• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 267
  • 24
  • 20
  • 10
  • 6
  • 4
  • 1
  • 1
  • Tagged with
  • 397
  • 397
  • 78
  • 70
  • 67
  • 63
  • 56
  • 54
  • 50
  • 46
  • 44
  • 43
  • 39
  • 36
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

In-situ and post-growth investigation of low temperature Group III-nitride thin films deposited via MOCVD /

Johnson, Michael Christopher. January 2001 (has links)
Thesis (Ph. D.)--University of Washington, 2001. / Vita. Includes bibliographical references (leaves 168-180).
192

Development of wide-band gap InGaN solar cells for high-efficiency photovoltaics

Jani, Omkar Kujadkumar. January 2008 (has links)
Thesis (Ph.D)--Electrical and Computer Engineering, Georgia Institute of Technology, 2008. / Committee Chair: Honsberg, Christiana; Committee Co-Chair: Ferguson, Ian; Committee Member: Citrin, David; Committee Member: Klein, Benjamin; Committee Member: Rohatgi, Ajeet; Committee Member: Snyder, Robert. Part of the SMARTech Electronic Thesis and Dissertation Collection.
193

Determination of atomic structure of Co/GaN(0001) surface by using LEED Patterson inversion and tensor LEED fitting

Li, Hiu-lung., 李曉隆. January 2011 (has links)
published_or_final_version / Physics / Master / Master of Philosophy
194

Optical studies of focused ion beam fabricated GaN microstructures andnanostructures

Wang, Xiaohu, 王小虎 January 2011 (has links)
In this thesis, Gallium Nitride (GaN) micro- and nanostructures were fabricated based on focused ion beam (FIB) milling. The starting wafer is an epitaxial structure containing InGaN/GaN multi-quantum wells. High crystal quality structures such as the nano-cone, nanopillar array and single pillar were fabricated based on the FIB method. During the fabrication process, various approaches were designed to minimize FIB damage caused by Gallium ion bombardment. The fabrication process for nano-cone is a combination of mask preparation by FIB with subsequent reactive ion etching (RIE). For fabricating nanopillar arrays, the nanopillars were patterned directly using FIB with an optimized beam current followed by wet etching process to remove the damage. On the other hand, the single pillar is achieved by gradually decreasing the ion beam current as the diameter of the pillar becomes smaller. The first order Raman spectra for the nanopillar array reveal a strong additional peak when the diameter of the nanopillars is less than 220 nm. This peak can also be observed in GaN pillars without MQW and is clearly assigned to the surface optical (SO) mode originated from the A1 phonon in wurtzite GaN. The frequency of this SO mode is found to be sensitive with the diameter and surface roughness of the nanopillars. Temperature-variable photoluminescence (PL) measurements show that a broadband emission in the as-grown sample split into the two well-resolved bands for nanopillars and the emission band at the higher energy side quickly thermally quenched. Room temperature PL measurements on the single pillars exhibit an increasing blue-shift of the peak emission with the decreasing of the pillar diameter. Additional simulation data and excitation power dependent PL studies confirm the observation of strain relaxation in the pillar’s MQW due to FIB fabrication. The temperature variable PL on the single pillar shows a monotonous blue shift as the temperature arises to 300 K. / published_or_final_version / Electrical and Electronic Engineering / Master / Master of Philosophy
195

Wide band-gap nanostructure based devices

Chen, Xinyi, 陈辛夷 January 2012 (has links)
Wide band gap based nanostructures have being attracting much research interest because of their promise for application in optoelectronic devices. Among those wide band gap semiconductors, gallium nitride (GaN) and zinc oxide (ZnO) are the most commonly studied and optoelectronic devices based on GaN and ZnO have been widely investigated. This thesis concentrates on the growth, optical and electrical properties of GaN and ZnO nanostructures, plus their application in solar cells and light emitting diodes (LEDs). GaN-nanowire based dye sensitized solar cells were studied. Different post-growth treatments such as annealing and coating with a TiOx shell were applied to enhance dye absorption. It was found that TiOx increased the dye absorption and the performance of the dye sensitized solar cell. ZnO nanorods were synthesized by vapor deposition and electrodeposition. Post-growth treatments such as annealing and hydrothermal processing were used to modify the defect chemistry and optical properties. LEDs based on GaN/ZnO heterojunctions were studied. The influence of ZnO seed layers on GaN/ZnO LEDs was investigated. GaN/ZnO LEDs based on ZnO nanorods with MgO and TiOx shells were also prepared in order to modify the LED performance. The coating condition of the shell was found to influence the current-voltage (I-V) characteristics and device performance. Moreover, high brightness LEDs based on GaN with InGaN multiple quantum wells were also fabricated. The origin of the emission from GaN/ZnO LEDs was studied using different kinds of GaN substrates. Direct metal contacts on bare GaN substrates were also employed to investigate the optical emission and electrical properties. It is found that the emission from the GaN/ZnO LEDs probably originated from the GaN substrate. GaN/ZnO LEDs with MgO as an interlayer were also fabricated. The MgO layer was expected to modify the band alignment between the GaN and the ZnO. It was shown that GaN/MgO/ZnO heterojunctions (using both ZnO nanorods and ZnO films) have quite different emission performance under forward bias compared to those that have no MgO interlayer. An emission peak was around 400 nm could originate from ZnO. Nitrogen doped ZnO nanorods on n-type GaN have been prepared by electrodeposition. Zinc nitrate and zinc acetate were used as ZnO precursors and NH4NO3 was used as a nitrogen precursor. Only the ZnO nanorods made using zinc nitrate showed obvious evidence of doping and coherent I-V characteristics. Cerium doped ZnO based LEDs were fabricated and showed an emission that depended on the cerium precursor that was employed. This indicates that the choice of precursor influences the growth, the materials properties and the optical properties of ZnO. / published_or_final_version / Physics / Doctoral / Doctor of Philosophy
196

Advanced transmission electron microscopy of GaN-based materials and devices

Liu, Zhenyu January 2011 (has links)
No description available.
197

The epitaxial growth of GaN and A1GaN/GaN Heterostructure Field Effect Transistors (HFET) on Lithium Gallate (LiGaO₂) substrates

Kang, Sangbeom 12 1900 (has links)
No description available.
198

Implementation of AlGaN/GaN based high electron mobility transistor on ferroelectric materials for multifunctional optoelectronic-acoustic-electronic applications

Lee, Kyoung-Keun 02 January 2009 (has links)
This dissertation shows the properties of lithium niobate and lithium tantalate as a promising substrate for III-nitrides, addresses several problems of integrating compound semiconductor materials on LN and LT. It also suggests some solutions of the addressed problems, including furnace anneals at high temperature. While this furnace anneal improved surface smoothness and III-nitride film adhesion, it also caused the repolarization on the congruent LN (48.39 mole % of Li2O) samples. However, the repolarization was not developed in the stoichiometric LN (49.9 mole % of Li2O) samples during the identical thermal treatment. Also, the structural quality of GaN epitaxial layers showed slight improvement when grown on LT substrates over LN substrates. Conventional epitaxial growth technologies were adapted and modified to implement a successful AlGaN/GaN heterostructure on LN (LT). The heterostructure were analyzed to verify the electrical and material properties using several characterization techniques. Finally, it demonstrates AlGaN/GaN-based HEMT devices on ferroelectric materials that will allow the future development of the multifunctional electrical and optical applications.
199

Fabrication and characterization of GaN visible-blind ultraviolet avalanche photodiodes

Zhang, Yun 20 May 2009 (has links)
This thesis describes the fabrication and characterization of GaN homojunction visible-blind ultraviolet (UV) p-i-n avalanche photodiodes (APDs) grown by metalorganic chemical vapor deposition (MOCVD) on free-standing bulk GaN substrates. The objective of this research is to develop GaN UV p-i-n APDs with high linear-mode avalanche gains and the Geiger-mode operation for single photon detection. Low noise, high responsivity, and high detectivity are also required for fabricated APDs used as photodiodes in the photovoltaic mode (zero bias) and the photoconductive mode (low reverse bias). High material defect density and immature fabrication technology have hampered the development of III-nitride APDs in the past. In this thesis, sidewall leakage reduction methods have been developed to achieve significant improvement in dark current density, noise performance, and photo detection performance. A record linear-mode avalanche gain > 10⁵ for GaN APDs was demonstrated at λ = 360 nm. The first Geiger-mode deep UV (DUV) APD using front-illuminated homojunction p-i-n diode structure on a free-standing bulk GaN substrate was also measured with single photo detection efficiency (SPDE) of 1.0 % and dark count probability (DCP) of 0.03 at 265 nm. The performance of fabricated homojunction GaN p-i-n photodiodes was also evaluated in the photoconductive mode as well as the photovoltaic mode. For an 80-µm-diameter device biased at - 20 V (in the photoconductive mode) the dark current density is lower than 40 pA/cm² which is the lowest value achieved for any III-nitride photodiode so far. Its responsivity is 0.140 A/W at 360 nm with an ultraviolet-visible rejection ratio of 8×10³. The room-temperature noise equivalent power is 4.27×10 ⁻¹⁷ W-Hz-[superscript 0.5] and the detectivity D* is 1.66×10¹⁴ cm-Hz[superscript 0.5]-W ⁻¹ at - 20 V. The minimum detectable optical power is as low as 100 fW. They are among the best values reported for reverse-biased GaN p-i-n photodiodes to date.
200

Growth and Process-Induced Deep Levels in Wide Bandgap Semiconductor GaN and SiC / 結晶成長及びプロセスにより導入されるワイドバンドギャップ半導体GaN及びSiC中の深い準位

Kanegae, Kazutaka 23 March 2022 (has links)
付記する学位プログラム名: 京都大学卓越大学院プログラム「先端光・電子デバイス創成学」 / 京都大学 / 新制・課程博士 / 博士(工学) / 甲第23909号 / 工博第4996号 / 新制||工||1780(附属図書館) / 京都大学大学院工学研究科電子工学専攻 / (主査)教授 木本 恒暢, 教授 川上 養一, 准教授 安藤 裕一郎 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM

Page generated in 0.0596 seconds