• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 24
  • 12
  • 10
  • 10
  • 9
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Importance des données inactives dans les modèles : application aux méthodes de criblage virtuel en santé humaine et environnementale / Importance of inactive data in models : application to virtual screening in human and environmental health

Réau, Manon 29 October 2019 (has links)
Le criblage virtuel est utilisé dans la recherche de médicaments et la construction de modèle de prédiction de toxicité. L’application d’un protocole de criblage est précédée par une étape d’évaluation sur une banque de données de référence. La composition des banques d’évaluation est un point critique ; celles-ci opposent généralement des molécules actives à des molécules supposées inactives, faute de publication des données d’inactivité. Les molécules inactives sont néanmoins porteuses d’information. Nous avons donc créé la banque NR-DBIND composée uniquement de molécules actives et inactives expérimentalement validées et dédiées aux récepteurs nucléaires. L’exploitation de la NR-DBIND nous a permis d’étudier l’importance des molécules inactives dans l’évaluation de modèles de docking et dans la construction de modèles de pharmacophores. L’application de protocoles de criblage a permis d’élucider des modes de liaison potentiels de petites molécules sur FXR, NRP-1 et TNF⍺. / Virtual screening is widely used in early stages of drug discovery and to build toxicity prediction models. Commonly used protocols include an evaluation of the performances of different tools on benchmarking databases before applying them for prospective studies. The content of benchmarking tools is a critical point; most benchmarking databases oppose active data to putative inactive due to the scarcity of published inactive data in the literature. Nonetheless, experimentally validated inactive data also bring information. Therefore, we constructed the NR-DBIND, a database dedicated to nuclear receptors that contains solely experimentally validated active and inactive data. The importance of the integration of inactive data in docking and pharmacophore models construction was evaluated using the NR-DBIND data. Virtual screening protocols were used to resolve the potential binding mode of small molecules on FXR, NRP-1 et TNF⍺.
12

Régulation de la proprotéine convertase subtilisine / kexine type 9 (PCSK9) dans les cellules intestinales Caco-2/15

Leblond, François 12 1900 (has links)
La proprotéine convertase subtilisine/kexine type 9 (PCSK9) favorise la dégradation post-transcriptionnelle du récepteur des lipoprotéines de faible densité (LDLr) dans les hépatocytes et augmente le LDL-cholestérol dans le plasma. Cependant, il n’est pas clair si la PCSK9 joue un rôle dans l’intestin. Dans cette étude, nous caractérisons les variations de la PCSK9 et du LDLr dans les cellules Caco-2/15 différentiées en fonction d’une variété d’effecteurs potentiels. Le cholestérol (100 µM) lié à l’albumine ou présenté en micelles a réduit de façon significative l’expression génique (30%, p<0,05) et l’expression protéique (50%, p<0,05) de la PCSK9. Étonnamment, une diminution similaire dans le LDLr protéique a été enregistrée (45%, p<0,05). Les cellules traitées avec le 25-hydroxycholestérol (50 µM) présentent également des réductions significatives dans l’ARNm (37%, p<0,01) et la protéine (75%, p<0,001) de la PCSK9. Une baisse des expressions génique (30%, p<0,05) et protéique (57%, p<0,01) a également été constatée dans le LDLr. Des diminutions ont aussi été observées pour la HMG CoA réductase et la protéine liant l’élément de réponse aux stérols SREBP-2. Il a été démontré que le SREBP-2 peut activer transcriptionnellement la PCSK9 par le biais de la liaison de SREBP-2 à son élément de réponse aux stérols situé dans la région proximale du promoteur de la PCSK9. Inversement, la déplétion du contenu cellulaire en cholestérol par l’hydroxypropyl-β-cyclodextrine a augmenté l’expression génique de la PCSK9 (20%, p<0,05) et son contenu protéique (540%, p<0,001), en parallèle avec les niveaux protéiques de SREBP-2. L’ajout des acides biliaires taurocholate et déoxycholate dans le milieu apical des cellules intestinales Caco-2/15 a provoqué une baisse d’expression génique (30%, p<0,01) et une hausse d’expression protéique (43%, p<0,01) de la PCSK9 respectivement, probablement via la modulation du FXR (farnesoid X receptor). Ces données combinées semblent donc indiquer que la PCSK9 fonctionne comme un senseur de stérols dans le petit intestin. / Proprotein convertase subtilisin/kexin type 9 (PCSK9) posttranslationally promotes the degradation of the low-density lipoprotein receptor (LDLr) in hepatocytes and increases plasma LDL cholesterol. It is not clear, however, whether PCSK9 plays a role in the small intestine. Here, we characterized the patterns of variations of PCSK9 and LDLr in fully differentiated Caco-2/15 cells as a function of various potential effectors. Cholesterol (100 µM) solubilised in albumin or micelles significantly down-regulated PCSK9 gene (30%, p<0,05) and protein expression (50%, p<0,05), surprisingly in concert with a decrease in LDLr protein levels (45%, p<0,05). 25-hydroxycholesterol (50 µM) treated cells also displayed significant reduction in PCSK9 gene (37 %, p<0,01) and protein (75% p<0,001) expression, while LDLr showed a decrease at the gene (30%, p< 0,05) and protein (57%, p<0,01) levels, respectively. The amounts of PCSK9 mRNA and protein in Caco-2/15 cells were associated to the regulation of HMG-CoA reductase and sterol regulatory element binding protein-2 (SREBP-2) that can transcriptionally activate PCSK9 via sterol-regulatory elements located in its proximal promoter region. On the other hand, depletion of cholesterol content by hydroxypropyl-β-cyclodextrine up-regulated PCSK9 transcripts (20%, p<0,05) and protein mass (540%, p<0,001), in parallel with SREBP-2 protein levels. The addition of bile acids, taurocholate and deoxycholate, to the apical culture medium lowered PCSK9 gene expression (30%, p<0,01) and raised PCSK9 protein expression (43%, p<0,01) respectively, probably via the modulation of farnesoid X receptor. Combined, these data indicate that PCSK9 functions as a sensor of sterol in the small intestine.
13

Impact de la phosphorylation de FXR par la PKA sur son activité transcriptionnelle et sur la régulation de la néoglucogenèse hépatique / Impact of FXR phosphorylation by PKA on its transcriptional activity and on the regulation of hepatic gluconeogenesis

Ploton, Maheul 11 December 2018 (has links)
L’homéostasie glucidique est, durant un jeûne normal, maintenue grâce à un réseau de régulation complexe contrôlé principalement par le glucagon, produit par le pancréas. S’opposant aux effets de l’insuline, celui-ci orchestre notamment l'utilisation, le stockage et la synthèse du glucose par le foie, principal organe de production du glucose au cours du jeûne. Cette dernière s’effectue d’abord suite à la dégradation du glycogène ou glycogénolyse puis par la synthèse de novo de glucose ou néoglucogenèse. La néoglucogenèse hépatique est contrôlée par la modulation de l’activité et/ou de l’expression de différentes enzymes-clefs selon des mécanismes allostériques ou transcriptionnels.De multiples facteurs de transcription sont impliqués dans la régulation, au niveau transcriptionnel, de la néoglucogenèse hépatique. Le récepteur nucléaire des acides biliaires FXR est exprimé dans le foie et dans plusieurs organes impliqués dans le maintien de l’homéostasie glucidique. FXR participe à la régulation de nombreuses fonctions hépatiques essentielles, en contrôlant notamment les métabolismes des acides biliaires et lipidique. Le rôle exact de FXR sur la néoglucogenèse reste toujours débattu. L’objectif de cette thèse a donc été d’étudier le rôle de FXR dans le contrôle de la néoglucogenèse hépatique dans des conditions expérimentales reflétant certains aspects du jeûne. Nous avons démontré que FXR, en présence de glucagon, régulait positivement la néoglucogenèse selon deux mécanismes.Le premier mécanisme implique la phosphorylation de FXR par la PKA, une kinase activée par le glucagon. Cette modification post-traductionnelle de FXR permet une induction synergique de l’expression des enzymes-clefs de la néoglucogenèse par FXR et le facteur de transcription CREB. L’identification de ce mécanisme constitue la majeure partie des travaux présentés dans cette thèse. Ceux-ci ont été intégrés à des travaux menés précédemment dans le laboratoire qui nous ont permis d’identifier un mécanisme additionnel de régulation de la gluconéogenèse. L’interaction directe de FXR avec le facteur de transcription FOXA2, lui-même activé par le glucagon, inhibe la capacité de FXR à induire l’expression de SHP, un récepteur nucléaire inhibiteur de la néoglucogenèse.Ce travail a donc permis d’identifier pour la première fois que la néoglucogenèse hépatique est régulée positivement par FXR dans le cadre de la voie de signalisation du glucagon. Pour cela, FXR intègre le signal « glucagon » par deux mécanismes distincts: via une modification post-traductionnelle, sa phosphorylation par la PKA sur les sérines S325 et S357 et via une interaction protéine-protéine avec FOXA2. / Glucose homeostasis is maintained during normal fasting through a complex regulatory network controlled mainly by glucagon, a pancreatic hormone. Opposing the effects of insulin, it orchestrates the glucose use, storage and synthesis by the liver, the main organ that produces glucose during fasting. The latter is carried out first by the degradation of glycogen or glycogenolysis and then by de novo glucose synthesis or gluconeogenesis. Hepatic gluconeogenesis is controlled by modulation of various key enzymes activity and/or expression according to allosteric or transcriptional mechanisms.Multiple transcription factors are involved in the transcriptional regulation of hepatic gluconeogenesis. The nuclear bile acid receptor FXR is expressed in the liver and in several organs involved in glucose homeostasis. FXR regulates many essential liver functions, including controlling bile acid and lipid metabolism. The exact role of FXR on gluconeogenesis is still debated. The objective of this work was therefore to study the role of FXR in the control of hepatic gluconeogenesis under experimental conditions reflecting certain aspects of fasting. We demonstrated that FXR, in the presence of glucagon, positively regulated gluconeogenesis according to two mechanisms.The first mechanism involves phosphorylation of FXR by PKA, a glucagon-activated kinase. This FXR post-translational modification allows synergistic induction of key gluconeogenic enzymes expression by FXR and the CREB transcription factor. This mechanism identification constitutes the major part of the work presented in this thesis. These were integrated with work previously conducted in the laboratory that allowed us to identify an additional mechanism for regulating gluconeogenesis. The FXR direct interaction with the transcription factor FOXA2, itself activated by glucagon, inhibits the ability of FXR to induce the expression of SHP, a gluconeogenesis inhibitory nuclear receptor.This work has therefore identified for the first time that hepatic gluconeogenesis is positively regulated by FXR in the glucagon signalling pathway. For this, FXR integrates the "glucagon" signal by two distinct mechanisms: via post-translational modification, its phosphorylation by PKA on S325 and S357 serines and via protein-protein interaction with FOXA2.
14

Rôle du récepteur nucléaire FXR dans la régulation de la production de GLP-1 : nouvelle cible thérapeutique dans le traitement du diabète de type 2 ? / Role of the nuclear receptor FXR on the regulation of GLP-1 production by L-cells : a new therapeutic target for type 2 diabetes ?

Trabelsi, Mohamed-Sami 01 April 2015 (has links)
L’homéostasie énergétique ou ‘balance énergétique’ est l’équilibre qui s’établit chez l’Homme et l’animal adulte entre la prise quotidienne de nutriments sous la forme de glucides, de lipides ou de protéines et leur oxydation pour ne produire que la quantité énergétique strictement nécessaire. Pour maintenir cette balance l’organisme doit recueillir en permanence des signaux nerveux, métaboliques ou hormonaux de la part de cellules spécifiques. Ces senseurs des besoins énergétiques transmettent alors à des centres régulateurs leurs informations qui en retour, par voie hormonale ou nerveuse, informent les organes effecteurs des mesures à prendre pour stocker, produire ou consommer l’énergie. Les trois principaux centres de cette balance sont 1/ le cerveau, centre intégrateur de l’information ; 2/ un groupe d’organes effecteurs parmi lesquels le foie, le tissu adipeux, les muscles squelettiques, le pancréas et 3/ un centre senseur de la qualité et de la quantité des aliments, le tractus gastrointestinal (Migrenne 2006). En plus d’être la source d’énergie nécessaire à la vie des cellules, les nutriments tels que les acides gras, le cholestérol ou encore le glucose sont aussi des molécules de signalisation cellulaire à la fois par leur fixation à des récepteurs membranaires mais aussi via des récepteurs nucléaires. Un déséquilibre dans l’homéostasie énergétique dû à une alimentation déséquilibrée, à un manque d’exercice physique ou à des facteurs génétiques est une caractéristique de l’obésité et de complications telles que le diabète de type 2 et les maladies cardiovasculaires (Hill, 2006). Au cours de ma thèse je me suis intéressé à l’intestin pour son rôle de régulateur de l’homéostasie énergétique dans un contexte physiologique ou physiopathologique d’obésité via sa capacité à sécréter l’incrétine Glucagon-Like Peptide-1 (GLP-1) en réponse au glucose et aux acides biliaires. J’ai étudié plus particulièrement le rôle du récepteur nucléaire en tant que senseurs moléculaires des acides biliaires FXR dans les cellules sécrétrices de cette incrétine car à l’heure actuelle rien n’était connu quant à son rôle ni même quant à son expression dans la cellule L. Pour cela, j’ai utilisé des lignées cellulaires murines et humaines où j’ai mis au point les conditions expérimentales pour répondre aux questions posées. Grâce à des ARN d’intestins issus de différents modèles de souris la relevance chez le rongeur a été testée. La relevance de ces résultats sur des biopsies intestinales humaine a également été testée. Grâce à ces outils, j'ai pu montré que FXR dans les cellules L était fonctionnel et que son activation interférait avec la voie de la glycolyse entrainant moins de synthèse et de sécrétion de GLP-1. Cela nous a permis de proposer un nouveau mécanisme moléculaire par lequel les séquestrants des acides biliaires exercent leur effets bénéfiques chez des patients atteints de diabète de type 2. / Originally identified as dietary lipid detergents, bile acids (BA) are now recognized as signaling molecules which bind to the transmembrane receptor TGR5 and the nuclear receptor FXR (Farnesoid X Receptor). Upon binding to TGR5 at the surface of enteroendocrine L cells, bile acids (BA) promote the secretion of the incretin GLP-1 which potentiates the glucose-induced insulin secretion by pancreatic beta-cells. More than 50% of the insulin secretion in response to glucose is mediated by GLP-1 and the other incretin Glucose-dependent Insulinotropic Polypeptide (GIP). Once secreted, GLP-1 is rapidly (2-3 minutes) degraded by the endothelial enzyme Dipeptydil Peptidase 4 (DPP4). GLP-1 analogues and DPP4 inhibitors are successfully used for the treatment of T2D. FXR is a ligand-activated nuclear receptor highly expressed in the liver and in the distal intestine. FXR controls BA, lipid and glucose metabolism. Whether FXR is expressed, functional in intestinal enteroendocrine L cells and in which extend its activation affects GLP-1 production are not yet reported. Encouraging data were obtained during my M2 training course. The aim of my thesis was thus to assess whether FXR in enteroendocrines cells could participate in the control of the deregulation of glucose homeostasis. Multiple in vitro, ex vivo and in vivo human and murine models allowed us to show that FXR is present and functional in L cells. FXR activation decreases GLP-1 production and secretion in L cells by inhibiting glycolysis pathway through an interference with the carbohydrate responsive transcription factor ChREBP. Finally, I identified an additional mechanism of action of the bile acid sequestrant Colesevelam, a molecule currently successfully used in USA for treating type 2 diabetic patients.
15

Régulation de la proprotéine convertase subtilisine / kexine type 9 (PCSK9) dans les cellules intestinales Caco-2/15

Leblond, François 12 1900 (has links)
La proprotéine convertase subtilisine/kexine type 9 (PCSK9) favorise la dégradation post-transcriptionnelle du récepteur des lipoprotéines de faible densité (LDLr) dans les hépatocytes et augmente le LDL-cholestérol dans le plasma. Cependant, il n’est pas clair si la PCSK9 joue un rôle dans l’intestin. Dans cette étude, nous caractérisons les variations de la PCSK9 et du LDLr dans les cellules Caco-2/15 différentiées en fonction d’une variété d’effecteurs potentiels. Le cholestérol (100 µM) lié à l’albumine ou présenté en micelles a réduit de façon significative l’expression génique (30%, p<0,05) et l’expression protéique (50%, p<0,05) de la PCSK9. Étonnamment, une diminution similaire dans le LDLr protéique a été enregistrée (45%, p<0,05). Les cellules traitées avec le 25-hydroxycholestérol (50 µM) présentent également des réductions significatives dans l’ARNm (37%, p<0,01) et la protéine (75%, p<0,001) de la PCSK9. Une baisse des expressions génique (30%, p<0,05) et protéique (57%, p<0,01) a également été constatée dans le LDLr. Des diminutions ont aussi été observées pour la HMG CoA réductase et la protéine liant l’élément de réponse aux stérols SREBP-2. Il a été démontré que le SREBP-2 peut activer transcriptionnellement la PCSK9 par le biais de la liaison de SREBP-2 à son élément de réponse aux stérols situé dans la région proximale du promoteur de la PCSK9. Inversement, la déplétion du contenu cellulaire en cholestérol par l’hydroxypropyl-β-cyclodextrine a augmenté l’expression génique de la PCSK9 (20%, p<0,05) et son contenu protéique (540%, p<0,001), en parallèle avec les niveaux protéiques de SREBP-2. L’ajout des acides biliaires taurocholate et déoxycholate dans le milieu apical des cellules intestinales Caco-2/15 a provoqué une baisse d’expression génique (30%, p<0,01) et une hausse d’expression protéique (43%, p<0,01) de la PCSK9 respectivement, probablement via la modulation du FXR (farnesoid X receptor). Ces données combinées semblent donc indiquer que la PCSK9 fonctionne comme un senseur de stérols dans le petit intestin. / Proprotein convertase subtilisin/kexin type 9 (PCSK9) posttranslationally promotes the degradation of the low-density lipoprotein receptor (LDLr) in hepatocytes and increases plasma LDL cholesterol. It is not clear, however, whether PCSK9 plays a role in the small intestine. Here, we characterized the patterns of variations of PCSK9 and LDLr in fully differentiated Caco-2/15 cells as a function of various potential effectors. Cholesterol (100 µM) solubilised in albumin or micelles significantly down-regulated PCSK9 gene (30%, p<0,05) and protein expression (50%, p<0,05), surprisingly in concert with a decrease in LDLr protein levels (45%, p<0,05). 25-hydroxycholesterol (50 µM) treated cells also displayed significant reduction in PCSK9 gene (37 %, p<0,01) and protein (75% p<0,001) expression, while LDLr showed a decrease at the gene (30%, p< 0,05) and protein (57%, p<0,01) levels, respectively. The amounts of PCSK9 mRNA and protein in Caco-2/15 cells were associated to the regulation of HMG-CoA reductase and sterol regulatory element binding protein-2 (SREBP-2) that can transcriptionally activate PCSK9 via sterol-regulatory elements located in its proximal promoter region. On the other hand, depletion of cholesterol content by hydroxypropyl-β-cyclodextrine up-regulated PCSK9 transcripts (20%, p<0,05) and protein mass (540%, p<0,001), in parallel with SREBP-2 protein levels. The addition of bile acids, taurocholate and deoxycholate, to the apical culture medium lowered PCSK9 gene expression (30%, p<0,01) and raised PCSK9 protein expression (43%, p<0,01) respectively, probably via the modulation of farnesoid X receptor. Combined, these data indicate that PCSK9 functions as a sensor of sterol in the small intestine.
16

Régulation du récepteur nucléaire Farnesoid X Receptor par la voie de biosynthèse des hexosamines

Berrabah, Wahiba 05 November 2013 (has links) (PDF)
Chez les patients diabétiques, le flux hépatique du glucose est perturbé affectant les voies qui lui sont associées telle que la voie de biosynthèse des hexosamines (HBP). Cette voie permet la production d'UDP-GlcNAc à partir du glucose. Ce substrat est engagé dans une modification post-traductionnelle (PTM) réversible des protéines appelée O-GlcNAcylation. Elle consiste à transférer du GlcNAc à partir d'UDP-GlcNAc sur un résidu serine ou thréonine. Une O-GlcNAcylation anormale des protéines contribue à la glucotoxicité hépatique et au diabète de type 2. FXR (Farnesoid X Receptor), un récepteur nucléaire fortement exprimé dans le foie, contrôle le métabolisme des acides biliaires ainsi que l'homéostasie glucidique et lipidique. Après son activation par un ligand et son hétérodimérisaton avec RXR (Retinoid X Receptor), FXR régule la transcription de gènes cibles en se fixant sur ses éléments de réponse. L'expression génique de FXR est augmentée dans des modèles animaux de diabète et ses activités transcriptionnelles en font une cible thérapeutique potentielle dans le contrôle des troubles métaboliques. Considérant ces informations, nous avons émis l'hypothèse que FXR est un substrat de la HBP et que les variations des flux hépatiques de glucose affectent son activité transcriptionnelle. Nous avons démontré, par différentes techniques, que FXR est O-GlcNAcylé in vitro et in vivo et que le glucose augmente sa fixation sur ces éléments de réponse et son activité transcriptionnelle. En outre, nous avons montré que l'inhibition de la voie HBP diminue l'expression génique et protéique de FXR mais également que la sérine 62 joue un rôle important dans la MPT de ce récepteur nucléaire. En conclusion, nos résultats montrent que le récepteur nucléaire FXR est sensible aux variations hépatiques des flux de glucose et que la O-GlcNAcylation de FXR augmente son activité transcriptionnelle ainsi que son expression génique et protéique dans différents modèles hépatiques humains et murins.
17

Prevalence of Pruritus and Association with Anxiety and Depression in Patients with Nonalcoholic Fatty Liver Disease

Boehlig, Albrecht, Gerhardt, Florian, Petroff, David, van Boemmel, Florian, Berg, Thomas, Blank, Valentin, Karlas, Thomas, Wiegand, Johannes 02 June 2023 (has links)
Patient-reported outcomes are important in nonalcoholic fatty liver disease (NAFLD). Pruritus is of special interest for evolving therapies with farnesoid X receptor (FXR) agonists. The aim of this study was to investigate the prevalence of pruritus in a real-life NAFLD cohort and analyze associations with anxiety and depression. Pruritus was assessed using a visual analogue- (VAS) and 5-D itch-scale (5-D). Anxiety and depression were evaluated by Beck’s-Depression-Inventory (BDI) and the Hospital Anxiety and Depression Scale (HADS-A, HADS-D). An optimal logistic regression model was found with a stepwise procedure to investigate variables associated with pruritus. In total, 123 NAFLD patients were recruited. VAS and 5-D were highly correlated (Spearman’s correlation coefficient 0.89). Moderate/severe pruritus was reported in 19% (VAS) and 21% (5-D) of patients. Anxiety and depression were present in 12% and 4% (HADS-A and HADS-D, respectively) and 12% (BDI) of cases. There was a significant association between VAS and BDI (p = 0.019). The final multivariate model for 5-D included diabetes mellitus (OR 4.51; p = 0.01), BDI (OR 5.98; p = 0.024), and HADS-A (OR 7.75; p = 0.011). One-fifth of NAFLD patients reported moderate or severe pruritus. 5-D was significantly associated with diabetes mellitus, depression, and anxiety. These findings should be tested in larger populations and considered in candidates for treatment with FXR agonists.
18

Diabetes-Induced Expression and Regulation of GLP-1 levels by Bile Acid Receptors (TGR5 & FXR)

Spengler, Joseph R 01 January 2017 (has links)
Diabetes Mellitus has continued to drastically affect the health of the world and many complications can prove fatal. As long as this metabolic disease persist, research discoveries will need to continue to be made so that patient outcomes and healthcare are dramatically enhanced. In recent years, GLP-1 has been the topic of conversation for diabetes research, due to its promising effects in promoting insulin sensitivity. Furthermore, bile acids and their receptors (TGR5 & FXR) have shown promise in their actions in the regulation of GLP-1, and thus glucose homeostasis. Here we have shown the detection and increased expression of TGR5 and GLP-1, and decreased expression of FXR in diabetic mouse intestinal mucosa tissues. We have also shown the detection and increased expression of these receptors in STC-1 cells. More importantly we have linked the connection of increased glucose concentration (hyperglycemia) to increased TGR5 activation to increased GLP-1 release, thus leading to increased insulin sensitivity and altered diabetic outcomes.
19

Régulation de l'activité transcriptionnelle du récepteur nucléaire FXR par la ghréline et les modifications post-traductionnelles

Caron, Véronique 12 1900 (has links)
Le récepteur X des farnésoïdes (FXR) fait partie de la superfamille des récepteurs nucléaires et agit comme un facteur de transcription suite à la liaison d’un ligand spécifique. Le récepteur FXR, activé par les acides biliaires, joue un rôle essentiel dans le métabolisme des lipides et du glucose en plus de réguler l’homéostasie des acides biliaires. Notre laboratoire a récemment mis en évidence une nouvelle voie de régulation du récepteur PPARγ en réponse au récepteur de la ghréline. En effet, la ghréline induit l’activation transcriptionnelle de PPARγ via une cascade de signalisation impliquant les kinases Erk1/2 et Akt, supportant un rôle périphérique de la ghréline dans les pathologies associées au syndrome métabolique. Il est de plus en plus reconnu que la cascade métabolique impliquant PPARγ fait également intervenir un autre récepteur nucléaire, FXR. Dans ce travail, nous montrons que la ghréline induit l’activation transcriptionnelle de FXR de manière dose-dépendante et induit également la phosphorylation du récepteur sur ses résidus sérine. En utilisant des constructions tronquées ABC et CDEF de FXR, nous avons démontré que la ghréline régule l’activité de FXR via les domaines d’activation AF-1 et AF-2. L’effet de la ghréline et du ligand sélectif GW4064 sur l’induction de FXR est additif. De plus, nous avons démontré que FXR est la cible d’une autre modification post-traductionnelle, soit la sumoylation. En effet, FXR est un substrat cellulaire des protéines SUMO-1 et SUMO-3 et la sumoylation du récepteur est ligand-indépendante. SUMO-1 et SUMO-3 induisent l’activation transcriptionnelle de FXR de façon dose-dépendante. Nos résultats indiquent que la lysine 122 est le site prédominant de sumoylation par SUMO-1, quoiqu’un mécanisme de coopération semble exister entre les différents sites de sumoylation de FXR. Avec son rôle émergeant dans plusieurs voies du métabolisme lipidique, l’identification de modulateurs de FXR s’avère être une approche fort prometteuse pour faire face à plusieurs pathologies associées au syndrome métabolique et au diabète de type 2. / The farnesoid X receptor (FXR) is a ligand-activated transcription factor within the nuclear receptor superfamily. FXR is activated by bile acids and plays a crucial role in the regulation of glucose and lipid metabolism and in bile acid homeostasis. Our group has recently identified the contribution of the ghrelin receptor in the regulation of the nuclear receptor PPARγ. Indeed, ghrelin triggers transcriptional activation of PPARγ through a concerted signaling cascade involving Erk1/2 and Akt kinases. These results support the peripheral actions of ghrelin in diseases associated with the metabolic syndrome. It is recognized that there is interplay between PPARγ metabolic cascade and FXR. Here, we demonstrate that ghrelin promotes FXR transcriptional activity in a dose-dependent manner and also promotes its phosphorylation on serine residues. By using truncated ABC and CDEF constructs of FXR, we found that ghrelin induces FXR activity through the AF-1 and AF-2 activation domains. The ghrelin-induced FXR activity is additive to the induction by the selective agonist GW4064. Also, we demonstrate that FXR is the target of sumoylation, another post-translational modification. In particular, FXR is modified by SUMO-1 and SUMO-3 in a ligand-independent manner. SUMO-1 and SUMO-3 promote dose-dependent transcriptional activity of FXR. Our results show that lysine 122 is the prevalent site of sumoylation by SUMO-1, though a compensation mechanism seems to exist between the various sumoylation sites of FXR. With its emerging role in several metabolic cascades, identification of FXR modulators represents a promising approach for the treatment of the metabolic syndrome and type 2 diabetes.
20

Régulation de l'activité transcriptionnelle du récepteur nucléaire FXR par la ghréline et les modifications post-traductionnelles

Caron, Véronique 12 1900 (has links)
Le récepteur X des farnésoïdes (FXR) fait partie de la superfamille des récepteurs nucléaires et agit comme un facteur de transcription suite à la liaison d’un ligand spécifique. Le récepteur FXR, activé par les acides biliaires, joue un rôle essentiel dans le métabolisme des lipides et du glucose en plus de réguler l’homéostasie des acides biliaires. Notre laboratoire a récemment mis en évidence une nouvelle voie de régulation du récepteur PPARγ en réponse au récepteur de la ghréline. En effet, la ghréline induit l’activation transcriptionnelle de PPARγ via une cascade de signalisation impliquant les kinases Erk1/2 et Akt, supportant un rôle périphérique de la ghréline dans les pathologies associées au syndrome métabolique. Il est de plus en plus reconnu que la cascade métabolique impliquant PPARγ fait également intervenir un autre récepteur nucléaire, FXR. Dans ce travail, nous montrons que la ghréline induit l’activation transcriptionnelle de FXR de manière dose-dépendante et induit également la phosphorylation du récepteur sur ses résidus sérine. En utilisant des constructions tronquées ABC et CDEF de FXR, nous avons démontré que la ghréline régule l’activité de FXR via les domaines d’activation AF-1 et AF-2. L’effet de la ghréline et du ligand sélectif GW4064 sur l’induction de FXR est additif. De plus, nous avons démontré que FXR est la cible d’une autre modification post-traductionnelle, soit la sumoylation. En effet, FXR est un substrat cellulaire des protéines SUMO-1 et SUMO-3 et la sumoylation du récepteur est ligand-indépendante. SUMO-1 et SUMO-3 induisent l’activation transcriptionnelle de FXR de façon dose-dépendante. Nos résultats indiquent que la lysine 122 est le site prédominant de sumoylation par SUMO-1, quoiqu’un mécanisme de coopération semble exister entre les différents sites de sumoylation de FXR. Avec son rôle émergeant dans plusieurs voies du métabolisme lipidique, l’identification de modulateurs de FXR s’avère être une approche fort prometteuse pour faire face à plusieurs pathologies associées au syndrome métabolique et au diabète de type 2. / The farnesoid X receptor (FXR) is a ligand-activated transcription factor within the nuclear receptor superfamily. FXR is activated by bile acids and plays a crucial role in the regulation of glucose and lipid metabolism and in bile acid homeostasis. Our group has recently identified the contribution of the ghrelin receptor in the regulation of the nuclear receptor PPARγ. Indeed, ghrelin triggers transcriptional activation of PPARγ through a concerted signaling cascade involving Erk1/2 and Akt kinases. These results support the peripheral actions of ghrelin in diseases associated with the metabolic syndrome. It is recognized that there is interplay between PPARγ metabolic cascade and FXR. Here, we demonstrate that ghrelin promotes FXR transcriptional activity in a dose-dependent manner and also promotes its phosphorylation on serine residues. By using truncated ABC and CDEF constructs of FXR, we found that ghrelin induces FXR activity through the AF-1 and AF-2 activation domains. The ghrelin-induced FXR activity is additive to the induction by the selective agonist GW4064. Also, we demonstrate that FXR is the target of sumoylation, another post-translational modification. In particular, FXR is modified by SUMO-1 and SUMO-3 in a ligand-independent manner. SUMO-1 and SUMO-3 promote dose-dependent transcriptional activity of FXR. Our results show that lysine 122 is the prevalent site of sumoylation by SUMO-1, though a compensation mechanism seems to exist between the various sumoylation sites of FXR. With its emerging role in several metabolic cascades, identification of FXR modulators represents a promising approach for the treatment of the metabolic syndrome and type 2 diabetes.

Page generated in 0.051 seconds