• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 102
  • 16
  • 14
  • 11
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 172
  • 172
  • 52
  • 44
  • 26
  • 23
  • 21
  • 21
  • 18
  • 17
  • 13
  • 13
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

EPAC1 : une nouvelle cible thérapeutique pour limiter la cardiotoxicité induite par les Anthracyclines / EPAC1 : a new therapeutic target to prevent Anthracyclines-induced cardiotoxicity

Ribeiro, Maxance 21 November 2018 (has links)
Les Anthracyclines (ex : Doxorubicine (Dox)) fréquemment utilisées en chimiothérapie anticancéreuse peuvent conduire à une cardiotoxicité aboutissant à de l’insuffisance cardiaque et à une cardiomyopathie dilatée. Au niveau cellulaire, la Dox est connue pour générer un stress oxydant fort, s’intercaler directement entre les brins d’ADN, inhiber les Topoisomérase II (TopII) ou encore provoquer une détresse énergétique conduisant à la mort aussi bien des cellules tumorales que des cardiomyocytes. Néanmoins, les voies de signalisations/mécanismes moléculaires complets ne sont pas identifiés à ce jour. L’objectif de ce travail de thèse consiste donc à mieux comprendre les mécanismes de la cardiotoxicité de la Dox et à identifier de nouvelles cibles cellulaires cardio-protectrices limitant les effets cardiaques délétères de cette Anthracycline. Dans ce but, nous focalisons nos recherches sur le rôle de la protéine EPAC1, un facteur d’échange pour les petites protéines G directement activé par l’AMPc, dans la réponse des cellules cardiaques à la Dox. EPAC1 est une protéine centrale de la voie de signalisation AMPc dans le cardiomyocyte en réponse à une stimulation β-adrénergique. Or, plusieurs études ont récemment montré l’implication de certains acteurs de cette voie (Rac, RhoA) dans la cardiotoxicité induite par la Dox faisant d’EPAC1 une cible thérapeutique potentielle. Nous avons donc étudié in vitro (cultures primaires de cardiomyocytes de rat nouveau-nés (Dox 1µM)) et in vivo (souris sauvages ou invalidées pour EPAC1 (Dox, iv, 12mg/kg total)) les effets de la Dox sur l’expression et l’activité d’EPAC1 et sur les voies de signalisation qu’il régule. In vivo, les souris sauvages traitées à la Dox développent une cardiomyopathie dilatée associée à une altération de l’homéostasie calcique 15 semaines après traitement. In vitro, la Dox induit des modifications de l’expression/activité d’EPAC1 et de l’homéostasie calcique, la formation de complexes TopIIβ/ADN conduisant à des dommages à l’ADN, une dérégulation de la biogénèse et de l’activité de la chaîne respiratoire mitochondriale et finalement à l’apoptose des cardiomyocytes. L’inhibition pharmacologique (Ce3F4, Esi09) ou génétique d’EPAC1 réduit l’ensemble des dommages cellulaires in vitro et empêche le développement de la cardiomyopathie dilatée in vivo. De manière importante, nous montrons que contrairement à ce qui est observé dans les cellules cardiaques, l’inhibition d’EPAC1 augmente la toxicité de la Dox envers les cellules tumorales et en particulier envers les cellules MCF-7 issues de cancer mammaire métastatique, principale indication de la Dox. Nos résultats suggèrent donc que l’inhibition d’EPAC1 semble être une stratégie thérapeutique prometteuse dans la prévention de la cardiomyopathie induite par les traitements anticancéreux à base d’Anthracyclines. / Doxorubicin (Dox) is an Anthracycline commonly used to treat many types of cancer; unfortunately this chemotherapeutic agent often induces side effects such as cardiotoxicity leading to cardiomyocyte death and dilated cardiomyopathy (DCM). This cardiotoxicity has been related to reactive oxygen species generation, DNA intercalation, topoisomerase II inhibition and bioenergetics alterations resulting in DNA damages and ultimately in cardiomyocyte death. Nevertheless, complete molecular mechanisms are not yet identified. Therefore, there is a need for new treatment options and strategies aiming at reducing Dox side effects in the heart. Among these mechanisms, EPAC1 (Exchange Protein directly Activated by cAMP) signaling could be worth investigating as EPAC1 indirectly activates small G proteins (Rac1 and Rho A), which are known to be involved in Dox-induced cardiotoxicity. Therefore, we have investigated the effect of Dox on EPAC1 signaling in both in vivo mice model (C57BL/6 vs EPAC1 KO mice, iv injections, 12mg/kg) and in vitro model (primary culture of neonatal rat cardiomyocytes (NRVM), Dox 1μM). In vivo, Dox-treated mice developed a DCM associated with Ca2+ homeostasis dysfunction. In vitro, Dox induced DNA damages and cell death associated with huge mitochondrial disorders, characterized by a decrease in mitochondrial biogenesis and respiratory chain activity. This cell death is associated with apoptotic features including mitochondrial membrane permeabilization, caspase activation, cell size reduction and relative plasma membrane integrity. We also observed that Dox led to a modification of the protein level and the activity of EPAC1 in the same manner to the cAMP level. By contrast, the inhibition of EPAC1, prevented DNA/TopIIβ complexes, decreased Dox-induced DNA damages, loss of mitochondrial membrane potential, apoptosis and finally cardiomyocyte death. Mitochondrial biogenesis and respiratory chain activity operated normally when EPAC1 was inhibited. These results were confirmed in vivo since Dox-induced cardiotoxicity was prevented in EPAC1 KO mice as evidenced by unaltered cardiac function (no DCM) at 15 weeks post-treatment. Interestingly, the protection conferred by EPAC1 inhibition was not transferred in human cancer cell lines treated by Dox. Inhibition of EPAC1 could thus be a valuable therapeutic strategy to limit Dox-induced cardiomyopathy during cancer chemotherapy.
142

Gβγ acts at an inter-subunit cleft to activate GIRK1 channels

Mahajan, Rahul 09 October 2012 (has links)
Heterotrimeric guanine nucleotide-binding proteins (G-proteins) consist of an alpha subunit (Gα) and the dimeric beta-gamma subunit (Gβγ). The first example of direct cell signaling by Gβγ was the discovery of its role in activating G-protein regulated inwardly rectifying K+ (GIRK) channels which underlie the acetylcholine-induced K+ current responsible for vagal inhibition of heart rate. Published crystal structures have provided important insights into the structures of the G-protein subunits and GIRK channels separately, but co-crystals of the channel and Gβγ together remain elusive and no specific reciprocal residue interactions between the two proteins are currently known. Given the absence of direct structural evidence, we attempted to identify these functionally important channel-Gβγ interactions using a computational approach. We developed a multistage computational docking algorithm that combines several known methods in protein-protein docking. Application of the docking protocol to previously published structures of Gβγ and GIRK1 homomeric channels produced a clear signal of a favored binding mode. Analysis of this binding mode suggested a mechanism by which Gβγ promotes the open state of the channel. The channel-Gβγ interactions predicted by the model in silico could be disrupted in vitro by mutation of one protein and rescued by additional mutation of reciprocal residues in the other protein. These interactions were found to extend to agonist induced activation of the channels as well as to activation of the native heteromeric channels. Currently, the structural mechanism by which Gβγ regulates the functional conformations of GIRK channels or of any of its membrane-associated effector proteins is not known. This work shows the first evidence for specific reciprocal interactions between Gβγ and a GIRK channel and places these interactions in the context of a general model of intracellular regulation of GIRK gating.
143

Regulation der Aktivität der vesikulären Monoamintransporter VMAT1 und VMAT2 in neuroendokrinen Zellen und Neuronen

Höltje, Markus 12 September 2000 (has links)
In der vorliegenden Arbeit wurde die Regulation der Aktivität der vesikulären Monoamintransporter VMAT1 und VMAT2 durch heterotrimere G-Proteine untersucht. In der humanen neuroendokrinen Zellinie BON werden VMAT1 und VMAT2 exprimiert. Sie colokalisieren in diesen Zellen mit der a-Untereinheit des heterotrimeren G-Proteins Go2 vorwiegend auf großen elektronendichten Vesikeln, den LDCVs. Die Aktivität beider Transporter unterliegt einer Regulation durch Gao2. Nach Aktivierung des G-Proteins kommt es zu einer Hemmung der vesikulären Monoaminaufnahme. Die Aktivität von VMAT2 wird dabei empfindlicher reguliert als die Aktivität von VMAT1. In Primärkulturen von Rapheneuronen der Ratte wird VMAT2 als neuronale Variante des Transporters exprimiert. VMAT2 lokalisiert in diesen Neuronen überwiegend auf kleinen synaptischen Vesikeln, den SSVs. Hier kommt es zu einer Colokalisation mit Gao2 auf diesem Vesikeltyp. Auch in Rapheneuronen wird die Aktivität von VMAT2 durch diese G-Protein Untereinheit gehemmt. Elektronenmikroskopische Befunde belegen die Lokalisation von VMAT2 und Gao2 auf SSVs von serotonergen Axonterminalen im präfrontalen Cortex der Ratte. An einer Präparation synaptischer Vesikel aus diesem Gehirnbereich konnte ebenfalls eine Hemmung der Transportaktivität von VMAT2 durch Gao2 nachgewiesen werden. Auch in Thrombozyten der Maus unterliegt die vesikuläre Serotoninaufnahme einer Hemmung durch ein heterotrimeres G-Protein. In chronisch entleerten Vesikeln aus Mäusen, in denen das Gen für die periphere Tryptophanhydroxylase deletionsmutiert vorlag, konnte zunächst keine Hemmung der Serotoninaufnahme durch heterotrimere G-Proteine beobachtet werden. Nach Vorbeladung der Vesikel mit Serotonin war dies jedoch der Fall. Die Aktivierung des G-Proteins wird somit sehr wahrscheinlich über den Füllungszustand der Vesikel gesteuert. / In this study we investigated the regulation of the activity of the vesicular monoamine transporters VMAT1 and VMAT2 by heterotrimeric G-proteins. In the human neuroendocrine cell line BON both transporters are expressed. They colocalize in these cells with the a-subunit of the heterotrimeric G-protein Go2 predominantely on Large Dense Core Vesicles (LDCVs). The activity of both VMAT1 and VMAT2 is regulated by Gao2. G-protein activation results in a down-regulation of vesicular monoamine uptake. VMAT2 appears to be more sensitive towards the observed G-protein regulation than VMAT1. Serotonergic raphe neurons in primary culture express VMAT2 as the neuronal form of the transporter. In these neurons VMAT2 predominantely localizes to Small Synaptic Vesicles (SSVs). Here, VMAT2 colocalizes with Gao2 on SSVs. In these neurons Gao2-dependent down-regulation of VMAT2 activity was observed, too. Immunoelectron microscopic analysis confirmed a localization of VMAT2 and Gao2 on SSVs from serotonergic terminals in the rat prefrontal cortex. In addition, Gao2-dependent regulation of VMAT2 activity could also be demonstrated when using a crude synaptic vesicle preparation of this brain area. Even in platelets obtained from mice the vesicular serotonin uptake is down-regulated by heterotrimeric G-proteins. In serotonin-depleted platelets from peripheral tryptophane-hydroxylase knockout mice no G-protein-dependent down-regulation of monoamine uptake was observed. After preincubation of the platelets with serotonin, the G-protein regulation was restored. Therefore, the vesicular transmitter content appears to be a likely factor of G-protein activation in platelets.
144

Etude des interactions de CCR5 avec des partenaires cytosoliques et membranaires

El-Asmar, Laila 08 July 2004 (has links)
CCR5 est un récepteur couplé aux protéines G répondant aux CC-chimiokines MIP-1&61537; MIP-1&61538; RANTES et MCP-1. Le récepteur structurellement le plus proche est CCR2b, qui répond à MCP-1. CCR5 est exprimé à la surface des lymphocytes T mémoire, les monocytes, macrophages et cellules dendritiques. Ce récepteur joue un rôle important dans l'établissement des réponses inflammatoires contre les agents pathogènes, mais aussi dans la pathogenèse de maladies inflammatoires chroniques. CCR5 constitue aussi avec CXCR4 un des co-récepteurs qui permettent l'entrée du virus de l'immunodéficience humaine dans ses cellules cibles. CCR5 présente donc un grand intérêt en thérapeutique, et tous les éléments susceptibles de mieux comprendre sa structure, ses mécanismes d'activation ou ses cascades de signalisation sont à même de contribuer au développement d'agents à usage thérapeutique.<p>Deux nouveaux concepts sont apparus dans la littérature au cours des quelques années qui ont précédé le début de notre travail. D'une part, il est apparu que les récepteurs couplés aux protéines G pouvaient interagir directement avec un éventail de partenaires intracellulaires et réguler de cette façon des cascades de signalisation indépendamment des protéines G hétérotrimériques. D'autre part, un nombre croissant de récepteurs se sont révélés capables de former des homodimères et des hétérodimères. Nous avons dès lors appliqué ces deux concepts à l'étude de CCR5. <p>Nous avons donc recherché de nouveaux partenaires de CCR5 par deux approches complémentaires, le double hybride et le « GST-pulldown ». Dans les deux cas, nous nous sommes focalisé sur le domaine C-terminal du récepteur CCR5, d'une part parce que la majorité des interactions mises en évidence pour d'autres récepteurs concernent ce domaine, d'autre part parce que l'extrémité C-terminale de CCR5 est conservée dans l'évolution et comporte différents motifs dont la relevance fonctionnelle a été démontrée. Par ailleurs, nous avons appliqués les techniques d’immunoprécipitation et de BRET pour étudier les phénomènes d’homodimérisation de CCR5, ainsi que son hétérodimérisation avec le récepteur apparenté CCR2b. Les conséquences fonctionnelles de ces interactions ont ensuite été étudiées.<p>Par les techniques de double hybride et de pull-down, nous n’avons pas pu identifier de nouveaux partenaires de CCR5. Seules des interactions non-spécifiques ont pu être mises en évidence. Malgré une recherche intensive menée par d’autres groupes, un seul nouveau partenaire de CCR5 a été décrit entre-temps dans la littérature.<p>Lors des études d'oligomérisation de récepteurs, nous avons mis en évidence la formation d'homodimères de CCR5 et CCR2b par des expériences d’immunoprécipitations et de BRET, ainsi que d'hétérodimères CCR5-CCR2b. Les conséquences fonctionnelles de ces observations sur la liaison de chimiokines, la signalisation et l'internalisation des récepteurs ont été étudiées. Contrairement aux données de la littérature, nous n'avons pas montré de coopérativité positive entre les récepteurs co-exprimés, quant à leur capacité à induire la libération de calcium intracellulaire. Par contre, nous avons mis en évidence une coopérativité négative en termes de liaison de chimiokines. Il apparaît ainsi que chaque dimère ne peut lier qu'une seule chimiokine, et qu'en conséquence, les ligands d'un récepteur peuvent entrer en compétition avec la liaison d'un traceur sur l'autre récepteur au sein d'un hétérodimère. Ces dimères de récepteurs apparaissent cependant comme dissociables, suite à la liaison d'agonistes ou de chimiokines induisant leur internalisation, car aucun phénomène de co-internalisation ne peut être mis en évidence. Ces observations, qui sont originales dans le domaine des récepteurs couplés aux protéines G, peuvent sans doute être généralisées à l'ensemble des récepteurs de chimiokines, voire à d'autres classes de récepteurs. Elles sont importantes pour l'interprétation de la pharmacologie des récepteurs dans leur environnement naturel, et sont susceptibles de développements importants permettant de mieux comprendre la structure des dimères, la dynamique de leur association, et les mécanismes d'activation des récepteurs en général au sein de leur structure dimérique. / Doctorat en sciences, Spécialisation biologie moléculaire / info:eu-repo/semantics/nonPublished
145

Identification and characterization of novel FE65-interacting proteins.

January 2009 (has links)
Cheng, Wai Hang. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 76-88). / Abstract also in Chinese. / Acknowledgement --- p.i / 摘要 --- p.iii / List of Abbreviations --- p.iv / List of Figures --- p.vi / List of Tables --- p.vii / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- FE65 --- p.1 / Chapter 1.1.1 --- FE65 Protein Family and Their Structures --- p.2 / Chapter 1.1.1.2 --- PTB domains --- p.5 / Chapter 1.1.2 --- Expression Pattern of FE65 Proteins --- p.6 / Chapter 1.1.3 --- FE65 Family-Transgenic Animals --- p.7 / Chapter 1.1.4 --- Interacting Partners of FE65 --- p.8 / Chapter 1.1.4.1 --- "APP, APLPl and APLP2" --- p.9 / Chapter 1.1.4.2 --- LRP1 and ApoEr2 --- p.10 / Chapter 1.1.4.3 --- c-Abl --- p.11 / Chapter 1.1.4.4 --- Mena and EVL --- p.11 / Chapter 1.1.4.5 --- Tip60 --- p.12 / Chapter 1.1.4.6 --- SET --- p.12 / Chapter 1.1.4.7 --- Estrogen Receptor a --- p.13 / Chapter 1.1.4.8 --- Teashirt --- p.13 / Chapter 1.1.4.9 --- CP2/LSF/LBP1 --- p.13 / Chapter 1.1.4.10 --- Dexra sl --- p.14 / Chapter 1.1.4.11 --- P2X2-receptor subunit --- p.14 / Chapter 1.1.4.12 --- Tau --- p.15 / Chapter 1.1.4.13 --- Notchl --- p.15 / Chapter 1.1.4.14 --- Alcadein --- p.16 / Chapter 1.1.4.15 --- CD95/Fas/Apo -1 ligand --- p.16 / Chapter 1.1.4.16 --- p68 subunit of pre -mRNA cleavage and polyadenylation factor Im (p68 CFIm) --- p.17 / Chapter 1.1.4.17 --- Ataxinl --- p.17 / Chapter 1.1.5.1 --- FE65 as an adaptor protein --- p.20 / Chapter 1.1.5.2 --- FE65 and Alzheimer´ةs disease --- p.20 / Chapter 1.1.5.3 --- Transcriptional / Post-transcriptional regulation --- p.22 / Chapter 1.1.5.4 --- Apoptosis and cell cycle regulation --- p.23 / Chapter 1.1.5.5 --- Neuronal positioning and cell migration --- p.23 / Chapter 1.1.5.6 --- Learning and memory --- p.25 / Chapter 1.2 --- Objectives --- p.26 / Chapter Chapter 2 --- Investigation of the interaction between FE65 and Arf6 --- p.27 / Chapter 2.1 --- Materials --- p.27 / Chapter 2.1.1 --- DNA contructs --- p.27 / Chapter 2.1.2 --- Cell culture --- p.27 / Chapter 2.1.3 --- Immunoblotting --- p.28 / Chapter 2.1.4 --- Miscellaneous --- p.28 / Chapter 2.2 --- Methods --- p.29 / Chapter 2.2.1 --- Preparation of Escherichia coli competent cells --- p.29 / Chapter 2.2.2 --- DNA preparation with Intron Plasmid DNA --- p.30 / Chapter 2.2.3 --- DNA preparation with Macherey-Nagel NucleoBond Xtra Midi --- p.30 / Chapter 2.2.4 --- DNA preparation by the alkaline lysis method --- p.31 / Chapter 2.2.5 --- Spectrophotometric analysis of DNA --- p.32 / Chapter 2.2.6 --- Agarose gel electrophoresis --- p.32 / Chapter 2.2.7 --- Cell culture and transfection --- p.33 / Chapter 2.2.8 --- Bacterial GST-pull down assay --- p.33 / Chapter 2.2.9 --- GST-pull down assay for testing direct interaction between FE65 and Arf6 --- p.34 / Chapter 2.2.10 --- Mammalian GST-pull down assay --- p.35 / Chapter 2.2.11 --- Immunoprecipitation --- p.36 / Chapter 2.2.12 --- SDS-PAGE --- p.36 / Chapter 2.2.13 --- Immunoblotting --- p.39 / Chapter 2.3 --- Results --- p.40 / Chapter 2.3.1 --- Interaction between Arf6 and FE65 --- p.40 / Chapter 2.3.2 --- Determination of the interacting domain of FE65 with Arf6 --- p.43 / Chapter 2.3.3 --- Determination if FE65 and Arf6 interact directly --- p.45 / Chapter Chapter 3 --- Production of Antisera against Arf6 and Immunostaining of FE65-Arf6 --- p.47 / Chapter 3.1 --- Materials --- p.47 / Chapter 3.1.1 --- Protein expression and purification --- p.47 / Chapter 3.1.2 --- Immunization and harvest of antisera --- p.48 / Chapter 3.1.3 --- Immunostaining --- p.48 / Chapter 3.2 --- Methods --- p.48 / Chapter 3.2.1 --- Protein expression and purification --- p.48 / Chapter 3.2.2 --- Bradford assay --- p.50 / Chapter 3.2.3 --- Immunization --- p.50 / Chapter 3.2.4 --- Antibody purification --- p.51 / Chapter 3.2.5 --- Immunostaining --- p.52 / Chapter 3.3 --- Results --- p.53 / Chapter 3.3.1 --- Recombinant Arf6 expression and purification --- p.53 / Chapter 3.3.2 --- Titering of antisera --- p.57 / Chapter 3.3.3 --- Determination of antisera specificity --- p.59 / Chapter Chapter 4 --- Discussion --- p.68 / Chapter Chapter 5 --- Future Perspectives --- p.73 / References --- p.76
146

An Analysis of Nicotine Exacerbation of Reductions in PPI in a Rodent Model of Schizophrenia.

Maple, Amanda Marie 05 May 2007 (has links)
Prepulse inhibition (PPI) is an operational measure of sensorimotor gating and is known to be reduced when the dopamine D2 receptor is activated. We used a rodent model of psychosis in which increases in dopamine D2 receptor sensitivity are produced through neonatal quinpirole (a dopamine D2 / D3 agonist) treatment to rats. Rats were administered quinpirole (1mg/kg) or saline from postnatal day (P) 1-21. Rats were raised to adulthood and tested on PPI. Results showed that neonatal quinpirole treatment produced a significant reduction in PPI, and nicotine exacerbated this reduction. This reduction was partially blocked by the nicotinic antagonist mecamylamine. Brain tissue was analyzed for regulators of G-protein signaling (RGS) and results showed that neonatal quinpirole significantly decreased RGS9, but increased RGS17 as compared to controls. These results appear to indicate that the G-protein couples more efficiently to the D2 receptor, and nicotine exacerbates PPI deficits in D2 receptor-primed rats.
147

Αλληλεπιδράσεις των επταελικοειδών υποδοχέων με διάφορες πρωτεΐνες. Χαρακτηρισμός νέων σηματοδοτικών μονοπατιών / Protein-protein interactions of the heptahelical receptors. Identification of new signaling pathways

Παπακωνσταντίνου, Μαρία-Παγώνα 07 April 2015 (has links)
Οι οπιοειδείς υποδοχείς (OR), μ, δ, κ και NOP, είναι μέλη των επταελικοειδών υποδοχέων που συζεύγνυνται με G πρωτεΐνες (7ΤΜ ή GPCR), οι οποίοι αποτελούν τη μεγαλύτερη υπεροικογένεια υποδοχέων και έναν από τους κύριους φαρμακολογικούς στόχους λόγω της υψηλής φυσιολογικής τους σημασίας. Οι OR ρυθμίζουν μια ποικιλία φυσιολογικών αποκρίσεων στο νευρικό σύστημα, με κυριότερη την αναλγησία. Τα οπιοειδή φάρμακα είναι τα πιο ισχυρά και αποτελεσματικά αναλγητικά έναντι στον οξύ πόνο, όμως η παρατεταμένη χρήση τους οδηγεί σε φαινόμενα ανοχής και εξάρτησης. Γι’ αυτό υπάρχει έντονο ενδιαφέρον στην αποσαφήνιση των μηχανισμών που εμπλέκονται στα φαινόμενα αυτά προκειμένου να σχεδιαστούν πιο αποτελεσματικά φάρμακα χωρίς τέτοιες παρενέργειες. Η σηματοδότηση των οπιοειδών υποδοχέων γίνεται κυρίως μέσω της ενεργοποίησης των Gi/o πρωτεϊνών που με τη σειρά τους ρυθμίζουν κατάλληλους τελεστές. Πέρα όμως από αυτούς τους κλασσικούς αλληλεπιδρώντες εταίρους οι OR έχουν την ικανότητα να αλληλεπιδρούν και με πολλές άλλες πρωτεΐνες κυρίως μέσω των περιοχών της τρίτης ενδοκυτταρικής τους θηλιάς (i3L) και του καρβοξυτελικού τους άκρου (CT) (Georgoussi et al., 2006- Georgoussi, 2008- Georgoussi et al., 2012). Οι αλληλεπιδράσεις αυτές επηρεάζουν όχι μόνο την σηματοδότηση των OR αλλά και την εν γένει εύρυθμη λειτουργία τους. Μια σημαντική πρωτεϊνική οικογένεια που ελέγχει τη μεταγωγή σήματος από τις G πρωτεΐνες βρέθηκε να είναι οι πρωτεΐνες Ρυθμιστές της κυτταρικής Σηματοδότησης μέσω G πρωτεϊνών ή RGS πρωτεΐνες (Regulators of G protein signaling, RGS). Ο πρωταρχικός τους ρόλος είναι η αλληλεπίδραση τους με τις Gα υπομονάδες των G πρωτεϊνών και η επιτάχυνση της υδρόλυσης του GTP από τις τελευταίες οδηγώντας στη μείωση της σηματοδότησης των GPCR. Μέλη της οικογένειας των RGS πρωτεϊνών είχε δειχθεί ότι πέρα από τις Gα πρωτεΐνες αλληλεπιδρούν επίσης με υποδοχείς GPCR, τελεστές αλλά και με άλλες ρυθμιστικές πρωτεΐνες, προσδίδοντας τους έναν ιδιαίτερο οργανωτικό ρόλο στη λειτουργία του κυττάρου και καθιστώντας τις RGS πρωτεΐνες μόρια υψηλού φαρμακολογικού ενδιαφέροντος. Παρελθόντα πειράματα in vitro συγκατακρήμνισης, του εργαστηρίου Κυτταρικής Σηματοδότησης και Μοριακής Φαρμακολογίας, με τη χρήση GST-χιμαιρικών πεπτιδίων των καρβοξυτελικών άκρων των μ-OR και δ-OR (μ-CT και δ-CT αντίστοιχα) και της τρίτης ενδοκυτταρικής θηλιάς του δ-OR (δ-i3L), έδειξαν ότι η RGS4, ένα μέλος της B/R4 υποοικογένειας, αλληλεπιδρά και με τους δυο υποδοχείς στις περιοχές αυτές (Georgoussi et al., 2006- Leontiadis et al., 2009). Η αλληλεπίδραση της RGS4 στα καρβοξυτελικά άκρα των υποδοχέων αυτών γίνεται στην περιοχή που σχηματίζει μια 8η αμφιπαθική α-έλικα (έλικα VIII), σημείο επαφής των OR και για άλλες πρωτεϊνικές αλληλεπιδράσεις όπως αυτή των STAT5A/B ((Mazarakou and Georgoussi, 2005- Georganta et al., 2010), της σπινοφιλίνης (Fourla et al., 2012) και άλλων πρωτεϊνών (Georgoussi et al., 2012). Βρέθηκε επίσης ότι η RGS4 είναι αρνητικός ρυθμιστής της κυτταρικής σηματοδότησης των μ-OR και δ-OR (Georgoussi et al., 2006- Leontiadis et al., 2009). Τέλος, αποδείχθηκε για πρώτη φορά ότι η RGS4 παίξει το ρόλο «μοριακού φίλτρου» καθοδηγώντας τους μ-OR και δ-OR να αλληλεπιδράσουν με συγκεκριμένο διαφορετικό υποπληθυσμό Gα υπομονάδων των G πρωτεϊνών (Leontiadis et al., 2009). Καμία πληροφορία για τον ρόλο των RGS πρωτεϊνών δεν υπάρχει για τον κ-OR. Για τον λόγο αυτό σκοπός της παρούσας διατριβής ήταν να ελέγξουμε αν οι RGS πρωτεΐνες της Β/R4 υποοικογένειας αλληλεπιδρούν με τον κ-OR και αν ναι, ποιος είναι ο ρόλος τους στη σηματοδότηση του κ-OR και των G πρωτεϊνών με τις οποίες ο τελευταίος συζεύγνυται. Τα αποτελέσματά μας έδειξαν ότι ο κ-OR μπορεί να αλληλεπιδράσει και με την RGS4 και με την RGS2 τόσο in vitro όσο και in vivo. Η δημιουργία GST-χιμαιρικών πεπτιδίων του καρβοξυτελικού άκρου του κ-OR (κ-CT) έδειξε ότι η RGS4 αλληλεπιδρά επίσης εντός της έλικας VIII ενώ η RGS2 αλληλεπιδρά με το τελικό μη συντηρημένο άκρο του κ-CT όσο και του δ-CT. Επιπλέον η συνέκφραση της RGS4 ή της RGS2 σε κύτταρα 293F που εκφράζουν τον κ-OR έδειξε ότι και οι δυο RGS πρωτεΐνες προάγουν την επιλεκτική και διαφορική σύζευξη του κ-OR με συγκεκριμένο υποπληθυσμό των Gαi/o υπομονάδων. Σε ότι αφορά τον φυσιολογικό ρόλο των RGS4 και RGS2 στις ελεγχόμενες από τον κ-OR κυτταρικές αποκρίσεις βρήκαμε ότι τόσο η RGS4 όσο και η RGS2 ανέστειλαν την καταστολή της αδενυλικής κυκλάσης που ελέγχει ο κ-OR, αλλά όχι ο δ-OR, με την RGS2 να έχει ισχυρότερη επίδραση στο μονοπάτι αυτό. Επίσης οι RGS4 και RGS2 μείωσαν την ενεργοποίηση των ERK1,2 κινασών που σηματοδοτούσε ο κ-OR. Τέλος, βρήκαμε ότι παρόλο που καμία από τις δυο RGS δεν επηρεάζει την εσωτερίκευση του κ-OR, η RGS4 επιταχύνει την εσωτερίκευση του δ-OR. Τα ευρήματά μας καταδεικνύουν ότι οι RGS4 και RGS2 πρωτεΐνες είναι δυο νέοι αρνητικοί ρυθμιστές στην σηματοδότηση των κ-OR και δ-OR. Εμφανίζουν διαφορικό ρυθμιστικό ρόλο στα σηματοδοτικά μονοπάτια καθενός OR, με ρόλο κλειδί στην καθοδήγηση της σύζευξής τους με τις Gα υπομονάδες και μπορούν να αποτελέσουν ενδιαφέροντες φαρμακολογικούς στόχους για τον έλεγχο της δράσης των οπιοειδών. / Οpioid receptors (OR) (subtypes μ, δ, κ and NOP) belong to the superfamily of the Heptahelical G protein-coupled receptors (7TM or GPCRs), the largest class of receptors in the human genome and common targets for therapeutics. ORs mediate their responses in the nervous system via coupling to members of the Gi/Go proteins to regulate the activity of various effector systems. Opioids are the most potent analgesics but prolonged administration leads to phenomena of tolerance and dependence thus there is a great interest towards understanding of OR signalling in an effort to develop new drugs devoid of adverse effects. Extended observations have demonstrated that the cytoplasmic face of the ORs is critical in mediating their signal through interactions not only with G proteins but also with multiple other proteins. These regulatory proteins play distinct roles in the regulation of the OR signalling, and in the fine tuning of these receptors. Regulators of G protein signalling (RGS) proteins is a class of proteins that modulate G protein signalling events by directly interacting with Gα subunits and accelerating the GTP hydrolysis, thus reducing GPCR signalling towards their effectors. RGS can also interact with many GPCRs, effectors and auxiliary proteins thus playing a key role in the cell functions, making them highly attractive as pharmacological targets (Abramow-Newerly et al., 2006). Our previous in vitro studies have shown that a member of the B/R4 subfamily of RGS proteins such as RGS4 interacts directly with μ-OR and δ-OR within a conserved region in their C-termini (μ-CT and δ-CT), forming a helix VIII, as well as within the δ-third intracellular loop (δ-i3L). RGS4 associates with μ-OR and δ-OR in living cells and forms selective complexes with Gαi/o proteins in a receptor dependent manner. Expression of RGS4 in HEK293 cells attenuated adenylyl cyclase inhibition mediated by μ-OR and agonist-mediated ERK1,2 phosphorylation for both receptors (Georgoussi et al., 2006- Leontiadis et al., 2009), suggesting for the first time that RGS4 is a negative modulator of μ-OR and δ-OR signalling. To deduce whether similar effects also occur for the κ-opioid receptor (κ-ΟR) and define the ability of other members of the B/R4 subfamily of RGS proteins, such as RGS2, to interact with OR we generated fusion peptides encompassing the C-terminus of κ-OR (κ-CT). Results from pull down experiments indicated that RGS2 interacts with the κ-CT, the δ-CT and the δ-i3L but fails to interact with the μ-CT. RGS4-N-terminal domain is responsible for OR interaction. Mapping the sites of RGS2 interaction indicated that RGS2 interacts with the non conserved portion of the C-termini of ORs exhibiting a different docking site as compared to that of RGS4. Co-precipitation studies in living cells indicated that RGS2 and RGS4 associate with κ-ΟR constitutively and upon receptor activation and confer selectivity for coupling with a specific subset of G proteins in an RGS protein dependent manner. Expression of both RGS2 and/or RGS4, in 293F cells attenuated agonist mediated-adenylyl cyclase inhibition for κ-ΟR, but not δ-OR, with RGS2 exhibiting a more robust effect. RGS4 and RGS2 reduced κ-ΟR-mediated ERK1,2 phosphorylation whereas, RGS4 accelerated agonist-induced internalization of the δ-OR but not of the κ-OR. Collectively, our observations demonstrate that RGS2 and RGS4 are novel interacting partners and negative modulators of κ-ΟR and δ-OR signalling. These two RGS proteins display a differential modulatory effect in each signalling pathway tested and play a key functional role by conferring selectivity for both κ-OR and δ-OR coupling with a specific subset of G proteins. Therefore they can be considered as attractive new pharmacological targets to manipulate opioid receptors signalling.
148

Role of the Heterotrimeric Go Protein Alpha-subunit on the Cardiac Secretory Phenotype

Roeske, Cassandra 21 May 2013 (has links)
Atrial natriuretic factor (ANF) is a polypeptide hormone produced in heart atria, stored in atrial secretory granules and released into the circulation in response to various stimuli. Proper sorting of ANF at the level of the trans-Golgi network (TGN) is required for the storage of ANF in these specific granules, and this sorting of hormones has been found to be associated with G-proteins. Specifically, the Go protein alpha-subunit (Gαo) was established to participate in the stretch-secretion coupling of ANF, but may also be involved in the transporting of ANF from the TGN into atrial granules for storage and maturation. Based on knowledge of Gαo involvement in hormone production in other endocrine tissues, protein-protein interactions of Gαo and proANF and their immunochemical co-localization in granules, the direct involvement of these two proteins in atrial granule biogenesis is probable. In this study, mice were created using the Cre/lox recombination system with a conditional Gαo knockout in cardiocytes to study and characterize ANF production, secretion and granule formation. Deletion of this gene was successful following standard breeding protocols. Characterization and validation of cellular and molecular content of the knockout mice through mRNA levels, protein expression, peptide content, electron microscopy, and electrocardiography determined that a significant phenotypic difference was observed in the abundance of atrial granules. However, Gαo knockout mice did not significantly alter the production and secretion of ANF and only partially prevented granule biogenesis, likely due to incomplete Gαo knockout. These studies demonstrate an involvement of Gαo in specific atrial granule formation.
149

Mécanismes d'activation et interactions fonctionnelles hétérologues des récepteurs aux chimiokines

De Poorter, Cédric 18 December 2012 (has links)
Mécanismes d’activation et conséquences fonctionnelles de la dimérisation des récepteurs aux chimiokines<p><p>Les chimiokines sont de petites protéines qui régulent la migration des cellules immunitaires. Elles exercent leur action en se liant à des récepteurs appartenant à la famille des récepteurs couplés aux protéines G (RCPG) dont la fonction est intimement liée à la régulation des cellules immunitaires. Notre laboratoire étudie depuis plusieurs années les relations reliant la structure et la fonction des récepteurs aux chimiokines. Ces dernières années, un nouveau concept est venu révolutionner le mode de fonctionnement des RCPGs. En effet, des travaux ont montré que la plupart des RCPGs sont capables de former des dimères. Le but de cette thèse de doctorat est d’étudier de manière systématique la dimérisation des récepteurs aux chimiokines et d’analyser les conséquences fonctionnelles de la dimérisation. <p><p>Dimérisation des récepteurs humains aux chimiokines et conséquences fonctionnelles<p><p>En utilisant une technique biophysique basée sur un transfert d’énergie de luminescence (BRET) nous avons montré au cours de ce travail de thèse que les récepteurs CCR1, CCR2, CCR5, CCR7 et CXCR4 sont capables de former des homodimères et des hétérodimères. De plus, une dimérisation entre ChemR23, dont le ligand naturel, la chémérine, est structurellement différent des chimiokines, et les récepteurs CCR7 et CXCR4, a également été identifiée. <p><p>D’un point de vue fonctionnel, des expériences réalisées au laboratoire dans le cadre d’un autre travail de thèse ont identifié une forme de compétition croisée entre CCR2, CCR5 et CXCR4 où la liaison de ligands (agonistes ou antagonistes) spécifiques de l'un des deux récepteurs inhibe la liaison des ligands spécifiques de l’autre. Ces effets ont été démontrés sur des cellules recombinantes mais aussi sur des cellules immunes et dans un modèle in vivo. (El-Asmar, 2005; Springael, 2006; Sohy, 2007; Sohy, 2009). Au cours de ce travail, nous nous sommes dans un premier temps focalisés sur les <p>hétéromères de ChemR23 avec CXCR4 et CCR7 et nous avons ensuite étudié plus en profondeur les hétéromères de CCR7. Concernant la dimérisation de ChemR23 avec les récepteurs aux chimiokines CCR7 et CXCR4, nous avons pu mettre en évidence une coopérativité négative de liaison entre les agonistes des récepteurs comme cela avait pu être démontré pour CCR2/CCR5/CXCR4. Par contre, nous n’avons observé aucun effet de compétition hétérologue ou d’inhibition fonctionnelle croisée de l’AMD3100 sur ChemR23 quand il est coexprimé avec CXCR4. De manière additionnelle, nous avons pu observer cette compétition croisée sur des cellules dendritiques murines immatures, démontrant l’existence des effets de l’hétérodimérisation lorsque les récepteurs sont exprimés à un niveau physiologique. Lors de l’étude approfondie des hétéromères de CCR7, nous avons montré que les conséquences fonctionnelles de l’hétérodimérisation de CCR7 sont différentes suivant le récepteur avec lequel il interagit. Pour l’hétérodimère CCR7/CCR2, nous avons identifié une forme de compétition croisée, où la liaison de ligands spécifiques de l'un des deux récepteurs inhibe la liaison des ligands spécifiques de l’autre, rejoignant les effets mis en évidence pour les hétéromères CCR2/CCR5/CXCR4. Ensuite, nous avons montré pour l’hétérodimère CCR7/CCR5 que les ligands de CCR7 sont capables d’inhiber la liaison des ligands spécifiques sur CCR5 mais que l’inverse n’est pas vrai. Enfin, pour l’hétérodimère CCR7/CXCR4, nous n’avons pas pu mettre en évidence d’inhibition croisée, que ce soit dans un sens ou dans l’autre. D’autre part, un effet inhibiteur de CCR7 a également été identifié pour les hétéromères CCR7/CCR5 et CCR7/CXCR4. Nous avons pu montrer que l’expression de CCR7 exerce un effet négatif sur la réponse fonctionnelle de certains récepteurs hétérologues comme CCR5 et CXCR4 mais pas CCR2 ou ChemR23.<p><p>L’ensemble de ces données permet de mieux comprendre les interactions entre récepteurs et pourrait mener à l’identification de nouvelles cibles pour les programmes de recherche de molécules thérapeutiques, qui, jusqu’à présent, ciblaient presque exclusivement un seul et unique récepteur.<p><p>Etude du mécanisme d’activation du récepteur CCR5 et étude de la relation entre activité constitutive et dimérisation.<p><p>De nombreux travaux ont été menés ces dernières années afin de mieux comprendre les mécanismes moléculaires à la base de l’activation des récepteurs couplés aux protéines G (RCPG). Il apparaît que les RCPGs peuvent se trouver dans plusieurs états conformationnels, dont certains sont favorisés par la présence d’agonistes ou d’antagonistes, ou encore d’anticorps reconnaissant des épitopes conformationnels. Certaines mutations peuvent également induire la stabilisation de certaines conformations, actives ou inactives. Pour les RCPGs appartenant à la famille de la rhodopsine, il en a résulté un modèle selon lequel les récepteurs sont maintenus dans une conformation inactive par un ensemble d’interactions ioniques impliquant l’arginine (R3.50) d’un motif DRY conservé, présent à l’extrémité cytosolique du troisième segment transmembranaire. Les interactions responsables de ce qu’on appelle le « DRY-lock » feraient intervenir notamment l’aspartate (D3.49) adjacent de l’arginine et un aspartate ou glutamate (D/E6.30) localisé au sein de l’hélice 6. Selon ce modèle, la liaison d’un agoniste, ainsi que certaines mutations, favoriseraient la rupture de ces interactions ioniques, et une conformation permettant aux récepteurs de se coupler plus efficacement aux protéines G. Des résultats du laboratoire indiquent cependant que ce modèle ne serait pas transposable complètement au récepteur CCR5. <p><p>CCR5 possède intrinsèquement une activité constitutive en absence d'agoniste. Cette activité peut être mise en évidence par l'action d'un des antagonistes de CCR5, le TAK-779, qui s'est révélé posséder une activité de type agoniste inverse. D'autre part, CCR5 possède au sein de l'hélice 6 une arginine en position 6.30 et non pas un glutamate ou un aspartate. Une arginine à cette position ne peut donc contribuer au maintien d’une conformation inactive par interaction avec R3.50 .Dans le but de tester le modèle de « DRY-lock » sur CCR5 et de mieux comprendre les interactions moléculaires impliquées dans l’activation du récepteur, plusieurs récepteurs mutants ont été construits au laboratoire. Tout d’abord, l’arginine 3.50 du motif DRY a été mutée en Asn (R3.50N) afin de rompre les interactions ioniques de ce résidu. L’aspartate 3.49 a été muté en Asn (D3.49N) ou en Val (D3.49V), afin de neutraliser une des interactions du « DRY-lock » (Lagane, 2005). L’arginine 6.30 a été mutée d’une part en Asp (R6.30D) ou en Glu (R6.30E), afin de rétablir une possibilité d’interaction avec R3.50, d’autre part en Ala (R6.30A) et en Gln (R6.30Q) afin de mieux cerner le rôle de la charge de l’arginine. Afin de tester l’hypothèse d’interaction entre le résidu 6.30 et le résidu 2.40, l’aspartate 2 .40 a été mutée en Ala (D2.40A) ou en Arg (D2.40R) et des récepteurs présentant les deux mutations ont également construits (D2.40A/R6.30A et D2.40R/R6.30D). L’ensemble des résultats obtenus par l’analyse de ces mutants a permis de montrer que la nature des interactions entre l’extrémité cytosolique des hélices 3 et 6 influence l’activité du récepteur CCR5 (Springael, 2007). Une interaction forte conduit à une forme de récepteur inactif alors qu’une interaction faible s’accompagne d’une augmentation d’activité constitutive. Cette propriété de CCR5 serait donc partagée avec d’autres récepteurs appartenant à la famille de la rhodopsine. Cependant les interactions inter-hélice stabilisant ces conformations seraient différentes pour CCR5. D’autre part, l’étude de la position 2.40 laisse supposer l'importance du résidu aspartate 2.40 dans le maintien d'une conformation permettant l'activité constitutive du récepteur. Nous avons également testé s’il existait une corrélation entre activité constitutive et capacité du récepteur CCR5 à former des dimères, mais les résultats ne nous ont pas permis de mettre en évidence une quelconque relation entre activité et dimérisation.<p><p> <p> / Doctorat en Sciences biomédicales et pharmaceutiques / info:eu-repo/semantics/nonPublished
150

Etude de la dimérisation des récepteurs aux chimiokines CCR2, CCR5 et CXCR4

Sohy, Denis 18 January 2008 (has links)
La dimérisation des récepteurs couplés aux protéines G est un nouveau concept apparu dans la littérature au cours des quelques années qui ont précédé le début de notre travail. Bien qu’il soit clairement établi que les récepteurs sont capables de former des homo et des hétérodimères, les conséquences fonctionnelles de telles interactions demeurent souvent peu claires. Dans une étude précédente, le laboratoire d’accueil a montré que les récepteurs aux chimiokines CCR2 et CCR5 forment des homo et des hétérodimères de manière constitutive et identifié une coopérativité négative de liaison de nature allostérique entre les deux sites de liaison de CCR2 et CCR5 dans des cellules co-exprimant les deux récepteurs. Dans ce travail, nous avons étendu cette étude au récepteur CXCR4, structurellement plus éloigné que CCR2 et CCR5 entre eux. Nous montrons par une méthode biophysique se basant sur le transfert d’énergie de bioluminescence (le BRET) que CCR2, CCR5 et CXCR4 forment des homodimères et des hétérodimères de manière constitutive. De plus nous démontrons une coopérativité négative de liaison de nature allostérique des deux sites de liaisons pour les hétérodimères CCR2/CXCR4 et CCR5/CXCR4. lorsque CXCR4 est co-exprimé avec CCR2 ou CCR5, la chimiokine spécifique de CXCR4 (SDF-1α) inhibe la liaison du traceur spécifique de CCR2 (MCP-1) ou du traceur spécifique de CCR5 (MIP-1β), et vice-versa. La nature allostérique de ces interactions est démontrée par des expériences mesurant la dissociation de traceurs en présence ou non de compétiteurs. La coopérativité négative de liaison de nature allostérique des deux sites de liaisons est montrée également dans des cellules primaires, excluant tout effet indésirable dû à la surexpression de récepteurs. Nous montrons également que l’antagoniste spécifique de CXCR4 (AMD3100) inhibe la liaison du traceur spécifique de CCR2 (MCP-1) ou du traceur spécifique de CCR5 (MIP-1β), et vice-versa (TAK-779 vs SDF-1α), uniquement quand CXCR4 est co-exprimé respectivement avec CCR2 ou CCR5. Il s’agit là de la première preuve montrant que les interactions allostériques au sein d’hétérodimères de récepteurs aux chimiokines impliquent aussi des antagonistes, et qu’un antagoniste de récepteur aux chimiokines influence la réponse fonctionnelle d’un autre récepteur aux chimiokines auquel il ne se lie pas. De tels effets fonctionnels ont été montré dans des expériences de mobilisation de Ca++, de chimiotactisme sur lymphoblastes et dans des expériences d’air pouch in vivo. / Doctorat en Sciences biomédicales et pharmaceutiques / info:eu-repo/semantics/nonPublished

Page generated in 0.0387 seconds