• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 110
  • 7
  • 6
  • 2
  • 2
  • Tagged with
  • 142
  • 142
  • 61
  • 41
  • 41
  • 21
  • 21
  • 20
  • 20
  • 19
  • 19
  • 17
  • 16
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

A DEEP SEARCH FOR FAINT GALAXIES ASSOCIATED WITH VERY LOW REDSHIFT C iv ABSORBERS. III. THE MASS- AND ENVIRONMENT-DEPENDENT CIRCUMGALACTIC MEDIUM

Burchett, Joseph N., Tripp, Todd M., Bordoloi, Rongmon, Werk, Jessica K., Prochaska, J. Xavier, Tumlinson, Jason, Willmer, C. N. A., O’Meara, John, Katz, Neal 22 November 2016 (has links)
Using Hubble Space Telescope Cosmic Origins Spectrograph observations of 89 QSO sightlines through the Sloan Digital Sky Survey footprint, we study the relationships between C IV absorption systems and the properties of nearby galaxies, as well as the large-scale environment. To maintain sensitivity to very faint galaxies, we restrict our sample to 0.0015 < z < 0.015, which defines a complete galaxy survey to L (SIC) 0.01 L-* or stellar mass M-* (SIC) 10(8) M-circle dot. We report two principal findings. First, for galaxies with impact parameter rho < 1 r(vir), C IV detection strongly depends on the luminosity/stellar mass of the nearby galaxy. C IV is preferentially associated with galaxies with M-* > 10(9.5) M-circle dot; lower-mass galaxies rarely exhibit significant C IV absorption (covering fraction f(C) = 9(-6)(+12)% for 11 galaxies with M-* < 10(9.5) M-circle dot.). Second, C IV detection within the M-* > 10(9.5) M-circle dot. population depends on environment. Using a fixed-aperture environmental density metric for galaxies with rho < 160 kpc at z < 0.055, we find that 57(-13)(+12)% (8/14) of galaxies in low-density regions (regions with fewer than seven L > 0.15 L* galaxies within 1.5 Mpc) have affiliated C IV absorption; however, none (0/7) of the galaxies in denser regions show C IV. Similarly, the C IV detection rate is lower for galaxies residing in groups with dark matter halo masses of M-halo > 10(12.5) M-circle dot. In contrast to C IV, H. I is pervasive in the circumgalactic medium without regard to mass or environment. These results indicate that C IV absorbers with log N(C IV). (SIC) 13.5 cm(-2) trace the halos of M-* > 10(9.5) M-circle dot galaxies but also reflect larger-scale environmental conditions.
82

Galaxy Populations in Massive Galaxy Clusters to z = 1.1: Color Distribution, Concentration, Halo Occupation Number and Red Sequence Fraction

Hennig, C., Mohr, J. J., Zenteno, A., Desai, S., Dietrich, J. P., Bocquet, S., Strazzullo, V., Saro, A., Abbott, T. M. C., Abdalla, F. B., Bayliss, M., Benoit-Lévy, A., Bernstein, R. A., Bertin, E., Brooks, D., Capasso, R., Capozzi, D., Carnero, A., Kind, M. Carrasco, Carretero, J., Chiu, I., D’Andrea, C. B., daCosta, L. N., Diehl, H. T., Doel, P., Eifler, T. F., Evrard, A. E., Fausti-Neto, A., Fosalba, P., Frieman, J., Gangkofner, C., Gonzalez, A., Gruen, D., Gruendl, R. A., Gupta, N., Gutierrez, G., Honscheid, K., Hlavacek-Larrondo, J., James, D. J., Kuehn, K., Kuropatkin, N., Lahav, O., March, M., Marshall, J. L., Martini, P., McDonald, M., Melchior, P., Miller, C. J., Miquel, R., Neilsen, E., Nord, B., Ogando, R., Plazas, A. A., Reichardt, C., Romer, A. K., Rozo, E., Rykoff, E. S., Sanchez, E., Santiago, B., Schubnell, M., Sevilla-Noarbe, I., Smith, R. C., Soares-Santos, M., Sobreira, F., Stalder, B., Stanford, S.A., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., Vikram, V., Walker, A. R., Zhang, Y. 23 January 2017 (has links)
We study the galaxy populations in 74 Sunyaev-Zeldovich effect selected clusters from the South Pole Telescope survey, which have been imaged in the science verification phase of the Dark Energy Survey. The sample extends up to z similar to 1.1 with 4 x 10(14)M(circle dot) <= M-200 <= 3 x 10(15)M(circle dot). Using the band containing the 4000 angstrom break and its redward neighbour, we study the colour-magnitude distributions of cluster galaxies to similar to m(*) + 2, finding that: (1) The intrinsic rest frame g - r colour width of the red sequence (RS) population is similar to 0.03 out to z similar to 0.85 with a preference for an increase to similar to 0.07 at z = 1, and (2) the prominence of the RS declines beyond z similar to 0.6. The spatial distribution of cluster galaxies is well described by the NFW profile out to 4R(200) with a concentration of c(g) = 3.59(-0.18)(+0.20), 5.37(-0.24)(+0.27) and 1.38(-0.19)(+0.21) for the full, the RS and the blue non-RS populations, respectively, but with similar to 40 per cent to 55 per cent cluster to cluster variation and no statistically significant redshift or mass trends. The number of galaxies within the virial region N-200 exhibits a mass trend indicating that the number of galaxies per unit total mass is lower in the most massive clusters, and shows no significant redshift trend. The RS fraction within R-200 is (68 +/- 3) per cent at z = 0.46, varies from similar to 55 per cent at z = 1 to similar to 80 per cent at z = 0.1 and exhibits intrinsic variation among
83

PROBING THE INTERSTELLAR MEDIUM AND STAR FORMATION OF THE MOST LUMINOUS QUASAR AT z = 6.3

Wang, Ran, Wu, Xue-Bing, Neri, Roberto, Fan, Xiaohui, Walter, Fabian, Carilli, Chris L., Momjian, Emmanuel, Bertoldi, Frank, Strauss, Michael A., Li, Qiong, Wang, Feige, Riechers, Dominik A., Jiang, Linhua, Omont, Alain, Wagg, Jeff, Cox, Pierre 10 October 2016 (has links)
We report new IRAM/PdBI, JCMT/SCUBA-2, and VLA observations of the ultraluminous quasar SDSS J010013.02+280225.8 (hereafter, J0100+2802) at z =. 6.3, which hosts the most massive supermassive black hole (SMBH), 1.24 x 10(10) M circle dot, that is known at z > 6. We detect the [C II] 158 mu m fine structure line and molecular CO(6-5) line and continuum emission at 353, 260, and 3 GHz from this quasar. The CO(2-1) line and the underlying continuum at 32 GHz are also marginally detected. The [C II] and CO detections suggest active star formation and highly excited molecular gas in the quasar host galaxy. The redshift determined with the [C II] and CO lines shows a velocity offset of similar to 1000 km s(-1) from that measured with the quasar Mg II line. The CO (2-1) line luminosity provides a direct constraint on the molecular gas mass, which is about (1.0 +/- 0.3) x 10(10) M circle dot We estimate the FIR luminosity to be (3.5 +/- 0.7) x 10(12) L circle dot, and the UV-to-FIR spectral energy distribution of J0100 +2802 is consistent with the templates of the local optically luminous quasars. The derived [C II]-to-FIR luminosity ratio of J0100+2802 is 0.0010 +/- 0.0002, which is slightly higher than the values of the most FIR luminous quasars at z similar to 6. We investigate the constraint on the host galaxy dynamical mass of J0100 vertical bar 2802 based on the [C II] line spectrum. It is likely that this ultraluminous quasar lies above the local SMBH-galaxy mass relationship, unless we are viewing the system at a small inclination angle.
84

Dynamical evidence for a strong tidal interaction between the Milky Way and its satellite, Leo V

Collins, Michelle L. M., Tollerud, Erik J., Sand, David J., Bonaca, Ana, Willman, Beth, Strader, Jay 12 January 2017 (has links)
We present a chemodynamical analysis of the Leo V dwarf galaxy, based on the Keck II DEIMOS spectra of eight member stars. We find a systemic velocity for the system of nu(r) = 170.9(+2.1) (-1.9) km s(-1) and barely resolve a velocity dispersion for the system, with sigma nu(r) = 2.3(+3.2) (-1.6) km s(-1), consistent with previous studies of Leo V. The poorly resolved dispersion means we are unable to adequately constrain the dark-matter content of Leo V. We find an average metallicity for the dwarf of [ Fe/ H] =-2.48 +/- 0.21 and measure a significant spread in the iron abundance of its member stars, with -3.1 <= [ Fe/ H] <=-1.9 dex, which clearly identifies Leo V as a dwarf galaxy that has been able to self-enrich its stellar population through extended star formation. Owing to the tentative photometric evidence for the tidal substructure around Leo V, we also investigate whether there is any evidence for tidal stripping or shocking of the system within its dynamics. We measure a significant velocity gradient across the system, of dv d chi = -4.1(+2.8) (-2.6) km s(-1) arcmin(-1) ( or d nu/d chi=-71.9(vertical bar 50.8) (-45.6) km s(-1) kpc(-1)), which points almost directly towards the Galactic Centre. We argue that Leo V is likely a dwarf on the brink of dissolution, having just barely survived a past encounter with the centre of the Milky Way.
85

ALMA observations of atomic carbon in z ∼ 4 dusty star-forming galaxies

Bothwell, M. S., Aguirre, J. E., Aravena, M., Bethermin, M., Bisbas, T. G., Chapman, S. C., De Breuck, C., Gonzalez, A. H., Greve, T. R., Hezaveh, Y., Ma, J., Malkan, M., Marrone, D. P., Murphy, E. J., Spilker, J. S., Strandet, M., Vieira, J. D., Weiß, A. 21 April 2017 (has links)
We present Atacama Large Millimeter Array [C-I](1 - 0) (rest frequency 492 GHz) observations for a sample of 13 strongly lensed dusty star-forming galaxies (DSFGs) originally discovered at 1.4 mm in a blank-field survey by the South Pole Telescope (SPT). We compare these new data with available [C-I] observations from the literature, allowing a study of the interstellar medium (ISM) properties of similar to 30 extreme DSFGs spanning a redshift range 2 < z < 5. Using the [C-I] line as a tracer of the molecular ISM, we find a mean molecular gas mass for SPT-DSFGs of 6.6 x 10(10) M-circle dot. This is in tension with gas masses derived via low-J (CO)-C-12 and dust masses; bringing the estimates into accordance requires either (a) an elevated CO-to-H-2 conversion factor for our sample of alpha(CO) similar to 2.5 and a gas-to-dust ratio similar to 200, or (b) an high carbon abundance X-CI similar to 7 x 10(-5). Using observations of a range of additional atomic and molecular lines (including [C-I], [C-II] and multiple transitions of CO), we use a modern photodissociation region code (3(D)-PDR) to assess the physical conditions (including the density, UV radiation field strength and gas temperature) within the ISM of the DSFGs in our sample. We find that the ISM within our DSFGs is characterized by dense gas permeated by strong UV fields. We note that previous efforts to characterize photodissociation region regions in DSFGs may have significantly under-estimated the density of the ISM. Combined, our analysis suggests that the ISM of extreme dusty starbursts at high redshift consists of dense, carbon- rich gas not directly comparable to the ISM of starbursts in the local Universe.
86

The Correlation between Halo Mass and Stellar Mass for the Most Massive Galaxies in the Universe

Tinker, Jeremy L., Brownstein, Joel R., Guo, Hong, Leauthaud, Alexie, Maraston, Claudia, Masters, Karen, Montero-Dorta, Antonio D., Thomas, Daniel, Tojeiro, Rita, Weiner, Benjamin, Zehavi, Idit, Olmstead, Matthew D. 24 April 2017 (has links)
We present measurements of the clustering of galaxies as a function of their stellar mass in the Baryon Oscillation Spectroscopic Survey. We compare the clustering of samples using 12 different methods for estimating stellar mass, isolating the method that has the smallest scatter at fixed halo mass. In this test, the stellar mass estimate with the smallest errors yields the highest amplitude of clustering at fixed number density. We find that the PCA stellar masses of Chen et al. clearly have the tightest correlation with halo mass. The PCA masses use the full galaxy spectrum, differentiating them from other estimates that only use optical photometric information. Using the PCA masses, we measure the large-scale bias as a function of M-* for galaxies with logM(*) >= 11.4, correcting for incompleteness at the low-mass end of our measurements. Using the abundance matching ansatz to connect dark matter halo mass to stellar mass, we construct theoretical models of b(M-*) that match the same stellar mass function but have different amounts of scatter in stellar mass at fixed halo mass, sigma(logM*). Using this approach, we find sigma(logM*) = 0.18(+0.01) (-0.02). This value includes both intrinsic scatter as well as random errors in the stellar masses. To partially remove the latter, we use repeated spectra to estimate statistical errors on the stellar masses, yielding an upper limit to the intrinsic scatter of 0.16 dex.
87

ABSORPTION-LINE SPECTROSCOPY OF GRAVITATIONALLY LENSED GALAXIES: FURTHER CONSTRAINTS ON THE ESCAPE FRACTION OF IONIZING PHOTONS AT HIGH REDSHIFT

Leethochawalit, Nicha, Jones, Tucker A., Ellis, Richard S., Stark, Daniel P., Zitrin, Adi 04 November 2016 (has links)
The fraction of ionizing photons escaping from high-redshift star-forming galaxies is a key obstacle in evaluating whether galaxies were the primary agents of cosmic reionization. We previously proposed using the covering fraction of low-ionization gas, measured via deep absorption-line spectroscopy, as a proxy. We now present a significant update, sampling seven gravitationally lensed sources at 4 < z < 5. We show that the absorbing gas in our sources is spatially inhomogeneous, with a median covering fraction of 66%. Correcting for reddening according to a dust-in-cloud model, this implies an estimated absolute escape fraction of similar or equal to 19% +/- 6%. With possible biases and uncertainties, collectively we find that the average escape fraction could be reduced to no less than 11%, excluding the effect of spatial variations. For one of our lensed sources, we have sufficient signal-tonoise ratio to demonstrate the presence of such spatial variations and scatter in its dependence on the Ly alpha equivalent width, consistent with recent simulations. If this source is typical, our lower limit to the escape fraction could be reduced by a further factor similar or equal to 2. Across our sample, we find a modest anticorrelation between the inferred escape fraction and the local star formation rate, consistent with a time delay between a burst and leaking Lyman continuum photons. Our analysis demonstrates considerable variations in the escape fraction, consistent with being governed by the small-scale behavior of star-forming regions, whose activities fluctuate over short timescales. This supports the suggestion that the escape fraction may increase toward the reionization era when star formation becomes more energetic and burst-like.
88

THE REDSHIFT DISTRIBUTION OF DUSTY STAR-FORMING GALAXIES FROM THE SPT SURVEY

Strandet, M. L., Weiss, A., Vieira, J. D., de Breuck, C., Aguirre, J. E., Aravena, M., Ashby, M. L. N., Béthermin, M., Bradford, C. M., Carlstrom, J. E., Chapman, S. C., Crawford, T. M., Everett, W., Fassnacht, C. D., Furstenau, R. M., Gonzalez, A. H., Greve, T. R., Gullberg, B., Hezaveh, Y., Kamenetzky, J. R., Litke, K., Ma, J., Malkan, M., Marrone, D. P., Menten, K. M., Murphy, E. J., Nadolski, A., Rotermund, K. M., Spilker, J. S., Stark, A. A., Welikala, N. 10 May 2016 (has links)
We use the Atacama Large Millimeter/submillimeter Array (ALMA) in Cycle 1 to determine spectroscopic redshifts of high-redshift dusty star-forming galaxies (DSFGs) selected by their 1.4 mm continuum emission in the South Pole Telescope (SPT) survey. We present ALMA 3 mm spectral scans between 84 and 114 GHz for 15 galaxies and targeted ALMA 1 mm observations for an additional eight sources. Our observations yield 30 new line detections from CO, [CI], [NII], H2O and NH3. We further present Atacama Pathfinder Experiment [CII] and CO mid-J observations for seven sources for which only a single line was detected in spectral-scan data from ALMA Cycle 0 or Cycle 1. We combine the new observations with previously published and new millimeter/submillimeter line and photometric data of the SPT-selected DSFGs to study their redshift distribution. The combined data yield 39 spectroscopic redshifts from molecular lines, a success rate of >85%. Our sample represents the largest data set of its kind today and has the highest spectroscopic completeness among all redshift surveys of high-z DSFGs. The median of the redshift distribution is z = 3.9 +/- 0.4, and the highest-redshift source in our sample is at z = 5.8. We discuss how the selection of our sources affects the redshift distribution, focusing on source brightness, selection wavelength, and strong gravitational lensing. We correct for the effect of gravitational lensing and find the redshift distribution for 1.4 mm selected sources with a median redshift of z = 3.1 +/- 0.3. Comparing to redshift distributions selected at shorter wavelengths from the literature, we show that selection wavelength affects the shape of the redshift distribution.
89

STELLAR MASS–GAS-PHASE METALLICITY RELATION AT 0.5 ≤ z ≤ 0.7: A POWER LAW WITH INCREASING SCATTER TOWARD THE LOW-MASS REGIME

Guo, Yicheng, Koo, David C., Lu, Yu, Forbes, John C., Rafelski, Marc, Trump, Jonathan R., Amorín, Ricardo, Barro, Guillermo, Davé, Romeel, Faber, S. M., Hathi, Nimish P., Yesuf, Hassen, Cooper, Michael C., Dekel, Avishai, Guhathakurta, Puragra, Kirby, Evan N., Koekemoer, Anton M., Pérez-González, Pablo G., Lin, Lihwai, Newman, Jeffery A., Primack, Joel R., Rosario, David J., Willmer, Christopher N. A., Yan, Renbin 11 May 2016 (has links)
We present the stellar mass (M-*)-gas-phase metallicity relation (MZR) and its scatter at intermediate redshifts (0.5 <= z <= 0.7) for 1381 field galaxies collected from deep spectroscopic surveys. The star formation rate (SFR) and color at a given M-* of this magnitude-limited (R less than or similar to 24 AB) sample are representative of normal star-forming galaxies. For masses below 10(9) M-circle dot, our sample of 237 galaxies is similar to 10 times larger than those in previous studies beyond the local universe. This huge gain in sample size enables superior constraints on the MZR and its scatter in the low-mass regime. We find a power-law MZR at 10(8) M-circle dot < M-* < 10(11) M-circle dot: 12 + log (O/H) = (5.83 +/- 0.19)+(0.30 +/- 0.02) log (M-*/M-circle dot). At 10(9) M-circle dot < M-* < 10(10.5) M-circle dot, our MZR shows agreement with others measured at similar redshifts in the literature. Our power-law slope is, however, shallower than the extrapolation of the MZRs of others to masses below 10(9) M-circle dot. The SFR dependence of the MZR in our sample is weaker than that found for local galaxies (known as the fundamental metallicity relation). Compared to a variety of theoretical models, the slope of our MZR for low-mass galaxies agrees well with predictions incorporating supernova energy-driven winds. Being robust against currently uncertain metallicity calibrations, the scatter of the MZR serves as a powerful diagnostic of the stochastic history of gas accretion, gas recycling, and star formation of low-mass galaxies. Our major result is that the scatter of our MZR increases as M-* decreases. Our result implies that either the scatter of the baryonic accretion rate (sigma((M) over dot)) or the scatter of the M-*-M-halo relation (sigma(SHMR)) increases as M-* decreases. Moreover, our measure of scatter at z = 0.7 appears consistent with that found for local galaxies. This lack of redshift evolution constrains models of galaxy evolution to have both sigma((M) over dot) and sigma(SHMR) remain unchanged from z = 0.7 to z = 0.
90

SPECTROSCOPIC CONFIRMATION OF A PROTOCLUSTER AT z ≈ 3.786

Dey, Arjun, Lee, Kyoung-Soo, Reddy, Naveen, Cooper, Michael, Inami, Hanae, Hong, Sungryong, Gonzalez, Anthony H., Jannuzi, Buell T. 16 May 2016 (has links)
We present new observations of the field containing the z = 3.786 protocluster PC 217.96+ 32.3. We confirm that it is one of the largest known and most overdense high-redshift structures. Such structures are rare even in the largest cosmological simulations. We used the Mayall/MOSAIC1.1 imaging camera to image a 1 degrees.2 x 0 degrees.6 area (approximate to 150 x 75 comoving Mpc) surrounding the protocluster's core and discovered 165 candidate Ly alpha emitting galaxies (LAEs) and 788 candidate Lyman Break galaxies (LBGs). There are at least two overdense regions traced by the LAEs, the largest of which shows an areal overdensity in its core (i. e., within a radius of 2.5 comoving Mpc) of 14 +/- 7 relative to the average LAE spatial density ((rho) over bar) in the imaged field. Further, (rho) over bar is twice that derived by other field LAE surveys. Spectroscopy with Keck/DEIMOS yielded redshifts for 164 galaxies (79 LAEs and 85 LBGs); 65 lie at a redshift of 3.785 +/- 0.010. The velocity dispersion of galaxies near the core is sigma = 350 +/- 40 km s(-1), a value robust to selection effects. The overdensities are likely to collapse into systems with present-day masses of > 10(15)M(circle dot) and > 6 x 10(14)M(circle dot) The low velocity dispersion may suggest a dynamically young protocluster. We find a weak trend between narrow-band (Ly alpha) luminosity and environmental density: the Ly alpha luminosity is enhanced on average by 1.35x within the protocluster core. There is no evidence that the Ly alpha equivalent width depends on environment. These suggest that star formation and/or active galactic nucleus (AGN) activity is enhanced in the higher-density regions of the structure. PC. 217.96+ 32.3 is a Coma cluster analog, witnessed in the process of formation.

Page generated in 0.2986 seconds