• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 8
  • 1
  • Tagged with
  • 30
  • 30
  • 30
  • 16
  • 8
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

An Integrated Framework for Gas Turbine Based Power Plant Operational Modeling and Optimization

Zhao, Yongjun 21 April 2005 (has links)
The deregulation of the electric power market introduced a strong element of competition. Power plant operators strive to develop advanced operational strategies to maximize the profitability in the dynamic electric power market. New methodologies for gas turbine power plant operational modeling and optimization are needed for power plant operation to enhance operational decision making, and therefore to maximize power plant profitability by reducing operations and maintenance cost and increasing revenue. In this study, a profit based, lifecycle oriented, and unit specific methodology for gas turbine based power plant operational modeling was developed, with the power plant performance, reliability, maintenance, and market dynamics considered simultaneously. The generic methodology is applicable for a variety of optimization problems, and several applications for operational optimization were implemented using this method. A multiple time-scale method was developed for gas turbine power plants long term generation scheduling. This multiple time-scale approach allows combining the detailed granularity of the day-to-day operations with global (seasonal) trends, while keeping the resulting optimization model relatively compact. Using the multiple timescale optimization method, a profit based outage departure planning method was developed, and the key factors for this profit based approach include power plant aging, performance degradation, reliability deterioration, and the energy market dynamics. A novel approach for gas turbine based power plant sequential preventive maintenance scheduling was also introduced. Finally, methods to evaluate the impact of upgrade packages on gas turbine power plant performance, reliability, and economics were developed, and TIES methodology was applied for effective evaluation and selection of gas turbine power plant upgrade packages.
22

Response of a swirl-stabilized flame to transverse acoustic excitation

O'Connor, Jacqueline 23 December 2011 (has links)
This work addresses the issue of transverse combustion instabilities in annular gas turbine combustor geometries. While modern low-emissions combustion strategies have made great strides in reducing the production of toxic emissions in aircraft engines and power generation gas turbines, combustion instability remains one of the foremost technical challenges in the development of next generation combustor technology. To that end, this work investigates the response of a swirling flow and swirl-stabilized flame to a transverse acoustic field is using a variety of high-speed laser techniques, especially high-speed particle image velocimetry (PIV) for detailed velocity measurements of this highly unsteady flow phenomenon. A description of the velocity-coupled transverse instability mechanism is explained with companion measurements describing each of the velocity disturbance pathways. Dependence on acoustic frequency, amplitude, and field symmetry is discussed. Significant emphasis is placed on the response of a swirling flow field to a transverse acoustic field. Details of the dynamics of the vortex breakdown bubble and the shear layers are explained using a wide variety of measurements for both non-reacting and reacting flow cases. This thesis concludes with an overview of the impact of this work and suggestions for future research in this area.
23

Flame stabilization and mixing characteristics in a stagnation point reverse flow combustor

Bobba, Mohan Krishna. January 2007 (has links)
Thesis (Ph.D)--Aerospace Engineering, Georgia Institute of Technology, 2008. / Committee Chair: Seitzman, Jerry; Committee Member: Filatyev, Sergei; Committee Member: Jagoda, Jechiel; Committee Member: Lieuwen, Timothy; Committee Member: Shelton, Samuel; Committee Member: Zinn, Ben. Part of the SMARTech Electronic Thesis and Dissertation Collection.
24

An experimental investigation of the conversion of NO to NO2 in a simulated gas turbine environment

Hunderup, James W. 16 June 2009 (has links)
Unexpectedly high concentrations of NO₂ have been noted in stack emissions from industrial gas turbines. NO₂ formation appears to occur through the so called "HO₂ mechanism II in which NO combines with HO₂ to produce NO₂ and OH. In this study, the formation of NO₂ was investigated through computer modeling and experimental testing. Computer modeling utilized the CHEMKIN chemical kinetics program and a subset of a previously published C-H-O-N system mechanism. Experimental work was conducted using a high pressure flow reactor designed and built in the course of the study. The effects of pressure, temperature, and the presence of a NO₂ promoting hydrocarbon, methane, were investigated. It was discovered that as pressure increased from 1 atm. to 8.5 atm., the rate and amount of NO converted to NO₂ also increased. There also appeared to be a temperature "window" between approximately 800 and 1000 K in which NO to NO₂ conversion readily occurred. The presence of methane was seen to enhance NO conversion to NO₂, and a ratio of [CH₄]/[NO] was found to be a useful parameter in predicting NO₂ formation. Significant NO conversion to NO₂ was noted for [CH₄]/[NO] > 1 at the hydrocarbon injection point. Experimental results validated those trends obtained from modeling with a modified C-H-O-N mechanism. / Master of Science
25

Application of a modified k-[epsilon] turbulence model to gas turbine combustor geometries

Relation, Heather L. 31 October 2009 (has links)
The k-epsilon turbulence model yields inconsistent and diffusive results for swirling and recirculating flows, which are characteristic of combustor geometries. Y. S. Chen and S. W. Kim propose a modification to the k-epsilon turbulence model which has shown improved predictions for several complex flows. This study evaluates the application of the Chen modification of the k-epsilon turbulence model to combustor geometries by applying the modification to two burner test cases which contain the elemental flow characteristics of an industrial gas turbine combustor. The modification is implemented into a commercial computational fluid dynamics (CFD) code. The results show an improved prediction of the location, shape and size of the primary centerline recirculation zone for both cases. The large swirl and axial velocity gradients, which are diffused by the standard k-epsilon model, are preserved by the Chen model. The overprediction of turbulent eddy viscosity in regions of high shear, which is characteristic of k-epsilon, is controlled by the Chen modification. In industrial combustor design, the prediction of the location, size and shape of primary flow features is of paramount importance. The Chen modification can, therefore, be considered a successful improvement to the k-epsilon model and can be considered applicable to combustor geometries. / Master of Science
26

Effects of high levels of steam addition on NOx̳ reduction in laminar opposed flow diffusion flames

Blevins, Linda G. 04 May 2010 (has links)
A "leveling off" trend in NOx emissions with high amounts of steam addition has been observed in industrial gas turbine diffusion flame combustors. Experiments were performed to try to reproduce this trend in a laminar, opposed flow diffusion flame burner. Experiments were performed with Cli4, C2H4, CO, COIH2 (1:1), and COIH2 (1:2) as fuels. Both hydrocarbon fuels and non-hydrocarbon fuels were tested to study the contribution of the Fenimore mechanism to the "leveling off" trend. Probe sampling with chemiluminescent analysis was used to fmd NOx concentrations; Pt/PtRh thermocouples corrected for radiation losses were used to measure flame temperatures. The experiments reproduced the "leveling off" of NOx emissions, but a "leveling off" of temperatures also occurred. There were no significant differences in the results from the hydrocarbon and non-hydrocarbon fuels. The "leveling off" of NOx emissions is attributed to the "leveling off" of temperatures in the burner. It is not necessary to invoke the Fenimore mechanism to explain this trend. At least 55% of the NOx was eliminated from the flames using steam injection, which implies that at least 55% of the NOx was formed by the Zeldovich mechanism Evidence of Fenimore NO was provided by the fact that the existence of hydrocarbon coking on the fuel nozzle encouraged NOx production in all flames. / Master of Science
27

An experimental investigation of the effect of temporal equivalence ratio fluctuations on NO<sub>x</sub> emissions in premixed flames

Wirth, Douglas A. 06 June 2008 (has links)
The effect of temporal variations in equivalence ratio on the NO<sub>x</sub> emissions of a premixed methane-air flame was measured in a burner. The NO<sub>x</sub> emissions are compared among steady flames with spatially uniform equivalence ratio distributions, steady flames with spatially nonuniform equivalence ratio distributions, and unsteady flames with temporal equivalence ratio fluctuations. Time-varying equivalence ratio was measured optically, time-varying temperatures were measured with thermocouples, and mean NO<sub>x</sub> emissions were measured by probe sampling and a chemiluminescent analyzer. These measurements quantify the effect of temporal unsteadiness and spatial nonuniformity of equivalence ratio on NO<sub>x</sub> emissions. For lean flames, both spatial nonuniformities and temporal fluctuations in equivalence ratio contribute to an increase in NO<sub>x</sub> emissions with respect to steady uniform flames at the same mean flame temperatures. For lean flames, higher amplitude temperature fluctuations result in larger increases in NO<sub>x</sub> with respect to steady flames. The dissertation also describes the optical technique for nonintrusive temporal measurements of equivalence ratio fluctuations and techniques for thermocouple compensation at frequencies up to 10 Hz. / Ph. D.
28

Flame stabilization and mixing characteristics in a stagnation point reverse flow combustor

Bobba, Mohan Krishna 10 October 2007 (has links)
A novel combustor design, referred to as the Stagnation Point Reverse-Flow (SPRF) combustor, was recently developed that is able to operate stably at very lean fuel-air mixtures and with low NOx emissions even when the fuel and air are not premixed before entering the combustor. The primary objective of this work is to elucidate the underlying physics behind the excellent stability and emissions performance of the SPRF combustor. The approach is to experimentally characterize velocities, species mixing, heat release and flame structure in an atmospheric pressure SPRF combustor with the help of various optical diagnostic techniques: OH PLIF, chemiluminescence imaging, PIV and Spontaneous Raman Scattering. Results indicate that the combustor is primarily stabilized in a region downstream of the injector that is characterized by low average velocities and high turbulence levels; this is also the region where most of the heat release occurs. High turbulence levels in the shear layer lead to increased product entrainment levels, elevating the reaction rates and thereby enhancing the combustor stability. The effect of product entrainment on chemical timescales and the flame structure is illustrated with simple reactor models. Although reactants are found to burn in a highly preheated (1300 K) and turbulent environment due to mixing with hot product gases, the residence times are sufficiently long compared to the ignition timescales such that the reactants do not autoignite. Turbulent flame structure analysis indicates that the flame is primarily in the thin reaction zones regime throughout the combustor, and it tends to become more flamelet like with increasing distance from the injector. Fuel-air mixing measurements in case of non-premixed operation indicate that the fuel is shielded from hot products until it is fully mixed with air, providing nearly premixed performance without the safety issues associated with premixing. The reduction in NOx emissions in the SPRF combustor are primarily due to its ability to stably operate under ultra lean (and nearly premixed) condition within the combustor. Further, to extend the usefulness of this combustor configuration to various applications, combustor geometry scaling rules were developed with the help of simplified coaxial and opposed jet models.
29

Optimization and testing of a low NOx hydrogen fuelled gas turbine

Borner, Sebastian 08 April 2013 (has links)
A lot of research effort is spent worldwide in order to reduce the environmental impact of the transportation and power generation sector. To minimize the environmental pollution the role of hydrogen fuelled gas turbines is intensively discussed in several research scenarios, like the IGCC-technology or the application of hydrogen as large scale storage for renewable energy sources. The adaptation of the applied gas turbine combustion chamber technology and control technology is mandatory for a stable and secure low NOx operation of a hydrogen fuelled gas turbine.<p>The micromix combustion principle was invented at Aachen University of Applied Sciences and achieves a significant reduction of the NOx-emissions by the application of multi miniaturized diffusion-type flamelets. Based on the research experiences, gained during the two European hydrogen research programs EQHHPP and Cryoplane at Aachen University of Applied Sciences, the intention of this thesis was to continue the scientific research work on low NOx hydrogen fuelled gas turbines. This included the experimental characterization of the micromix combustion principle, the design of an improved combustion chamber, based on the micromix combustion principle, for industrial gas turbine applications and the improvement of the gas turbine’s control and metering technology.<p>The experimental characterization of the micromix combustion principle investigated the impact of several key parameters, which influence the formation of the NOx-emissions, and allows therefore the definition of boundary conditions and design laws, in which a low NOx operation of the micromix combustion principle is practicable. In addition the ability of the micromix combustion principle to operate at elevated energy densities up to 15 MW/(m2bar) was successfully demonstrated. The improved combustion chamber design concept includes the experiences gained during the experimental characterization and covers the industrial needs regarding scalability and manufacturability.<p>The optimization and testing is done with an Auxiliary Power Unit GTCP 36-300. The original kerosene fuelled gas turbine was modified for the hydrogen application. Therefore several hardware and software modifications were realized. The improved gas turbine’s control and metering technology enables stable and comparable operational characteristics as in kerosene reference. An improved hydrogen metering unit, which is controlled by the industrial Versatile Engine Control Box, was successfully implemented. <p>The combination of the micromix combustion technology and of the optimized control and metering technology allows a stable, secure and low NOx hydrogen fuelled gas turbine operation.<p> / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
30

Development and testing of hydrogen fuelled combustion chambers for the possible use in an ultra micro gas turbine

Robinson, Alexander 14 May 2012 (has links)
The growing need of mobile power sources with high energy density and the robustness to operate also in the harshest environmental surroundings lead to the idea of downscaling gas turbines to ì-scale. Classified as PowerMEMS devices, a couple of design attempts have emerged in the last decade. One of these attempts was the Belgian “PowerMEMS” design started back in 2003 and aiming towards a ì-scale gas turbine rated at 1 kW of electrical power output.<p>This PhD thesis presents the scientific evaluation and development history of different combustion chamber designs based upon the “PowerMEMS” design parameters. With hydrogen as chosen fuel, the non-premixed diffusive “micromix” concept was selected as combustion principle. Originally designed for full scale gas turbine applications in two different variants, consequently the microcombustor development had to start with the downscaling of these two principles towards ì-scale. Both principles have the advantage to be inherently safe against flashback, due to the non-premixed concept, which is an important issue even in this small scale application when burning hydrogen. By means of water analogy and CFD simulations the hydrogen injection system and the chamber geometry could be validated and optimized. Besides the specific design topics that emerged during the downscaling process of the chosen combustion concepts, the general difficulties of microcombustor design like e.g. high power density, low Reynolds numbers, short residence time, and manufacturing restrictions had to be tackled as well.<p>As full scale experimental test campaigns are still mandatory in the field of combustion research, extensive experimental testing of the different prototypes was performed. All test campaigns were conducted with a newly designed test rig in a combustion lab modified for microcombustion investigations, allowing testing of miniaturized combustors according to full engine requirements with regard to mass flow, inlet temperature, and chamber pressure. The main results regarding efficiency, equivalence ratio, and combustion temperature were obtained by evaluating the measured exhaust gas composition. Together with the performed ignition and extinction trials, the evaluation and analysis of the obtained test results leads to a full characterization of each tested prototype and delivered vital information about the possible operating regime in a later UMGT application. In addition to the stability and efficiency characteristics, another critical parameter in combustor research, the NOx emissions, was investigated and analyzed for the different combustor prototypes.<p>As an advancement of the initial downscaled micromix prototypes, the following microcombustor prototype was not only a combustion demonstrator any more, but already aimed for easy module integration into the real UMGT. With a further optimized combustion efficiency, it also featured an innovative recuperative cooling of the chamber walls and thus allowing an cost effective all stainless steel design.<p>Finally, a statement about the pros and cons of the different micromix combustion concepts and their correspondent combustor designs towards a possible ì-scale application could be given. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished

Page generated in 0.1101 seconds