understand the manufacturing process. The results suggest that the developed approaches can be used as a guideline for AM users who are looking to optimize the process for gaining better surface quality and component functionality, as it works effectively in finding the significant parameters representing the unique signatures of the manufacturing process. Future work involves improving the accuracy of the results by implementing improved statistical models and testing other characterization methods to enhance the quality and function of the parts produced by the AM process.
59

Vibration and Aeroelastic Prediction of Multi-Material Structures based on 3D-Printed Viscoelastic Polymers

Carter, Justin B. 26 July 2021 (has links)
No description available.
60

Development of 3D Printing Multifunctional Materials for Structural Health Monitoring

Cole M Maynard (6622457) 11 August 2022 (has links)
<p>Multifunctional additive manufacturing has the immense potential of addressing present needs within structural health monitoring by enabling a new additive manufacturing paradigm that redefines what a sensor is, or what sensors should resemble. To achieve this, the properties of printed components must be precisely tailored to meet structure specific and application specific requirements. However due to the limited number of commercially available multifunctional filaments, this research investigates the in-house creation of adaptable piezoresistive multifunctional filaments and their potential within structural health monitoring applications based upon their characterized piezoresistive responses. To do so, a rigid polylactic acid based-filament and a flexible thermoplastic polyurethane based-filament were modified to impart piezoresistive properties using carbon nanofibers. The filaments were produced using different mixing techniques, nanoparticle concentrations, and optimally selected manufacturing parameters from a design of experiments approach. The resulting filaments exhibited consistent resistivity values which were found to be less variable under specific mixing techniques than commercially available multifunctional filaments. This improved consistency was found to be a key factor which held back currently available piezoresistive filaments from fulfilling needs within structural health monitoring. To demonstrate the ability to meet these needs, the piezoresistive responses of three dog-bone shaped sensor sizes were measured under monotonic and cyclic loading conditions for the optimally manufactured filaments. The characterized piezoresistive responses demonstrated high strain sensitivities under both tensile and compressive loads. These piezoresistive sensors demonstrated the greatest sensitivity in tension, where all three sensor sizes exhibited gauge factors over 30. Cyclic loading supported these results and further demonstrated the accuracy and reliability of the printed sensors within SHM applications.</p>

Page generated in 0.1305 seconds